首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pan Y  Yuan D  Zhang J  Shao C 《Mutation research》2011,707(1-2):67-73
The combined exposure to environmental toxicants such as heavy metals and radiation is an important research area in health protection. Here we explored cadmium induced radioadaptive response (RAR) and investigated the role of hydrogen sulfide (H(2)S) and ATM kinase in this response. Our data showed that the cadmium ions with a sub-lethal concentration could induce RAR in Chang liver cells towards subsequent γ-irradiation and this response could be abrogated by DL-propargylglycine (PPG), the endogenous H(2)S synthetase inhibitor of cystathionine γ-lyase (CSE), but not by aminooxyacetic acid (AOAA), the inhibitor of cystathionine β-synthase (CBS). Moreover, the pretreatment of cells with NaHS also stimulated cellular adaptive response to radiation. Both cadmium treatment and irradiation up-regulated the expression of CSE protein in a time-dependent manner but had no influence on the expression of CBS protein. In the primed cells, the time course of CBS expression showed no significant difference with the cells treated with 2Gy irradiation alone, however, the CSE expression was easier to reach the maximum level, indicating a more efficient H(2)S production by CSE. Moreover, the cadmium-induced RAR was totally suppressed by KU-55933, a specific ATM inhibitor that did not change the CSE expression after radiation. However, exogenous H(2)S decreased the phosphorylation level of radiation-induced ATM. In conclusion, the present results demonstrate firstly that H(2)S is involved in the cadmium induced cross-adaptive response to challenging radiation. CSE, rather than CBS, may mainly responsible for the H(2)S production during this RAR which may also be mediated by ATM pathway. However, the activation of CSE is independent of ATM but could negatively regulate the phosphorylation of ATM.  相似文献   

2.
Carbon monoxide (CO) is an endogenous dilator in the newborn cerebral circulation. The present study addressed the hypothesis that endogenous CO attenuates pial arteriolar vasoconstriction caused by hypocapnia, platelet activating factor, and elevated blood pressure. Experiments used anesthetized piglets with implanted, closed cranial windows. Topical application of a metal porphyrin inhibitor of heme oxygenase was used to inhibit production of CO. Chromium mesopophyrin increased vasoconstriction in response to hypocapnia. The constrictor response to a topical stimulus, platelet activating factor, was also increased by application of chromium mesoporphyrin. Inhibition of heme oxygenase did not constrict pial arterioles in normotensive newborn pigs (mean arterial pressure of about 70 mmHg), but did constrict pial arterioles of piglets with experimentally induced increases in arterial pressure (mean arterial pressure greater than 90 mmHg). In fact, pial arterioles of normotensive piglets transiently dilated to chromium mesoporphyrin, whereas those of hypertensive piglets progressively constricted during 10 min of chromium mesoporphyrin treatment. Therefore, inhibition of heme oxygenase augments cerebral vasoconstriction in response to several very different constrictor stimuli. These data suggest endogenous CO attenuates vasoconstrictor responses in the newborn cerebral circulation.  相似文献   

3.
This review focuses on two gaseous cellular messenger molecules, CO and H2S, that are involved in cerebrovascular flow regulation. CO is a dilatory mediator in active hyperemia, autoregulation, hypoxic dilation, and counteracting vasoconstriction. It is produced from heme by a constitutively expressed enzyme [heme oxygenase (HO)-2] expressed highly in the brain and by an inducible enzyme (HO-1). CO production is regulated by controlling substrate availability, HO-2 catalytic activity, and HO-1 expression. CO dilates arterioles by binding to heme that is bound to large-conductance Ca2+-activated K+ channels. This binding elevates channel Ca2+ sensitivity, that increases coupling of Ca2+ sparks to large-conductance Ca2+-activated K+ channel openings and, thereby, hyperpolarizes the vascular smooth muscle. In addition to dilating blood vessels, CO can either inhibit or accentuate vascular cell proliferation and apoptosis, depending on conditions. H2S may also function as a cerebrovascular dilator. It is produced in vascular smooth muscle cells by hydrolysis of l-cysteine catalyzed by cystathione gamma-lyase (CSE). H2S dilates arterioles at physiologically relevant concentrations via activation of ATP-sensitive K+ channels. In addition to dilating blood vessels, H2S promotes apoptosis of vascular smooth muscle cells and inhibits proliferation-associated vascular remodeling. Thus both CO and H2S modulate the function and the structure of circulatory system. Both the HO-CO and CSE-H2S systems have potential to interact with NO and prostanoids in the cerebral circulation. Much of the physiology and biochemistry of HO-CO and CSE-H2S in the cerebral circulation remains open for exploration.  相似文献   

