首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High levels of heparanase are an indicator of poor prognosis in myeloma patients, and up-regulation of the enzyme enhances tumor growth, angiogenesis, and metastasis in animal models. At least part of the impact of heparanase in driving the aggressive tumor phenotype is due to its effect on increasing the expression and shedding of the heparan sulfate proteoglycan syndecan-1, a molecule known to promote myeloma progression. The present work demonstrated that elevation in heparanase expression in myeloma cells stimulates sustained ERK phosphorylation that in turn drives MMP-9 expression. In addition, urokinase-type plasminogen activator (uPA) and uPA receptor expression levels increased, and blocking the proteolytic activation of either MMP-9 or uPA inhibited the heparanase-induced increase in syndecan-1 shedding. Together these data provide a mechanism for heparanase-induced syndecan-1 shedding and, more importantly, demonstrate that heparanase activity in myeloma cells can lead to increased levels of proteases that are known to play important roles in the aggressive behavior of myeloma tumors. This in addition to its other known biological roles, indicates that heparanase acts as a master regulator of the aggressive tumor phenotype by up-regulating protease expression and activity within the tumor microenvironment.  相似文献   

2.
When shed from the cell surface, the heparan sulfate proteoglycan syndecan-1 can facilitate the growth, angiogenesis, and metastasis of tumors. Here we report that tumor cell expression of heparanase, an enzyme known to be a potent promoter of tumor progression and metastasis, regulates both the level and location of syndecan-1 within the tumor microenvironment by enhancing its synthesis and subsequent shedding from the tumor cell surface. Heparanase regulation of syndecan-1 is detected in both human myeloma and breast cancer cell lines. This regulation requires the presence of active enzyme, because mutated forms of heparanase lacking heparan sulfate-degrading activity failed to influence syndecan-1 expression or shedding. Removal of heparan sulfate from the cell surface using bacterial heparitinase dramatically accelerated syndecan-1 shedding, suggesting that the effects of heparanase on syndecan-1 expression by tumor cells may be due, at least in part, to enzymatic removal or reduction in the size of heparan sulfate chains. Animals bearing tumors formed from cells expressing high levels of heparanase or animals transgenic for heparanase expression exhibited elevated levels of serum syndecan-1 as compared with controls, indicating that heparanase regulation of syndecan-1 expression and shedding can occur in vivo and impact cancer progression and perhaps other pathological states. These results reveal a new mechanism by which heparanase promotes an aggressive tumor phenotype and suggests that heparanase and syndecan-1 act synergistically to fine tune the tumor microenvironment and ensure robust tumor growth.  相似文献   

3.
4.
High heparanase expression is associated with enhanced tumor growth, angiogenesis, and metastasis in many types of cancer. However, the mechanisms driving high heparanase expression are not fully understood. In the present study, we discovered that drugs used in the treatment of myeloma upregulate heparanase expression. Frontline anti-myeloma drugs, bortezomib and carfilzomib activate the nuclear factor-kappa B (NF-κB) pathway to trigger heparanase expression in tumor cells. Blocking the NF-κB pathway diminished this chemotherapy-induced upregulation of heparanase expression. Activated NF-κB signaling was also found to drive high heparanase expression in drug resistant myeloma cell lines. In addition to enhancing heparanase expression, chemotherapy also caused release of heparanase by tumor cells into the conditioned medium. This soluble heparanase was taken up by macrophages and triggered an increase in TNF-α production. Heparanase is also taken up by tumor cells where it induced expression of HGF, VEGF and MMP-9 and activated ERK and Akt signaling pathways. These changes induced by heparanase are known to be associated with the promotion of an aggressive tumor phenotype. Importantly, the heparanase inhibitor Roneparstat diminished the uptake and the downstream effects of soluble heparanase. Together, these discoveries reveal a novel mechanism whereby chemotherapy upregulates heparanase, a known promoter of myeloma growth, and suggest that therapeutic targeting of heparanase during anti-cancer therapy may improve patient outcome.  相似文献   

