首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The capacity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to consume RuBP is a major limitation on the rate of net CO(2) assimilation (A) in C(3) and C(4) plants. The pattern of Rubisco limitation differs between the two photosynthetic types, as shown by comparisons of temperature and CO(2) responses of A and Rubisco activity from C(3) and C(4) species. In C(3) species, Rubisco capacity is the primary limitation on A at light saturation and CO(2) concentrations below the current atmospheric value of 37 Pa, particularly near the temperature optimum. Below 20 degrees C, C(3) photosynthesis at 37 and 68 Pa is often limited by the capacity to regenerate phosphate for photophosphorylation. In C(4) plants, the Rubisco capacity is equivalent to A below 18 degrees C, but exceeds the photosynthetic capacity above 25 degrees C, indicating that Rubisco is an important limitation at cool but not warm temperatures. A comparison of the catalytic efficiency of Rubisco (k(cat) in mol CO(2) mol(-1) Rubisco active sites s(-1)) from 17 C(3) and C(4) plants showed that Rubisco from C(4) species, and C(3) species originating in cool environments, had higher k(cat) than Rubisco from C(3) species originating in warm environments. This indicates that Rubisco evolved to improve performance in the environment that plants normally experience. In C(4) plants, and C(3) species from cool environments, Rubisco often operates near CO(2) saturation, so that increases in k(cat) would enhance A. In warm-habitat C(4) species, Rubisco often operates at CO(2) concentrations below the K(m) for CO(2). Because k(cat) and K(m) vary proportionally, the low k(cat) indicates that Rubisco has been modified in a manner that reduces K(m) and thus increases the affinity for CO(2) in C(3) species from warm climates.  相似文献   

3.
4.
The photosynthetic characteristics of four transgenic rice lines over-expressing rice NADP-malic enzyme (ME), and maize phosphoenolpyruvate carboxylase (PC), pyruvate,orthophosphate dikinase (PK), and PC+PK (CK) were investigated using outdoor-grown plants. Relative to untransformed wild-type (WT) rice, PC transgenic rice exhibited high PC activity (25-fold increase) and enhanced activity of carbonic anhydrase (more than two-fold increase), while the activity of ribulose-bisphosphate carboxylase/oxygenase (Rubisco) and its kinetic property were not significantly altered. The PC transgenic plants also showed a higher light intensity for saturation of photosynthesis, higher photosynthetic CO2 uptake rate and carboxylation efficiency, and slightly reduced CO2 compensation point. In addition, chlorophyll a fluorescence analysis indicates that PC transgenic plants are more tolerant to photo-oxidative stress, due to a higher capacity to quench excess light energy via photochemical and non-photochemical means. Furthermore, PC and CK transgenic rice produced 22–24% more grains than WT plants. Taken together, these results suggest that expression of maize C4 photosynthesis enzymes in rice, a C3 plant, can improve its photosynthetic capacity with enhanced tolerance to photo-oxidation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
The C4 dicot Flaveria bidentis was genetically transformed with an antisense RNA construct targeted to the nuclear-encoded gene for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; RbcS). RbcS mRNA levels in leaves of transformants were reduced by as much as 80% compared to wild-type levels, and extractable enzyme activity was reduced by up to 85%. There was no significant effect of transformation with the gene construct on levels of other photosynthetic enzymes. Antisense transformants with reduced Rubisco activity exhibited a stunted phenotype. Rates of photosynthesis were reduced in air at high light and over a range of CO2 concentrations but were unaffected at low light. From these results we conclude that, as is the case in C3 plants, Rubisco activity is a major determinant of photosynthetic flux in C4 plants under high light intensities and air levels of CO2.  相似文献   

6.
C4 plants such as maize have CO2 concentrating mechanism and higher photosynthetic efficiency than C3 plants, especially under high light intensity, high temperature and drought conditions. In recent years, due to the rapid development of transgenic technique, different transgenic rice plants with high-level expression of C4 genes have been created by the successful introduction of genes encoding the key C4 photosynthetic path enzymes PEPC, PPDK and NADP-ME through agrobacteria-mediated…  相似文献   

