首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The serotonin transporter (SERT) maintains serotonergic neurotransmission via rapid reuptake of serotonin from the synaptic cleft. SERT relies exclusively on the coat protein complex II component SEC24C for endoplasmic reticulum (ER) export. The closely related transporters for noradrenaline and dopamine depend on SEC24D. Here, we show that discrimination between SEC24C and SEC24D is specified by the residue at position +2 downstream from the ER export motif (607RI608 in SERT). Substituting Lys610 with tyrosine, the corresponding residue found in the noradrenaline and dopamine transporters, switched the SEC24 isoform preference: SERT-K610Y relied solely on SEC24D to reach the cell surface. This analysis was extended to other SLC6 (solute carrier 6) transporter family members: siRNA-dependent depletion of SEC24C, but not of SEC24D, reduced surface levels of the glycine transporter-1a, the betaine/GABA transporter and the GABA transporter-4. Experiments with dominant negative versions of SEC24C and SEC24D recapitulated these findings. We also verified that the presence of two ER export motifs (in concatemers of SERT and GABA transporter-1) supported recruitment of both SEC24C and SEC24D. To the best of our knowledge, this is the first report to document a change in SEC24 specificity by mutation of a single residue in the client protein. Our observations allowed for deducing a rule for SLC6 family members: a hydrophobic residue (Tyr or Val) in the +2 position specifies interaction with SEC24D, and a hydrophilic residue (Lys, Asn, or Gln) recruits SEC24C. Variations in SEC24C are linked to neuropsychiatric disorders. The present findings provide a mechanistic explanation. Variations in SEC24C may translate into distinct surface levels of neurotransmitter transporters.  相似文献   

2.
The serotonin transporter (SERT) is a member of the SLC6 family of solute carriers. SERT plays a crucial role in synaptic neurotransmission by retrieving released serotonin. The intracellular carboxyl terminus of various neurotransmitter transporters has been shown to be important for the correct delivery of SLC6 family members to the cell surface. Here we studied the importance of the C terminus in trafficking and folding of human SERT. Serial truncations followed by mutagenesis identified sequence spots (PG(601,602), RII(607-609)) within the C terminus relevant for export of SERT from the endoplasmic reticulum (ER). RI(607,608) is homologous to the RL-motif that in other SLC6 family members provides a docking site for the COPII component Sec24D. The primary defect resulting from mutation at PG(601,602) and RI(607,608) was impaired folding, because mutated transporters failed to bind the inhibitor [(3)H]imipramine. In contrast, when retained in the ER (e.g. by dominant negative Sar1) the wild type transporter bound [(3)H]imipramine with an affinity comparable to that of the surface-expressed transporter. SERT-RI(607,608)AA and SERT-RII(607-609)AAA were partially rescued by treatment of cells with the nonspecific chemical chaperone DMSO or the specific pharmacochaperone ibogaine (which binds to the inward facing conformation of SERT) but not by other classes of ligands (inhibitors, substrates, amphetamines). These observations (i) demonstrate an hitherto unappreciated role of the C terminus in the folding of SERT, (ii) indicates that the folding trajectory proceeds via an inward facing intermediate, and (iii) suggest a model where the RI-motif plays a crucial role in preventing premature Sec24-recruitment and export of incorrectly folded transporters.  相似文献   