4.
Modulation of endogenous production of H2S in rat tissues   总被引:20,自引:0,他引:20  
H2S is an important gasotransmitter with a vasorelaxant property. The modulation of endogenous H2S generation from different tissues and the functional consequence of this modulation are not clear. In the present study, the production of H2S from vascular tissues as well as the liver and ileum of rats was measured. The H2S production rate was significantly greater in rat liver than rat vascular tissues. H2S production in rat aortae, ileum, and liver tissues was upregulated by sodium nitroprusside in a cGMP-dependent fashion. Amino-oxyacetate (AOA) (1 mM) abolished H2S production in liver tissues and partially inhibited H2S production in the ileum, while D,L-propargylglycine (PPG) at a similar concentration only slightly inhibited H2S production in liver. Intraperitoneal injection PPG, but not AOA, significantly suppressed H2S production in liver, aorta, and ileum tissues. The systolic blood pressure of rats was significantly increased 2-3 weeks after i.p. injection of PPG. It is concluded that the endogenous production of H2S could be modulated by NO. AOA and PPG have different capacities in regulating the endogenous production of H2S in different types of tissues.  相似文献   

5.
Using immunohistochemistry, we examined the distribution of the hydrogen sulfide (H2S) synthesizing enzymes cystathionine β-synthase (CBS) and cystathionine Γ-lyase (CSE) in tissues of the nemertean Cerebratulus marginatus Renier, 1804 (Heteronemertea: Lineidae). The expression of both CBS and CSE was found in the body wall and in the receptor cells of the canals of the cerebral organs; the expression of CBS was found in the foregut and intestine; and CSE was found in the brain, lateral nerve cords, and cerebral organs. The peculiarities of the distribution and the possible functional role of H2S-synthesizing elements in nemerteans are discussed.  相似文献   

6.
The effects of hydrogen sulfide (H(2)S) and acute hypoxia are similar in isolated pulmonary arteries from various species. However, the involvement of H(2)S in hypoxic pulmonary vasoconstriction (HPV) has not been studied in the intact lung. The present study used an intact, isolated, perfused rat lung preparation to examine whether adding compounds essential to H(2)S synthesis or to its inhibition would result in a corresponding increase or decrease in the magnitude of HPV. Western blots performed in lung tissue identified the presence of the H(2)S-synthesizing enzymes, cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfur transferase (3-MST), but not cystathionine β-synthase (CBS). Adding three H(2)S synthesis precursors, cysteine and oxidized or reduced glutathione, to the perfusate significantly increased peak arterial pressure during hypoxia compared with control (P < 0.05). Adding α-ketoglutarate to enhance the 3-MST enzyme pathway also resulted in an increase (P < 0.05). Both aspartate, which inhibits the 3-MST synthesis pathway, and propargylglycine (PPG), which inhibits the CSE pathway, significantly reduced the increases in arterial pressure during hypoxia. Diethylmaleate (DEM), which conjugates sulfhydryls, also reduced the peak hypoxic arterial pressure at concentrations >2 mM. Finally, H(2)S concentrations as measured with a specially designed polarographic electrode decreased markedly in lung tissue homogenate and in small pulmonary arteries when air was added to the hypoxic environment of the measurement chamber. The results of this study provide evidence that the rate of H(2)S synthesis plays a role in the magnitude of acute HPV in the isolated perfused rat lung.  相似文献   