7.
The relationship between carbon assimilation and high-level expression of the maize PEPC in PEPC transgenic rice was studied by comparison to that in the untransformed rice, japonica kitaake. Stomatal conductance and photosynthetic rates in PEPC transgenic rice were higher than those of untransformed rice, but the increase of stomatal conductance had no statistical correlation with that of photosynthetic rate. Under high levels of light intensity, the protein contents of PEPC and CA were increased significantly. Therefore the photosynthetic capacity was increased greatly (50%) with atmospheric CO2 supply. While CO2 release in leaf was reduced and the compensation point was lowered correspondingly under CO2 free conditions. Treatment of the rice with the PEPC-specific inhibitor DCDP showed that overexpression of PEPC and enhancement of carbon assimilation were related to the stability of Fv/Fm. Labeling with 14CO2 for 20 s showed more 14C was distributed to C4 primary photosynthate asperate in PEPC transgenic rice, suggesting that there exists a limiting C4 photosynthetic mechanism in leaves. These results suggest that the primitive CO2 concentrating mechanism found in rice could be reproduced through metabolic engineering, and shed light on the physiological basis for transgenic breeding with high photosynthetic efficiency.  相似文献   

8.
The in vivo activity of ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) is modulated in response to light intensity by carbamylation of the active site and by the binding of sugar phosphate inhibitors such as 2'-carboxyarabinitol-1-phosphate (CA 1P). These changes are influenced by the regulatory protein Rubisco activase, which facilitates the release of sugar phosphates from Rubisco's catalytic site. Activase levels in Nicotiana tabacum were reduced by transformation with an antisense gene directed against the mRNA for Rubisco activase. Activase-deficient plants were photosynthetically impaired, and their Rubisco carbamylation levels declined upon illumination. Such plants needed high CO2 concentrations to sustain reasonable growth rates, but the level of carbamylation was not increased by high CO2. The antisense plants had, on average, approximately twice as much Rubisco as the control plants. The maximum catalytic turnover rate (k cat) of Rubisco decreases in darkened tobacco leaves because of the binding of CA 1P. The dark-to-light increase in k cat that accompanies CA 1P release occurred to similar extents in antisense and control plants, indicating that normal levels of activase were not essential for CA 1P release from Rubisco in the antisense plants. However, CA 1P was released in the antisense plants at less than one-quarter of the rate that it was released in the control plants, indicating a role for activase in accelerating the release of CA 1P.  相似文献   

9.
Four enzymes, namely, the maize C(4)-specific phosphoenolpyruvate carboxylase (PEPC), the maize C(4)-specific pyruvate, orthophosphate dikinase (PPDK), the sorghum NADP-malate dehydrogenase (MDH), and the rice C(3)-specific NADP-malic enzyme (ME), were overproduced in the mesophyll cells of rice plants independently or in combination. Overproduction individually of PPDK, MDH or ME did not affect the rate of photosynthetic CO(2) assimilation, while in the case of PEPC it was slightly reduced. The reduction in CO(2) assimilation in PEPC overproduction lines remained unaffected by overproduction of PPDK, ME or a combination of both, however it was significantly restored by the combined overproduction of PPDK, ME, and MDH to reach levels comparable to or slightly higher than that of non-transgenic rice. The extent of the restoration of CO(2) assimilation, however, was more marked at higher CO(2) concentrations, an indication that overproduction of the four enzymes in combination did not act to concentrate CO(2) inside the chloroplast. Transgenic rice plants overproducing the four enzymes showed slight stunting. Comparison of transformants overproducing different combinations of enzymes indicated that overproduction of PEPC together with ME was responsible for stunting, and that overproduction of MDH had some mitigating effects. Possible mechanisms underlying these phenotypic effects, as well as possibilities and limitations of introducing the C(4)-like photosynthetic pathway into C(3) plants, are discussed.  相似文献   