3.
COPII-coated vesicles mediate the transport of newly synthesized proteins from the endoplasmic reticulum to the Golgi. SEC24 is the COPII component primarily responsible for recruitment of protein cargoes into nascent vesicles. There are four Sec24 paralogs in mammals, with mice deficient in SEC24A, -B, and -D exhibiting a wide range of phenotypes. We now report the characterization of mice with deficiency in the fourth Sec24 paralog, SEC24C. Although mice haploinsufficient for Sec24c exhibit no apparent abnormalities, homozygous deficiency results in embryonic lethality at approximately embryonic day 7. Tissue-specific deletion of Sec24c in hepatocytes, pancreatic cells, smooth muscle cells, and intestinal epithelial cells results in phenotypically normal mice. Thus, SEC24C is required in early mammalian development but is dispensable in a number of tissues, likely as a result of compensation by other Sec24 paralogs. The embryonic lethality resulting from loss of SEC24C occurs considerably later than the lethality previously observed in SEC24D deficiency; it is clearly distinct from the restricted neural tube phenotype of Sec24b null embryos and the mild hypocholesterolemic phenotype of adult Sec24a null mice. Taken together, these results demonstrate that the four Sec24 paralogs have developed unique functions over the course of vertebrate evolution.  相似文献   

4.
The ankyrin and SOCS (suppressor of cytokine signaling) box (ASB) family of proteins function as the substrate recognition subunit in a subset of Elongin-Cullin-SOCS (ECS) E3 ubiquitin ligases. Despite counting 18 members in humans, the identity of the physiological targets of the Asb proteins remains largely unexplored. To increase our understanding of the function of ASB proteins, we conducted a family-wide SILAC (stable isotope labeling by amino acids in cell culture)-based protein/protein interaction analysis. This investigation led to the identification of novel as well as known ASB-associated proteins like Cullin 5 and Elongins B/C. We observed that several proteins can be bound by more than one Asb protein. The additional exploration of this phenomenon demonstrated that ASB-Cullin 5 complexes can oligomerize and provides evidence that Cullin 5 forms heterodimeric complexes with the Cullin 4a-DDB1 complex. We also demonstrated that ASB11 is a novel endoplasmic reticulum-associated ubiquitin ligase with the ability to interact and promote the ubiquitination of Ribophorin 1, an integral protein of the oligosaccharyltransferase (OST) glycosylation complex. Moreover, expression of ASB11 can increase Ribophorin 1 protein turnover in vivo. In summary, we provide a comprehensive protein/protein interaction data resource that can aid the biological and functional characterization of ASB ubiquitin ligases.  相似文献   

5.
In heterologous and endogenous expression systems, we studied the role of ERp44 and its complex partner endoplasmic reticulum (ER) oxidase 1-α (Ero1-Lα) in mechanisms regulating disulfide bond formation for serotonin transporter (SERT), an oligomeric glycoprotein. ERp44 is an ER lumenal chaperone protein that favors the maturation of disulfide-linked oligomeric proteins. ERp44 plays a critical role in the release of proteins from the ER via binding to Ero1-Lα. Mutation in the thioredoxin-like domain hampers the association of ERp44C29S with SERT, which has three Cys residues (Cys-200, Cys-209, and Cys-109) on the second external loop. We further explored the role of the protein chaperones through shRNA knockdown experiments for ERp44 and Ero1-Lα. Those efforts resulted in increased SERT localization to the plasma membrane but decreased serotonin (5-HT) uptake rates, indicating the importance of the ERp44 retention mechanism in the proper maturation of SERT proteins. These data were strongly supported with the data received from the N-biotinylaminoethyl methanethiosulfonate (MTSEA-biotin) labeling of SERT on ERp44 shRNA cells. MTSEA-biotin only interacts with the free Cys residues from the external phase of the plasma membrane. Interestingly, it appears that Cys-200 and Cys-209 of SERT in ERp44-silenced cells are accessible to labeling by MTSEA-biotin. However, in the control cells, these Cys residues are occupied and produced less labeling with MTSEA-biotin. Furthermore, ERp44 preferentially associated with SERT mutants (C200S, C209S, and C109A) when compared with wild type. These interactions with the chaperone may reflect the inability of Cys-200 and Cys-209 SERT mutants to form a disulfide bond and self-association as evidenced by immunoprecipitation assays. Based on these collective findings, we hypothesize that ERp44 together with Ero1-Lα plays an important role in disulfide formation of SERT, which may be a prerequisite step for the assembly of SERT molecules in oligomeric form.  相似文献   