7.
Hydrogen sulfide (H(2)S), a regulatory gaseous molecule that is endogenously synthesized by cystathionine gamma-lyase (CSE) and/or cystathionine beta-synthase (CBS) from L-cysteine (L-Cys) metabolism, is a putative vasodilator, and its role in nitric oxide (NO) production is unexplored. Here, we show that at noncytotoxic concentrations, H(2)S was able to inhibit NO production and inducible NO synthase (iNOS) expression via heme oxygenase (HO-1) expression in RAW264.7 macrophages stimulated with lipopolysaccharide (LPS). Both H(2)S solution prepared by bubbling pure H(2)S gas and NaSH, a H(2)S donor, dose dependently induced HO-1 expression through the activation of the extracellular signal-regulated kinase (ERK). Pretreatment with H(2)S or NaHS significantly inhibited LPS-induced iNOS expression and NO production. Moreover, NO production in LPS-stimulated macrophages that are expressing CSE mRNA was significantly reduced by the addition of L-Cys, a substrate for H(2)S, but enhanced by the selective CSE inhibitor beta-cyano-L-alanine but not by the CBS inhibitor aminooxyacetic acid. While either blockage of HO activity by the HO inhibitor, tin protoporphyrin IX, or down-regulation of HO-1 expression by HO-1 small interfering RNA (siRNA) reversed the inhibitory effects of H(2)S on iNOS expression and NO production, HO-1 overexpression produced the same inhibitory effects of H(2)S. In addition, LPS-induced nuclear factor (NF)-kappaB activation was diminished in RAW264.7 macrophages preincubated with H(2)S. Interestingly, the inhibitory effect of H(2)S on NF-kappaB activation was reversed by the transient transfection with HO-1 siRNA, but was mimicked by either HO-1 gene transfection or treatment with carbon monoxide (CO), an end product of HO-1. CO treatment also inhibited LPS-induced NO production and iNOS expression via its inactivation of NF-kappaB. Collectively, our results suggest that H(2)S can inhibit NO production and NF-kappaB activation in LPS-stimulated macrophages through a mechanism that involves the action of HO-1/CO.  相似文献   

8.
Hydrogen sulfide (H(2)S) has recently been identified as a regulator of various physiological events, including vasodilation, angiogenesis, antiapoptotic, and cellular signaling. Endogenously, H(2)S is produced as a metabolite of homocysteine (Hcy) by cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3MST). Although Hcy is recognized as vascular risk factor at an elevated level [hyperhomocysteinemia (HHcy)] and contributes to vascular injury leading to renovascular dysfunction, the exact mechanism is unclear. The goal of the current study was to investigate whether conversion of Hcy to H(2)S improves renovascular function. Ex vivo renal artery culture with CBS, CSE, and 3MST triple gene therapy generated more H(2)S in the presence of Hcy, and these arteries were more responsive to endothelial-dependent vasodilation compared with nontransfected arteries treated with high Hcy. Cross section of triple gene-delivered renal arteries immunostaining suggested increased expression of CD31 and VEGF and diminished expression of the antiangiogenic factor endostatin. In vitro endothelial cell culture demonstrated increased mitophagy during high levels of Hcy and was mitigated by triple gene delivery. Also, dephosphorylated Akt and phosphorylated FoxO3 in HHcy were reversed by H(2)S or triple gene delivery. Upregulated matrix metalloproteinases-13 and downregulated tissue inhibitor of metalloproteinase-1 in HHcy were normalized by overexpression of triple genes. Together, these results suggest that H(2)S plays a key role in renovasculopathy during HHcy and is mediated through Akt/FoxO3 pathways. We conclude that conversion of Hcy to H(2)S by CBS, CSE, or 3MST triple gene therapy improves renovascular function in HHcy.  相似文献   