10.
The responses of chlorophyll fluorescence, gas exchange rate and Rubisco activation state to temperature were examined in transgenic rice plants with 130 and 35% of the wild-type (WT) Rubisco content by transformation with rbcS cDNA in sense and antisense orientations, respectively. Although the optimal temperatures of PSII quantum efficiency and CO(2) assimilation were found to be between 25 and 32 degrees C, the maximal activation state of Rubisco was found to be between 16 and 20 degrees C in all genotypes. The Rubisco flux control coefficient was also the highest between 16 and 20 degrees C in the WT and antisense lines [>0.88 at an intercellular CO(2) pressure (Ci) of 28 Pa]. Gross photosynthesis at Ci = 28 Pa per Rubisco content in the WT between 12 and 20 degrees C was close to that of the antisense lines where high Rubisco control is present. Thus, Rubisco activity most strongly limited photosynthesis at cool temperatures. These results indicated that a selective enhancement of Rubisco content can enhance photosynthesis at cool temperatures, but in the sense line with enhanced Rubisco content Pi regeneration limitation occurred. Above 20 degrees C, the Rubisco flux control coefficient declined. This decline was associated with a decline in Rubisco activation. The activation state of Rubisco measured at each temperature decreased with increasing Rubisco content, and the slope of activation to Rubisco content was independent of temperature. We discuss the possibility that the decline in Rubisco activation at intermediate and high temperatures is part of a regulated response to a limitation in other photosynthetic processes.  相似文献   

11.
The limitation to photosynthetic CO2 assimilation in C3 plants in hot, dry environments is dominated by ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) because CO2 availability is restricted and photorespiration is stimulated. Using a combination of genetic engineering and transgenic technology, three approaches to reduce photorespiration have been taken; two of these focused on increasing the carboxylation efficiency of Rubisco either by reducing the oxygenase reaction directly or by manipulating the Rubisco enzyme by concentrating CO2 in the region of Rubisco through the introduction of enzymes of the C4 pathway. The third approach attempted to reduce photorespiration directly by manipulation of enzymes in this pathway. The progress in each of these areas is discussed, and the most promising approaches are highlighted. Under saturating CO2 conditions, Rubisco did not limit photosynthesis, and limitation shifted to ribulose bisphosphate (RuBP) regeneration capacity of the C3 cycle. Transgenic analysis was used to identify the specific enzymes that may be targets for improving carbon fixation, and the way this may be exploited in the high CO2 future is considered.  相似文献   

12.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the key enzyme involved in photosynthetic carbon fixation, converting atmospheric CO2 to organic compounds. Form I Rubisco is a cylindrical complex composed of eight large (RbcL) subunits that are capped by four small subunits (RbcS) at the top and four at the bottom. Form I Rubiscos are phylogenetically divided into green- and red-type. Some red-type enzymes have catalytically superior properties. Thus, understanding their folding and assembly is of considerable biotechnological interest. Folding of the green-type RbcL subunits in cyanobacteria is mediated by the GroEL/ES chaperonin system, and assembly to holoenzyme requires specialized chaperones such as RbcX and RAF1. Here, we show that the red-type RbcL subunits in the proteobacterium Rhodobacter sphaeroides also fold with GroEL/ES. However, assembly proceeds in a chaperone-independent manner. We find that the C-terminal β-hairpin extension of red-type RbcS, which is absent in green-type RbcS, is critical for efficient assembly. The β-hairpins of four RbcS subunits form an eight-stranded β-barrel that protrudes into the central solvent channel of the RbcL core complex. The two β-barrels stabilize the complex through multiple interactions with the RbcL subunits. A chimeric green-type RbcS carrying the C-terminal β-hairpin renders the assembly of a cyanobacterial Rubisco independent of RbcX. Our results may facilitate the engineering of crop plants with improved growth properties expressing red-type Rubisco.  相似文献   

13.
A cDNA encoding phosphoenolpyruvate carboxykinase (PCK) of Urochloa panicoides (a PCK-type C4 plant) was expressed in rice (Oryza sativa cv Tsukinohikari) plants under the control of the promoter of a maize (Zea mays) gene for phosphoenolpyruvate carboxylase or pyruvate, orthophosphate dikinase with the transit peptide of the small subunit of Rubisco. Crude extracts prepared from the green leaves of transgenic plants had high PCK activity and the newly expressed PCK was localized in chloroplasts. In labeling experiments with (14)CO(2) up to 20% of the radioactivity was incorporated into 4C compounds (malate, oxaloacetate, and aspartate) in excised leaves of transgenic plants, as compared with about 1% in excised leaves of control plants. There was a positive correlation between PCK activity and the extent of labeling of 4C compounds. When L-[4-(14)C]malate was fed to excised leaves the extent of incorporation of radioactivity into sucrose was 3-fold greater in transgenic plants than in control plants and the level of radiolabeled aspartate was significantly lower in transgenic plants. These results indicate that the ectopic expression of PCK in rice chloroplasts was able partially to change the carbon flow in mesophyll cells into a C4-like photosynthetic pathway. Such a strategy appears to provide a possible method for enhancing the photosynthetic capacity of C3 plants.  相似文献   