6.
Retrograde vesicular transport from the Golgi to the ER requires the Dsl1 tethering complex, which consists of the three subunits Dsl1, Dsl3, and Tip20. It forms a stable complex with the SNAREs Ufe1, Use1, and Sec20 to mediate fusion of COPI vesicles with the endoplasmic reticulum. Here, we analyze molecular interactions between five SNAREs of the ER (Ufe1, Use1, Sec20, Sec22, and Ykt6) and the Dsl1 complex in vitro and in vivo. Of the two R-SNAREs, Sec22 is preferred over Ykt6 in the Dsl-SNARE complex. The NSF homolog Sec18 can displace Ykt6 but not Sec22, suggesting a regulatory function for Ykt6. In addition, our data also reveal that subunits of the Dsl1 complex (Dsl1, Dsl3, and Tip20), as well as the SNAREs Ufe1 and Sec20, are ER-resident proteins that do not seem to move into COPII vesicles. Our data support a model, in which a tethering complex is stabilized at the organelle membrane by binding to SNAREs, recognizes the incoming vesicle via its coat and then promotes its SNARE-mediated fusion.  相似文献   

7.
The human selenoprotein VIMP (VCP-interacting membrane protein)/SelS (selenoprotein S) localizes to the endoplasmic reticulum (ER) membrane and is involved in the process of ER-associated degradation (ERAD). To date, little is known about the presumed redox activity of VIMP, its structure and how these features might relate to the function of the protein in ERAD. Here, we use the recombinantly expressed cytosolic region of VIMP where the selenocysteine (Sec) in position 188 is replaced with a cysteine (a construct named cVIMP-Cys) to characterize redox and structural properties of the protein. We show that Cys-188 in cVIMP-Cys forms a disulfide bond with Cys-174, consistent with the presence of a Cys174-Sec188 selenosulfide bond in the native sequence. For the disulfide bond in cVIMP-Cys we determined the reduction potential to -200 mV, and showed it to be a good substrate of thioredoxin. Based on a biochemical and structural characterization of cVIMP-Cys using analytical gel filtration, CD and NMR spectroscopy in conjunction with bioinformatics, we propose a comprehensive overall structural model for the cytosolic region of VIMP. The data clearly indicate the N-terminal half to be comprised of two extended α-helices followed by a C-terminal region that is intrinsically disordered. Redox-dependent conformational changes in cVIMP-Cys were observed only in the vicinity of the two Cys residues. Overall, the redox properties observed for cVIMP-Cys are compatible with a function as a reductase, and we speculate that the plasticity of the intrinsically disordered C-terminal region allows the protein to access many different and structurally diverse substrates.  相似文献   

8.
The coat protein complex II (COPII) generates transport carriers from the endoplasmic reticulum (ER) under the control of the small GTPase Sar1. Sec23 is well known as a structural component of the COPII coat and as a GTPase-activating protein (GAP) for Sar1. Here, we showed that Saccharomyces cerevisiae contains a novel Sec23 paralog, Nel1, which appears not to function as a subunit of the COPII coat. Nel1 does not associate with any of the COPII components, but it exhibits strong Sar1 GAP activity. We also demonstrated that the chromosomal deletion of NEL1 leads to a significant growth defect in the temperature-sensitive sar1D32G background, suggesting a possible functional link between these proteins. In contrast to Sec23, which is predominantly localized at ER exit sites on the ER membrane, a major proportion of Nel1 is localized throughout the cytosol. Our findings highlight a possible role of Nel1 as a novel GAP for Sar1.  相似文献   

