首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Chromatin domain boundary elements prevent inappropriate interaction between distant or closely spaced regulatory elements and restrict enhancers and silencers to correct target promoters. In spite of having such a general role and expected frequent occurrence genome wide, there is no DNA sequence analysis based tool to identify boundary elements. Here, we report chromatin domain Boundary Element Search Tool (cdBEST), to identify boundary elements. cdBEST uses known recognition sequences of boundary interacting proteins and looks for 'motif clusters'. Using cdBEST, we identified boundary sequences across 12 Drosophila species. Of the 4576 boundary sequences identified in Drosophila melanogaster genome, >170 sequences are repetitive in nature and have sequence homology to transposable elements. Analysis of such sequences across 12 Drosophila genomes showed that the occurrence of repetitive sequences in the context of boundaries is a common feature of drosophilids. We use a variety of genome organization criteria and also experimental test on a subset of the cdBEST boundaries in an enhancer-blocking assay and show that 80% of them indeed function as boundaries in vivo. These observations highlight the role of cdBEST in better understanding of chromatin domain boundaries in Drosophila and setting the stage for comparative analysis of boundaries across closely related species.  相似文献   

3.
4.
翟亚男  许泉  郭亚  吴强 《遗传》2016,38(4):323-336
哺乳动物中原钙粘蛋白(Protocadherin, Pcdh)基因簇包含50多个串联排列的基因,这些基因形成3个紧密相连的基因簇(Pcdhα、Pcdhβ和Pcdhγ),所编码的原钙粘蛋白质群在神经元多样性(Neuronal diversity)和单细胞特异性(Single cell identity)以及神经突触信号转导中发挥重要作用。前期的工作已证实转录因子CTCF(CCCTC-binding factor)与CTCF结合位点(CTCF-binding site, CBS)的方向性结合能够决定增强子和启动子环化的方向以及其远距离交互作用的特异性,并进一步在Pcdh基因座(Locus)形成两个(Pcdhα和Pcdhγ)染色质拓扑结构域(CTCF/cohesin- mediated chromatin domain, CCD),而且染色质拓扑结构域对于控制基因表达调控至关重要。本文通过生物信息学方法对比人类和小鼠序列,发现Pcdhβγ染色质拓扑结构域调控区域中的DNase I超敏位点(DNase I hypersensitive sites, HSs)较为保守。染色质免疫沉淀及大规模测序实验(Chromatin immunoprecipitation and massive parallel sequencing, ChIP-Seq)揭示CBS位点在Pcdhβγ调控区域中成簇分布并且具有相同的方向。凝胶电泳迁移实验(Electrophoresis mobility shift assay, EMSA)确定Pcdhβγ调控区域内具体的42 bp CBS位点并且发现一个CTCF峰包含两个CBS位点。在全基因组范围内,运用计算生物学方法分析CTCF和增强子、启动子等调控元件的关系,发现CBS位点在调控元件附近有较多分布,推测CTCF通过介导增强子和启动子的特异性交互作用,在细胞核三维基因组内形成活性转录枢纽调控基因精准表达。  相似文献   

5.
6.
7.
The conservation of hox genes as well as their genomic organization across the phyla suggests that this system of anterior–posterior axis formation arose early during evolution and has come under strong selection pressure. Studies in the split Hox cluster of Drosophila have shown that proper expression of hox genes is dependent on chromatin domain boundaries that prevent inappropriate interactions among different types of cis-regulatory elements. To investigate whether boundary function and their role in regulation of hox genes is conserved in insects with intact Hox clusters, we used an algorithm to locate potential boundary elements in the Hox complex of mosquito, Anopheles gambiae. Several potential boundary elements were identified that could be tested for their functional conservation. Comparative analysis revealed that like Drosophila, the bithorax region in A. gambiae contains an extensive array of boundaries and enhancers organized into domains. We analysed a subset of candidate boundary elements and show that they function as enhancer blockers in Drosophila. The functional conservation of boundary elements from mosquito in fly suggests that regulation of hox genes involving chromatin domain boundaries is an evolutionary conserved mechanism and points to an important role of such elements in key developmentally regulated loci.  相似文献   

8.
9.
10.
11.
章波  刘昕 《遗传》2004,26(4):551-555
  相似文献   

12.

Background  

Recent genomic scale survey of epigenetic states in the mammalian genomes has shown that promoters and enhancers are correlated with distinct chromatin signatures, providing a pragmatic way for systematic mapping of these regulatory elements in the genome. With rapid accumulation of chromatin modification profiles in the genome of various organisms and cell types, this chromatin based approach promises to uncover many new regulatory elements, but computational methods to effectively extract information from these datasets are still limited.  相似文献   

13.
Cell type specification is a delicate biological event in which every step is under tight regulation. From a molecular point of view, cell fate commitment begins with chromatin alteration, which kickstarts lineage-determining factors to initiate a series of genes required for cell specification. Several important neuronal differentiation factors have been identified from ectopic over-expression studies. However, there is scarce information on which DNA regions are modified during induced pluripotent stem cell (iPSC) to neuronal progenitor cell (NPC) differentiation, the cis regulatory factors that attach to these accessible regions, or the genes that are initially expressed. In this study, we identified the DNA accessible regions of iPSCs and NPCs via the Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq). We identified which chromatin regions were modified after neuronal differentiation and found that the enhancer regions had more active histone modification changes than the promoters. Through motif enrichment analysis, we found that NEUROD1 controls iPSC differentiation to NPC by binding to the accessible regions of enhancers in cooperation with other factors such as the Hox proteins. Finally, by using Hi-C data, we categorized the genes that directly interacted with the enhancers under the control of NEUROD1 during iPSC to NPC differentiation.  相似文献   