9.
硫化氢是继NO和CO之后发现的又一种新的气体信号分子,其被认为是一种神经递质,在中枢神经系统中起着重要的作用。内源性H2S主要由胱硫醚-β合酶(CBS)和胱硫醚γ-裂解酶(CSE)合成,其不仅可以直接作用于中枢神经系统发挥作用,还能通过抗氧化、调节神经内分泌及脑血管功能,进而间接影响中枢神经系统功能,具有广泛的生理作用。近年来,越来越多的研究发现内源性H2S在AD、热惊厥、PD、脑卒中、缺血再灌注脑损伤及遗传性疾病脑损害等神经系统疾病的发病过程中也起着重要作用。本文简要介绍H2S的生化和生理特点,并总结其在中枢神经系统中作用的进展。  相似文献   

10.
Astrocytes can act as intermediaries between neurons and cerebral arterioles to regulate vascular tone in response to neuronal activity. Release of glutamate from presynaptic neurons increases blood flow to match metabolic demands. CO is a gasotransmitter that can be related to neural function and blood flow regulation in the brain. The present study addresses the hypothesis that glutamatergic stimulation promotes perivascular astrocyte CO production and pial arteriolar dilation in the newborn brain. Experiments used anesthetized newborn pigs with closed cranial windows, piglet astrocytes, and cerebrovascular endothelial cells in primary culture and immunocytochemical visualization of astrocytic markers. Pial arterioles and arteries of newborn pigs are ensheathed by astrocytes visualized by glial fibrillary acidic protein staining. Treatment (2 h) of astrocytes in culture with L-2-alpha-aminoadipic acid (L-AAA), followed by 14 h in toxin free medium, dose-dependently increased cell detachment, suggesting injury. Conversely, 16 h of continuous exposure to L-AAA caused no decrease in endothelial cell attachment. In vivo, topical L-AAA (2 mM, 5 h) disrupted the cortical glia limitans histologically. Such treatment also eliminated pial arteriolar dilation to the astrocyte-dependent dilator ADP and to glutamate but not to isoproterenol or CO. Glutamate stimulated CO production by the brain surface that also was abolished following L-AAA. In contrast, tetrodotoxin blocked dilation to N-methyl-D-aspartate but not to glutamate, isoproterenol, or CO or the glutamate-induced increase in CO. The concurrent loss of CO production and pial arteriolar dilation to glutamate following astrocyte injury suggests astrocytes may employ CO as a gasotransmitter for glutamatergic cerebrovascular dilation.  相似文献   

11.
Cystathionine β-synthase (CBS) catalyzes the first step in the transsulfuration pathway in mammals, i.e., the condensation of serine and homocysteine to produce cystathionine and water. Recently, we have reported a steady-state kinetic analysis of the three hydrogen sulfide (H(2)S)-generating reactions that are catalyzed by human and yeast CBS [Singh, S., et al. (2009) J. Biol. Chem. 284, 22457-22466]. In the study presented here, we report a pre-steady-state kinetic analysis of intermediates in the H(2)S-generating reactions catalyzed by yeast CBS (yCBS). Because yCBS does not have a heme cofactor, in contrast to human CBS, it is easier to observe reaction intermediates with yCBS. The most efficient route for H(2)S generation by yCBS is the β-replacement of the cysteine thiol with homocysteine. In this reaction, yCBS first reacts with cysteine to release H(2)S and forms an aminoacrylate intermediate (k(obs) of 1.61 ± 0.04 mM(-1) s(-1) at low cysteine concentrations and 2.8 ± 0.1 mM(-1) s(-1) at high cysteine concentrations, at 20 °C), which has an absorption maximum at 465 nm. Homocysteine binds to the E·aminoacrylate intermediate with a bimolecular rate constant of 142 mM(-1) s(-1) and rapidly condenses to form the enzyme-bound external aldimine of cystathionine. The reactions could be partially rate limited by release of the products, cystathionine and H(2)S.  相似文献   