9.
The multisubunit membrane protein complex Photosystem II (PSII) catalyzes one of the key reactions in photosynthesis: the light-driven oxidation of water. Here, we focus on the role of the Psb27 assembly factor, which is involved in biogenesis and repair after light-induced damage of the complex. We show that Psb27 is essential for the survival of cyanobacterial cells grown under stress conditions. The combination of cold stress (30 °C) and high light stress (1000 μmol of photons × m(-2) × s(-1)) led to complete inhibition of growth in a Δpsb27 mutant strain of the thermophilic cyanobacterium Thermosynechococcus elongatus, whereas wild-type cells continued to grow. Moreover, Psb27-containing PSII complexes became the predominant PSII species in preparations from wild-type cells grown under cold stress. Two different PSII-Psb27 complexes were isolated and characterized in this study. The first complex represents the known monomeric PSII-Psb27 species, which is involved in the assembly of PSII. Additionally, a novel dimeric PSII-Psb27 complex could be allocated in the repair cycle, i.e. in processes after inactivation of PSII, by (15)N pulse-label experiments followed by mass spectrometry analysis. Comparison with the corresponding PSII species from Δpsb27 mutant cells showed that Psb27 prevented the release of manganese from the previously inactivated complex. These results indicate a more complex role of the Psb27 protein within the life cycle of PSII, especially under stress conditions.  相似文献   

10.
The ceramide transport protein CERT mediates the inter-organelle transport of ceramide for the synthesis of sphingomyelin, presumably through endoplasmic reticulum (ER)-Golgi membrane contact sites. CERT has a short peptide motif named FFAT, which associates with the ER-resident membrane protein VAP. We show that the phosphorylation of CERT at serine 315, which is adjacent to the FFAT motif, markedly enhanced the interaction of CERT with VAP. The phosphomimetic CERT S315E mutant exhibited higher activity to support the ER-to-Golgi transport of ceramide than the wild-type control in a semi-intact cell system, and this enhanced activity was abrogated when its FFAT motif was deleted. The level of phosphorylation of CERT at Ser-315 increased in HeLa cells treated with a sphingolipid biosynthesis inhibitor or exogenous sphingomyelinase. Expression of CERT S315E induced intracellular punctate structures, to which CERT and VAP were co-localized, and the occurrence of the structure was dependent on both phosphatidylinositol 4-monophosphate binding and VAP binding activities of CERT. Phosphorylation of another region (named a serine-rich motif) in CERT is known to down-regulate the activity of CERT. Analysis of various CERT mutant constructs showed that the de-phosphorylation of the serine-rich motif and the phosphorylation of Ser-315 likely have the additive contribution to enhance the activity of CERT. These results demonstrate that the phosphorylation of CERT at the FFAT motif-adjacent serine affected its affinity for VAP, which may regulate the inter-organelle trafficking of ceramide in response to the perturbation of cellular sphingomyelin and/or other sphingolipids.  相似文献   

11.
Na(+)- and Cl(-)-dependent uptake of neurotransmitters via transporters of the SLC6 family, including the human serotonin transporter (SLC6A4), is critical for efficient synaptic transmission. Although residues in the human serotonin transporter involved in direct Cl(-) coordination of human serotonin transport have been identified, the role of Cl(-) in the transport mechanism remains unclear. Through a combination of mutagenesis, chemical modification, substrate and charge flux measurements, and molecular modeling studies, we reveal an unexpected role for the highly conserved transmembrane segment 1 residue Asn-101 in coupling Cl(-) binding to concentrative neurotransmitter uptake.  相似文献   

12.
Intracellular transport is largely dependent on vesicles that bud off from one compartment and fuse with the target compartment. The first contact of an incoming vesicle with the target membrane is mediated by tethering factors. The tethering factor responsible for recruiting Golgi-derived vesicles to the ER is the Dsl1 tethering complex, which is comprised of the essential proteins Dsl1p, Dsl3p, and Tip20p. We investigated the role of the Tip20p subunit at the ER by analyzing two mutants, tip20-5 and tip20-8. Both mutants contained multiple mutations that were scattered throughout the TIP20 sequence. Individual mutations could not reproduce the temperature-sensitive phenotype of tip20-5 and tip20-8, indicating that the overall structure of Tip20p might be altered in the mutants. Using molecular dynamics simulations comparing Tip20p and Tip20-8p revealed that some regions, particularly the N-terminal domain and parts of the stalk region, were more flexible in the mutant protein, consistent with its increased susceptibility to proteolysis. Both Tip20-5p and Tip20-8p mutants prevented proper ER trans-SNARE complex assembly in vitro. Moreover, Tip20p mutant proteins disturbed the interaction between Dsl1p and the coatomer coat complex, indicating that the Dsl1p-coatomer interaction could be stabilized or regulated by Tip20p. We provide evidence for a direct role of the Dsl1 complex, in particular Tip20p, in the formation and stabilization of ER SNARE complexes.  相似文献   