14.
Little is known about the effect of hormones on the photosynthetic process. Therefore, we studied Rubisco content and expression along with gas exchange parameters in transgenic tobacco (Nicotiana tabacum) plants that are not able to sense ethylene. We also tested for a possible interaction between ethylene insensitivity, abscisic acid (ABA), and sugar feedback on photosynthesis. We measured Rubisco content in seedlings grown in agar with or without added sugar and fluridone, and Rubisco expression in hydroponically grown vegetative plants grown at low and high CO(2). Furthermore, we analyzed gas exchange and the photosynthetic machinery of transformants and wild-type plants grown under standard conditions. In the presence of exogenous glucose (Glc), agar-grown seedlings of the ethylene-insensitive genotype had lower amounts of Rubisco per unit leaf area than the wild type. No differences in Rubisco content were found between ethylene-insensitive and wild-type seedlings treated with fluridone, suggesting that inhibition of ABA production nullified the effect of Glc application. When larger, vegetative plants were grown at different atmospheric CO(2) concentrations, a negative correlation was found between Glc concentration in the leaves and Rubisco gene expression, with stronger repression by high Glc concentrations in ethylene-insensitive plants. Ethylene insensitivity resulted in plants with comparable fractions of nitrogen invested in light harvesting, but lower amounts in electron transport and Rubisco. Consequently, photosynthetic capacity of the insensitive genotype was clearly lower compared with the wild type. We conclude that the inability to perceive ethylene results in increased sensitivity to Glc, which may be mediated by a higher ABA concentration. This increased sensitivity to endogenous Glc has negative consequences for Rubisco content and photosynthetic capacity of these plants.  相似文献   

15.
Global warming is one of the most serious challenges facing us today. It may be linked to the increase in atmospheric CO2 and other greenhouse gases (GHGs), leading to a rise in sea level, notable shifts in ecosystems, and in the frequency and intensity of wild fires. There is a strong interest in stabilizing the atmospheric concentration of CO2 and other GHGs by decreasing carbon emission and/or increasing carbon sequestration. Biotic sequestration is an important and effective strategy to mitigate the effects of rising atmospheric CO2 concentrations by increasing carbon sequestration and storage capacity of ecosystems using plant photosynthesis and by decreasing carbon emission using biofuel rather than fossil fuel. Improvement of photosynthetic carbon assimilation, using transgenic engineering, potentially provides a set of available and effective tools for enhancing plant carbon sequestration. In this review, firstly different biological methods of CO2 assimilation in C3, C4 and CAM plants are introduced and three types of C4 pathways which have high photosynthetic performance and have evolved as CO2 pumps are briefly summarized. Then (i) the improvement of photosynthetic carbon assimilation of C3 plants by transgenic engineering using non-C4 genes, and (ii) the overexpression of individual or multiple C4 cycle photosynthetic genes (PEPC, PPDK, PCK, NADP-ME and NADP-MDH) in transgenic C3 plants (e.g. tobacco, potato, rice and Arabidopsis) are highlighted. Some transgenic C3 plants (e.g. tobacco, rice and Arabidopsis) overexpressing the FBP/SBPase, ictB and cytochrome c6 genes showed positive effects on photosynthetic efficiency and growth characteristics. However, over the last 28 years, efforts to overexpress individual, double or multiple C4 enzymes in C3 plants like tobacco, potato, rice, and Arabidopsis have produced mixed results that do not confirm or eliminate the possibility of improving photosynthesis of C3 plants by this approach. Finally, a prospect is provided on the challenges of enhancing carbon assimilation of C3 plants using transgenic engineering in the face of global warming, and the trends of the most promising approaches to improving the photosynthetic performance of C3 plants.  相似文献   