12.
Elevated level of homocysteine (Hcy) induces chronic inflammation in vascular bed, including glomerulus, and promotes glomerulosclerosis. In this study we investigated in vitro mechanism of Hcy-mediated monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-2 (MIP-2) induction and determined the regulatory role of hydrogen sulfide (H?S) to ameliorate inflammation. Mouse glomerular mesangial cells (MCs) were incubated with Hcy (75 μM) and supplemented with vehicle or with H?S (30 μM, in the form of NaHS). Inflammatory molecules MCP-1 and MIP-2 were measured by ELISA. Cellular capability to generate H?S was measured by colorimetric chemical method. To enhance endogenous production of H?S and better clearance of Hcy, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) genes were delivered to the cells. Oxidative NAD(P)H p47(phox) was measured by Western blot analysis and immunostaining. Phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun NH?-terminal kinase (JNK1/2) were measured by Western blot analysis. Our results demonstrated that Hcy upregulated inflammatory molecules MCP-1 and MIP-2, whereas endogenous production of H?S was attenuated. H?S treatment as well as CBS and CSE doubly cDNA overexpression markedly reduced Hcy-induced upregulation of MCP-1 and MIP-2. Hcy-induced upregulation of oxidative p47(phox) was attenuated by H?S supplementation and CBS/CSE overexpression as well. In addition to that we also detected Hcy-induced MCP-1 and MIP-2 induction was through phosphorylation of ERK1/2 and JNK1/2. Either H?S supplementation or CBS and CSE doubly cDNA overexpression attenuated Hcy-induced phosphorylation of these two signaling molecules and diminished MCP-1 and MIP-2 expressions. Similar results were obtained by inhibition of ERK1/2 and JNK1/2 using pharmacological and small interferring RNA (siRNA) blockers. We conclude that H?S plays a regulatory role in Hcy-induced mesangial inflammation and that ERK1/2 and JNK1/2 are two signaling pathways involved this process.  相似文献   

13.
We determined the role of endogenous hydrogen sulfide (H₂S) in cerebral vasodilation/hyperemia and early BBB disruption following ischemic stroke. A cranial window was prepared over the left frontal, parietal and temporal cortex in mice. Transient focal cerebral Ischemia was induced by directly ligating the middle cerebral artery (MCA) for two hours. Regional vascular response and cerebral blood flow (CBF) during ischemia and reperfusion were measured in real time. Early BBB disruption was assessed by Evans Blue (EB) and sodium fluorescein (Na-F) extravasation at 3 hours of reperfusion. Topical treatment with DL-propargylglycine (PAG, an inhibitor for cystathionine γ-lyase (CSE)) and aspartate (ASP, inhibitor for cysteine aminotransferase/3-mercaptopyruvate sulfurtransferase (CAT/3-MST)), but not O-(Carboxymethyl)hydroxylamine hemihydrochloride (CHH, an inhibitor for cystathionine β-synthase (CBS)), abolished postischemic cerebral vasodilation/hyperemia and prevented EB and Na-F extravasation. CSE knockout (CSE-/-) reduced postischemic cerebral vasodilation/hyperemia but only inhibited Na-F extravasation. An upregulated CBS was found in cerebral cortex of CSE-/- mice. Topical treatment with CHH didn’t further alter postischemic cerebral vasodilation/hyperemia, but prevented EB extravasation in CSE-/- mice. In addition, L-cysteine-induced hydrogen sulfide (H2S) production similarly increased in ischemic side cerebral cortex of control and CSE-/- mice. Our findings suggest that endogenous production of H2S by CSE and CAT/3-MST during reperfusion may be involved in postischemic cerebral vasodilation/hyperemia and play an important role in early BBB disruption following transient focal cerebral ischemia.  相似文献   

14.
Bhatia M 《IUBMB life》2005,57(9):603-606
Gases such as nitric oxide (NO) and carbon monoxide (CO) play important roles both in normal physiology and in disease. The toxic effects of hydrogen sulphide (H2S) on living organisms have been recognized for nearly 300 years. In recent years, however, interest has been directed towards H2S as the third gaseous mediator, which has been shown to exhibit potent vasodilator activity both in vitro and in vivo most probably by opening vascular smooth muscle K(ATP) channels. Of the two enzymes, cystathionine-gamma-lyase (CSE) and cystathionine-beta-synthetase (CBS), which utilize L-cysteine as substrate to form H2S, CSE is believed to be the key enzyme which forms H2S in the cardiovascular system. Recent studies have shown an important role of the vasodilator action of H2S in health and disease.  相似文献   