13.
Quality control of endoplasmic reticulum proteins involves the identification and engagement of misfolded proteins, dislocation of the misfolded protein across the endoplasmic reticulum (ER) membrane, and ubiquitin-mediated targeting to the proteasome for degradation. Ancient ubiquitous protein 1 (AUP1) physically associates with the mammalian HRD1-SEL1L complex, and AUP1 depletion impairs degradation of misfolded ER proteins. One of the functions of AUP1 in ER quality control is to recruit the soluble E2 ubiquitin-conjugating enzyme UBE2G2. We further show that the CUE domain of AUP1 regulates polyubiquitylation and facilitates the interaction of AUP1 with the HRD1 complex and with dislocation substrates. AUP1 localizes both to the ER and to lipid droplets. The AUP1 expression level affects the abundance of cellular lipid droplets and as such represents the first protein with lipid droplet regulatory activity to be linked to ER quality control. These findings indicate a possible connection between ER protein quality control and lipid droplets.  相似文献   

14.
The protein-disulfide isomerase (PDI) family member anterior gradient 2 (AGR2) is reportedly overexpressed in numerous cancers and plays a role in cancer development. However, to date the molecular functions of AGR2 remain to be characterized. Herein we have identified AGR2 as bound to newly synthesized cargo proteins using a proteomics analysis of endoplasmic reticulum (ER) membrane-bound ribosomes. Nascent protein chains that translocate into the ER associate with specific ER luminal proteins, which in turn ensures proper folding and posttranslational modifications. Using both imaging and biochemical approaches, we confirmed that AGR2 localizes to the lumen of the ER and indirectly associates with ER membrane-bound ribosomes through nascent protein chains. We showed that AGR2 expression is controlled by the unfolded protein response and is in turn is involved in the maintenance of ER homeostasis. Remarkably, we have demonstrated that siRNA-mediated knockdown of AGR2 significantly alters the expression of components of the ER-associated degradation machinery and reduces the ability of cells to cope with acute ER stress, properties that might be relevant to the role of AGR2 in cancer development.  相似文献   

15.
We study the amino acid transport system b(0,+) as a model for folding, assembly, and early traffic of membrane protein complexes. System b(0,+) is made of two disulfide-linked membrane subunits: the carrier, b(0,+) amino acid transporter (b(0,+)AT), a polytopic protein, and the helper, related to b(0,+) amino acid transporter (rBAT), a type II glycoprotein. rBAT ectodomain mutants display folding/trafficking defects that lead to type I cystinuria. Here we show that, in the presence of b(0,+)AT, three disulfides were formed in the rBAT ectodomain. Disulfides Cys-242-Cys-273 and Cys-571-Cys-666 were essential for biogenesis. Cys-673-Cys-685 was dispensable, but the single mutants C673S, and C685S showed compromised stability and trafficking. Cys-242-Cys-273 likely was the first disulfide to form, and unpaired Cys-242 or Cys-273 disrupted oxidative folding. Strikingly, unassembled rBAT was found as an ensemble of different redox species, mainly monomeric. The ensemble did not change upon inhibition of rBAT degradation. Overall, these results indicated a b(0,+)AT-dependent oxidative folding of the rBAT ectodomain, with the initial and probably cotranslational formation of Cys-242-Cys-273, followed by the oxidation of Cys-571-Cys-666 and Cys-673-Cys-685, that was completed posttranslationally.  相似文献   