14.
15.
Insulators are DNA sequences that control the interactions among genomic regulatory elements and act as chromatin boundaries. A thorough understanding of their location and function is necessary to address the complexities of metazoan gene regulation. We studied by ChIP–chip the genome-wide binding sites of 6 insulator-associated proteins—dCTCF, CP190, BEAF-32, Su(Hw), Mod(mdg4), and GAF—to obtain the first comprehensive map of insulator elements in Drosophila embryos. We identify over 14,000 putative insulators, including all classically defined insulators. We find two major classes of insulators defined by dCTCF/CP190/BEAF-32 and Su(Hw), respectively. Distributional analyses of insulators revealed that particular sub-classes of insulator elements are excluded between cis-regulatory elements and their target promoters; divide differentially expressed, alternative, and divergent promoters; act as chromatin boundaries; are associated with chromosomal breakpoints among species; and are embedded within active chromatin domains. Together, these results provide a map demarcating the boundaries of gene regulatory units and a framework for understanding insulator function during the development and evolution of Drosophila.  相似文献   

16.
Embryonic stem cells (ESCs) can differentiate into any given cell type and therefore represent a versatile model to study the link between gene regulation and differentiation. To quantitatively assess the dynamics of enhancer activity during the early stages of murine ESC differentiation, we analyzed accessible genomic regions using STARR-seq, a massively parallel reporter assay. This resulted in a genome-wide quantitative map of active mESC enhancers, in pluripotency and during the early stages of differentiation. We find that only a minority of accessible regions is active and that such regions are enriched near promoters, characterized by specific chromatin marks, enriched for distinct sequence motifs, and modeling shows that active regions can be predicted from sequence alone. Regions that change their activity upon retinoic acid-induced differentiation are more prevalent at distal intergenic regions when compared to constitutively active enhancers. Further, analysis of differentially active enhancers verified the contribution of individual TF motifs toward activity and inducibility as well as their role in regulating endogenous genes. Notably, the activity of retinoic acid receptor alpha (RARα) occupied regions can either increase or decrease upon the addition of its ligand, retinoic acid, with the direction of the change correlating with spacing and orientation of the RARα consensus motif and the co-occurrence of additional sequence motifs. Together, our genome-wide enhancer activity map elucidates features associated with enhancer activity levels, identifies regulatory regions disregarded by computational prediction tools, and provides a resource for future studies into regulatory elements in mESCs.  相似文献   

17.
Hox genes are necessary for proper morphogenesis and organization of various body structures along the anterior-posterior body axis. These genes exist in clusters and their expression pattern follows spatial and temporal co-linearity with respect to their genomic organization. This colinearity is conserved during evolution and is thought to be constrained by the regulatory mechanisms that involve higher order chromatin structure. Earlier studies, primarily in Drosophila, have illustrated the role of chromatin-mediated regulatory processes, which include chromatin domain boundaries that separate the domains of distinct regulatory features. In the mouse HoxD complex, Evx2 and Hoxd13 are located ~ 9 kb apart but have clearly distinguishable temporal and spatial expression patterns. Here, we report the characterization of a chromatin domain boundary element from the Evx2-Hoxd13 region that functions in Drosophila as well as in mammalian cells. We show that the Evx2-Hoxd13 region has sequences conserved across vertebrate species including a GA repeat motif and that the Evx2-Hoxd13 boundary activity in Drosophila is dependent on GAGA factor that binds to the GA repeat motif. These results show that Hox genes are regulated by chromatin mediated mechanisms and highlight the early origin and functional conservation of such chromatin elements.  相似文献   

18.
Chen Q  Lin L  Smith S  Lin Q  Zhou J 《Developmental biology》2005,286(2):629-636
In complex genomes, insulators set up chromatin domain boundaries and protect promoters from inappropriate activation by enhancers from neighboring genes. The Drosophila Abdominal-B locus uses insulator elements to organize its large regulatory region into several body segment-specific chromatin domains. This organization leads to a problem in enhancer-promoter communication, that is, how do distal enhancers activate the Abd-B promoter when there are several insulators in between? This issue is partially resolved by the Promoter Targeting Sequence, which can overcome the enhancer blocking effect of an insulator. In this study, we describe a new Promoter Targeting Sequence, PTS-6, from the Abd-B 3' regulatory region. PTS-6, comprised of approximately 200 bp, was found to bypass both homologous Abdominal-B insulators, such as Fab-7 and Fab-8, and a heterologous insulator, suHw. Most importantly, it also overcomes a combination of two insulators such as Fab-7/Fab-8. Thus, PTS-6 could, in principle, target remote enhancers that are separated from the Abd-B promoter by multiple insulators. In addition, PTS-6 selectively targets the distal enhancer to only one transgenic promoter, and it strongly facilitates Abd-B enhancers. These results suggest that promoter targeting is necessary for long-range enhancer-promoter communication in Abd-B, and PTS elements could be a common occurrence in large, complex genetic loci.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号