15.
Cerebral arteries of newborn pigs and baboons constrict to acetylcholine, suggesting that endothelium-dependent dilator mechanisms may be lacking in immature cerebral arteries. The present study tested this possibility in the immature sheep by examining the response of cerebral arterioles in fetal and newborn sheep to endothelium-dependent dilator, acetylcholine. Pial arteriolar diameter was measured in 9 anaesthetized foetuses in utero (4 preterm, 90-111 days gestation and 5 term, 128-143 days gestation) and in 5 anaesthetized, newborn lambs (14 days) using a closed cranial window with intravital microscopy. Application of acetylcholine to the pial surface induced dose-dependent increase in pial arteriolar diameter in all age groups; EC50 for acetylcholine was 0.10 +/- 0.03, 0.28 +/- 0.08 and 0.26 +/- 0.17 microM for preterm fetal, term fetal, and newborn lambs, respectively. The data demonstrate a sensitive dilator response to acetylcholine in immature fetuses as well as newborn lambs suggesting that cholinergic-mediated release of endothelium-dependent relaxing factor is functional early in gestation. The contractile response to acetylcholine observed in newborn pigs and premature baboons may reflect a species difference rather than maturational lack of endothelium-dependent dilator mechanisms.  相似文献   

16.
Hydrogen sulphide (H(2)S) is synthesized from L-cysteine via the action of cystathionine-gamma-lyase (CSE) and cystathionine-beta-synthase (CBS). We have earlier shown that H(2)S acts as a mediator of inflammation. However the mechanism remains unclear. In this study, we investigated the presence of H(2)S and the expression of H(2)S synthesizing enzymes, CSE and CBS, in isolated mouse pancreatic acini. Pancreatic acinar cells from mice were incubated with or without caerulein (10(-7) M for 30 and 60 min). Caerulein increased the levels of H(2)S and CSE mRNA expression while CBS mRNA expression was decreased. In addition, cells pre-treated with DL-propargylglycine (PAG, 3 mM), a CSE inhibitor, reduced the formation of H(2)S in caerulein treated cells, suggesting that CSE may be the main enzyme involved in H(2)S formation in mouse acinar cells. Furthermore, substance P (SP) concentration in the acini and expression of SP gene (preprotachykinin-A, PPT-A) and neurokinin-1 receptor (NK-1R), the primary receptor for SP, are increased in secretagogue caerulein-treated acinar cells. Inhibition of endogenous production of H(2)S by PAG significantly suppressed SP concentration, PPT-A expression and NK1-R expression in the acini. To determine whether H(2)S itself provoked inflammation in acinar cells, the cells were treated with H(2)S donor drug, sodium hydrosulphide (NaHS), (10, 50 and 100 muM), that resulted in a significant increase in SP concentration and expression of PPT-A and NK1-R in acinar cells. These results suggest that the pro-inflammatory effect of H(2)S may be mediated by SP-NK-1R related pathway in mouse pancreatic acinar cells.  相似文献   

17.
The excitatory neurotransmitter glutamate causes dilation of newborn pig cerebral arterioles in vivo that is blocked by inhibition of carbon monoxide (CO) production. CO, a potent dilator in cerebral circulation in vivo, is produced endogenously in cerebral microvessels via heme oxygenase (HO). In isolated pressurized cerebral arterioles (approximately 200 microm) from newborn pigs, we investigated the involvement of CO and the endothelium in response to glutamate. A CO-releasing molecule, dimanganese decacarbonyl (10(-8)-10(-6) M), dilated cerebral arterioles. Glutamate (10(-6)-10(-4) M) and 1-aminocyclopentane-cis-1,3-dicarboxylic acid (cis-ACPD; 10(-6)-10(-5) M), a N-methyl-D-aspartate (NMDA) receptor agonist, caused cerebral vascular dilation. Dilation of cerebral arterioles to glutamate and cis-ACPD was abolished by chromium mesoporphyrin (CrMP; 10(-6) M), a HO inhibitor. In contrast, CrMP did not alter dilation to isoproterenol, a -adrenergic receptor agonist. Endothelium-denuded cerebral arterioles did not dilate to glutamate or bradykinin (endothelium-dependent dilator), whereas responses to isoproterenol were preserved. These data indicate that cerebral arterioles from newborn pigs may directly respond to glutamate and the NMDA receptor agonists by endothelium-dependent dilation that involves stimulation of CO production via the HO pathway in the endothelium.  相似文献   