16.
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a quality control system for newly synthesized proteins in the ER; nonfunctional proteins, which fail to form their correct folding state, are then degraded. The cytoplasmic peptide:N-glycanase is a deglycosylating enzyme that is involved in the ERAD and releases N-glycans from misfolded glycoproteins/glycopeptides. We have previously identified a mutant plant toxin protein, RTA (ricin A-chain nontoxic mutant), as the first in vivo Png1 (the cytoplasmic peptide:N-glycanase in Saccharomyces cerevisiae)-dependent ERAD substrate. Here, we report a new genetic device to assay the Png1-dependent ERAD pathway using the new model protein designated RTL (RTA-transmembrane-Leu2). Our extensive studies using different yeast mutants identified various factors involved in RTL degradation. The degradation of RTA/RTL was independent of functional Sec61 but was dependent on Der1. Interestingly, ER-mannosidase Mns1 was not involved in RTA degradation, but it was dependent on Htm1 (ERAD-related α-mannosidase in yeast) and Yos9 (a putative degradation lectin), indicating that mannose trimming by Mns1 is not essential for efficient ERAD of RTA/RTL. The newly established RTL assay will allow us to gain further insight into the mechanisms involved in the Png1-dependent ERAD-L pathway.  相似文献   

17.
Nascent very low density lipoprotein (VLDL) exits the endoplasmic reticulum (ER) in a specialized ER-derived vesicle, the VLDL transport vesicle (VTV). Similar to protein transport vesicles (PTVs), VTVs require coat complex II (COPII) proteins for their biogenesis from the ER membranes. Because the size of the VTV is large, we hypothesized that protein(s) in addition to COPII components might be required for VTV biogenesis. Our proteomic analysis, supported by Western blotting data, shows that a 26-kDa protein, CideB, is present in the VTV but not in other ER-derived vesicles such as PTV and pre-chylomicron transport vesicle. Western blotting and immunoelectron microscopy analyses suggest that CideB is concentrated in the VTV. Our co-immunoprecipitation data revealed that CideB specifically interacts with VLDL structural protein, apolipoprotein B100 (apoB100), but not with albumin, a PTV cargo protein. Confocal microscopic data indicate that CideB co-localizes with apoB100 in the ER. Additionally, CideB interacts with COPII components, Sar1 and Sec24. To investigate the role of CideB in VTV biogenesis, we performed an in vitro ER budding assay. We show that the blocking of CideB inhibits VTV budding, indicating a direct requirement of CideB in VTV formation. To confirm our findings, we knocked down CideB in primary hepatocytes and isolated ER and cytosol to examine whether they support VTV budding. Our data suggest that CideB knockdown significantly reduces VTV biogenesis. These findings suggest that CideB forms an intricate COPII coat and regulates the VTV biogenesis.  相似文献   

18.
Hyperekplexia or startle disease is a rare clinical syndrome characterized by an exaggerated startle in response to trivial tactile or acoustic stimuli. This neurological disorder can have serious consequences in neonates, provoking brain damage and/or sudden death due to apnea episodes and cardiorespiratory failure. Hyperekplexia is caused by defective inhibitory glycinergic neurotransmission. Mutations in the human SLC6A5 gene encoding the neuronal GlyT2 glycine transporter are responsible for the presynaptic form of the disease. GlyT2 mediates synaptic glycine recycling, which constitutes the main source of releasable transmitter at glycinergic synapses. Although the majority of GlyT2 mutations detected so far are recessive, a dominant negative mutant that affects GlyT2 trafficking does exist. In this study, we explore the properties and structural alterations of the S512R mutation in GlyT2. We analyze its dominant negative effect that retains wild-type GlyT2 in the endoplasmic reticulum (ER), preventing surface expression. We show that the presence of an arginine rather than serine 512 provoked transporter misfolding, enhanced association to the ER-chaperone calnexin, altered association with the coat-protein complex II component Sec24D, and thereby impeded ER exit. The S512R mutant formed oligomers with wild-type GlyT2 causing its retention in the ER. Overexpression of calnexin rescued wild-type GlyT2 from the dominant negative effect of the mutant, increasing the amount of transporter that reached the plasma membrane and dampening the interaction between the wild-type and mutant GlyT2. The ability of chemical chaperones to overcome the dominant negative effect of the disease mutation on the wild-type transporter was demonstrated in heterologous cells and primary neurons.  相似文献   