16.
17.
Nakano H  Makino A  Mae T 《Plant physiology》1997,115(1):191-198
The effects of growth CO2 levels on the photosynthetic rates; the amounts of ribulose-1,5-bisphosphate carboxylase (Rubisco), chlorophyll (Chl), and cytochrome f; sucrose phosphate synthase activity; and total N content were examined in young, fully expanded leaves of rice (Oryza sativa L.). The plants were grown hydroponically under two CO2 partial pressures of 36 and 100 Pa at three N concentrations. The light-saturated photosynthesis at 36 Pa CO2 was lower in the plants grown in 100 Pa CO2 than those grown in 36 Pa CO2. Similarly, the amounts of Rubisco, Chl, and total N were decreased in the leaves of the plants grown in 100 Pa CO2. However, regression analysis showed no differences between the two CO2 treatments in the relationship between photosynthesis and total N or in the relationship between Rubisco and Chl and total N. Although a relative decrease in Rubisco to cytochrome f or sucrose phosphate synthase was found in the plants grown in 100 Pa CO2, this was the result of a decrease in total N content by CO2 enrichment. The activation state of Rubisco was also unaffected by growth CO2 levels. Thus, decreases in the photosynthetic capacity of the plants grown in 100 Pa CO2 could be simply accounted for by a decrease in the absolute amount of leaf N.  相似文献   

18.
Transgenic tobacco (Nicotiana tabacum L. cv W38) plants with an antisense gene directed against the mRNA of ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) activase grew more slowly than wild-type plants in a CO2-enriched atmosphere, but eventually attained the same height and number of leaves. Compared with the wild type, the anti-activase plants had reduced CO2 assimilation rates, normal contents of chlorophyll and soluble leaf protein, and much higher Rubisco contents, particularly in older leaves. Activase deficiency greatly delayed the usual developmental decline in Rubisco content seen in wild-type leaves. This effect was much less obvious in another transgenic tobacco with an antisense gene directed against chloroplast-located glyceraldehyde-3-phosphate dehydrogenase, which also had reduced photosynthetic rates and delayed development. Although Rubisco carbamylation was reduced in the anti-activase plants, the reduction was not sufficient to explain the reduced photosynthetic rate of older anti-activase leaves. Instead, up to a 10-fold reduction in the catalytic turnover rate of carbamylated Rubisco in vivo appeared to be the main cause. Slower catalytic turnover by carbamylated Rubisco was particularly obvious in high-CO2-grown leaves but was also detectable in air-grown leaves. Rubisco activity measured immediately after rapid extraction of anti-activase leaves was not much less than that predicted from its degree of carbamylation, ruling out slow release of an inhibitor from carbamylated sites as a major cause of the phenomenon. Nor could substrate scarcity or product inhibition account for the impairment. We conclude that activase must have a role in vivo, direct or indirect, in promoting the activity of carbamylated Rubisco in addition to its role in promoting carbamylation.  相似文献   

19.
20.
Although transgenic manipulation in higher plants of the catalytic large subunit (L) of the photosynthetic CO2-fixing enzyme ribulose 1,5-bisphospahte carboxylase/oxygenase (Rubisco) is now possible, the manipulation of its cognate small subunit (S) is frustrated by the nuclear location of its multiple gene copies. To examine whether L and S can be engineered simultaneously by fusing them together, the subunits from Synechococcus PCC6301 Rubisco were tethered together by different linker sequences, producing variant fusion peptides. In Escherichia coli the variant PCC6301 LS fusions assembled into catalytically functional octameric ([LS]8) and hexadecameric ([[LS]8]2) quaternary structures that excluded the integration of co-expressed unfused S. Assembly of the LS fusions into Rubisco complexes was impaired 50-90% relative to the assembly of unlinked L and S into L8S8 enzyme. Assembly in E. coli was not emulated using tobacco SL fusions that accumulated entirely as insoluble protein. Catalytic measurements showed the CO2/O2 specificity, carboxylation rate, and Michaelis constants for CO2 and ribulose 1,5-bisphosphate for the cyanobacterial Rubisco complexes comprising fusions where the S was linked to the N terminus of L closely matched those of the wild-type L8S8 enzyme. In contrast, the substrate affinities and carboxylation rate of the Rubisco complexes comprising fusions where L was fused to the N terminus of S or a six-histidine tag was appended to the C terminus of L were compromised. Overall this work provides a framework for implementing an alternative strategy for exploring simultaneous engineering of modified, or foreign, Rubisco L and S subunits in higher plant plastids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号