18.
We investigated effects of calcitonin gene-related peptide (CGRP), substance P (SP), and neurokinin A (NKA) on pial arterioles in newborn pigs. Pial arteriolar diameter was determined using a closed cranial window and intravital microscopy. Initial diameters were approximately 100 microns. Calcitonin-gene related peptide dilated pial arterioles by 22 +/- 8% at 10(-9)M and by 34 +/- 6% at 10(-8)M (n = 8), and this response was not significantly altered by prior administration of indomethacin (5mg/kg, iv) (n = 6) or administration of NG-methyl-L-arginine (5mg/kg, iv, and 10(-3)M in CSF) (n = 10). Substance P dilated arterioles at 10(-10)M through 10(-5)M (maximal response = 23 +/- 3%) (n = 6), and this response was unaffected by indomethacin administration (n = 6). In contrast, NG-methyl-L-arginine blocked much of the pial arteriolar dilation to SP. Unlike the other two peptides, NKA did not change pial arteriolar diameter. Radioimmunoassay determinations indicated that cerebrospinal fluid levels of 6-keto-prostaglandin F1 and prostaglandin E2 did not change appreciably during application of CGRP or SP. We conclude that CGRP and SP but not NKA are dilator stimuli in the piglet pial circulation. Dilation by CGRP probably involves direct activation of receptors on vascular smooth muscle, while SP probably partially dilates pial arterioles via release of an endothelium-dependent relaxing factor.  相似文献   

19.
Hydrogen sulfide (H2S) has been shown recently to function as an important gasotransmitter. The present study investigated the vascular effects of H2S, both exogenously applied and endogenously generated, on resistance mesenteric arteries of rats and the underlying mechanisms. Both H2S and NaHS evoked concentration-dependent relaxation of in vitro perfused rat mesenteric artery beds (MAB). The sensitivity of MAB to H2S (EC50, 25.2 +/- 3.6 microM) was about fivefold higher than that of rat aortic tissues. Removal of endothelium or coapplication of charybdotoxin and apamin to endothelium-intact MAB significantly reduced the vasorelaxation effects of H2S. The H2S-induced relaxation of MAB was partially mediated by ATP-sensitive K+ (KATP) channel activity in vascular smooth muscle cells. Pinacidil (EC50, 1.7 +/- 0.1 microM, n=6) mimicked, but glibenclamide (10 microM, n=6) suppressed, the vasorelaxant effect of H2S. KATP channel currents in isolated mesenteric artery smooth muscle cells were significantly augmented by H2S. L-cysteine, a substrate of cystathionine-gamma-lyase (CSE), at 1 mM increased endogenous H2S production by sixfold in rat mesenteric artery tissues and decreased contractility of MAB. DL-propargylglycine (a blocker of CSE) at 10 microM abolished L-cysteine-dependent increase in H2S production and relaxation of MAB. Our results demonstrated a tissue-specific relaxant response of resistance arteries to H2S. The stimulation of KATP channels in vascular smooth muscle cells and charybdotoxin/apamin-sensitive K+ channels in vascular endothelium by H2S represents important cellular mechanisms for H2S effect on MAB. Our study also demonstrated that endogenous CSE can generate sufficient H2S from exogenous L-cysteine to cause vasodilation. Future studies are merited to investigate direct contribution of endogenous H2S to regulation of vascular tone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号