19.
Recent studies have implicated endoplasmic reticulum (ER) stress in insulin resistance associated with caloric excess. In mice placed on a 3-day high fat diet, we find augmented eIF2α signaling, together with hepatic lipid accumulation and insulin resistance. To clarify the role of the liver ER stress-dependent phospho-eIF2α (eIF2α-P) pathway in response to acute caloric excess on liver and muscle glucose and lipid metabolism, we studied transgenic mice in which the hepatic ER stress-dependent eIF2α-P pathway was inhibited by overexpressing a constitutively active C-terminal fragment of GADD34/PPP1R15a, a regulatory subunit of phosphatase that terminates ER stress signaling by phospho-eIF2α. Inhibition of the eIF2α-P signaling in liver led to a decrease in hepatic glucose production in the basal and clamped state, which could be attributed to reduced gluconeogenic gene expression, resulting in reduced basal plasma glucose concentrations. Surprisingly, hepatic eIF2α inhibition also impaired insulin-stimulated muscle and adipose tissue insulin sensitivity. This latter effect could be attributed at least in part by an increase in circulating IGFBP-3 levels in the transgenic animals. In addition, infusion of insulin during a hyperinsulinemic-euglycemic clamp induced conspicuous ER stress in the 3-day high fat diet-fed mice, which was aggravated through continuous dephosphorylation of eIF2α. Together, these data imply that the hepatic ER stress eIF2α signaling pathway affects hepatic glucose production without altering hepatic insulin sensitivity. Moreover, hepatic ER stress-dependent eIF2α-P signaling is implicated in an unanticipated cross-talk between the liver and peripheral organs to influence insulin sensitivity, probably via IGFBP-3. Finally, eIF2α is crucial for proper resolution of insulin-induced ER stress.  相似文献   

20.
The β-subunits of voltage-gated calcium channels regulate their functional expression and properties. Two mechanisms have been proposed for this, an effect on gating and an enhancement of expression. With respect to the effect on expression, β-subunits have been suggested to enhance trafficking by masking an unidentified endoplasmic reticulum (ER) retention signal. Here we have investigated whether, and how, β-subunits affect the level of Ca(V)2.2 channels within somata and neurites of cultured sympathetic neurons. We have used YFP-Ca(V)2.2 containing a mutation (W391A), that prevents binding of β-subunits to its I-II linker and found that expression of this channel was much reduced compared with WT CFP-Ca(V)2.2 when both were expressed in the same neuron. This effect was particularly evident in neurites and growth cones. The difference between the levels of YFP-Ca(V)2.2(W391A) and CFP-Ca(V)2.2(WT) was lost in the absence of co-expressed β-subunits. Furthermore, the relative reduction of expression of Ca(V)2.2(W391A) compared with the WT channel was reversed by exposure to two proteasome inhibitors, MG132 and lactacystin, particularly in the somata. In further experiments in tsA-201 cells, we found that proteasome inhibition did not augment the cell surface Ca(V)2.2(W391A) level but resulted in the observation of increased ubiquitination, particularly of mutant channels. In contrast, we found no evidence for selective retention of Ca(V)2.2(W391A) in the ER, in either the soma or growth cones. In conclusion, there is a marked effect of β-subunits on Ca(V)2.2 expression, particularly in neurites, but our results point to protection from proteasomal degradation rather than masking of an ER retention signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号