5.
Both heparanase and syndecan-1 are known to be present and active in disease pathobiology. An important feature of syndecan-1 related to its role in pathologies is that it can be shed from the surface of cells as an intact ectodomain composed of the extracellular core protein and attached heparan sulfate and chondroitin sulfate chains. Shed syndecan-1 remains functional and impacts cell behavior both locally and distally from its cell of origin. Shedding of syndecan-1 is initiated by a variety of stimuli and accomplished predominantly by the action of matrix metalloproteinases. The accessibility of these proteases to the core protein of syndecan-1 is enhanced, and shedding facilitated, when the heparan sulfate chains of syndecan-1 have been shortened by the enzymatic activity of heparanase. Interestingly, heparanase also enhances shedding by upregulating the expression of matrix metalloproteinases. Recent studies have revealed that heparanase-induced syndecan-1 shedding contributes to the pathogenesis and progression of cancer and viral infection, as well as other septic and non-septic inflammatory states. This review discusses the heparanase/shed syndecan-1 axis in disease pathogenesis and progression, the potential of targeting this axis therapeutically, and the possibility that this axis is widespread and of influence in many diseases.  相似文献   

6.
Emerging evidence indicates that exosomes play a key role in tumor-host cross-talk and that exosome secretion, composition, and functional capacity are altered as tumors progress to an aggressive phenotype. However, little is known regarding the mechanisms that regulate these changes. Heparanase is an enzyme whose expression is up-regulated as tumors become more aggressive and is associated with enhanced tumor growth, angiogenesis, and metastasis. We have discovered that in human cancer cells (myeloma, lymphoblastoid, and breast cancer), when expression of heparanase is enhanced or when tumor cells are exposed to exogenous heparanase, exosome secretion is dramatically increased. Heparanase enzyme activity is required for robust enhancement of exosome secretion because enzymatically inactive forms of heparanase, even when present in high amounts, do not dramatically increase exosome secretion. Heparanase also impacts exosome protein cargo as reflected by higher levels of syndecan-1, VEGF, and hepatocyte growth factor in exosomes secreted by heparanase-high expressing cells as compared with heparanase-low expressing cells. In functional assays, exosomes from heparanase-high cells stimulated spreading of tumor cells on fibronectin and invasion of endothelial cells through extracellular matrix better than did exosomes secreted by heparanase-low cells. These studies reveal that heparanase helps drive exosome secretion, alters exosome composition, and facilitates production of exosomes that impact both tumor and host cell behavior, thereby promoting tumor progression.  相似文献   

7.
Activation of hepatocyte growth factor/scatter factor (HGF/SF) is a critical limiting step in the HGF/SF-induced signaling pathway mediated by MET receptor tyrosine kinase. Although HGF/SF-MET signaling could have potentially important roles in the invasive growth of tumors and tumor angiogenesis, little is known about the regulation of HGF/SF activation in the tumor tissues. This activation occurs in the extracellular milieu caused by proteolytic cleavage at the bond between Arg194-Val195 in the single-chain HGF precursor to generate the active two-chain heterodimeric form. Here we show that activation of HGF/SF is significantly enhanced in colorectal carcinoma tissues compared with normal colorectal mucosa, and HGF activator (HGFA), a recently identified factor XII-like serine proteinase, is critically involved in this process. Furthermore, we also show that HGF activator inhibitor type 1 (HAI-1) should have an important regulatory role in the pericellular activation of HGF/SF having diverse roles acting as a cell surface specific inhibitor of active HGFA and a reservoir of this enzyme on the cell surface. The latter property might paradoxically ensure the concentrated pericellular HGFA activity in certain cellular conditions in which shedding of HAI-1/HGFA complex from the plasma membrane is upregulated.  相似文献   

8.
ERK signaling regulates proliferation, survival, drug resistance, and angiogenesis in cancer. Although the mechanisms regulating ERK activation are not fully understood, we previously demonstrated that ERK phosphorylation is elevated by heparanase, an enzyme associated with aggressive behavior of many cancers. In the present study, myeloma cell lines expressing either high or low levels of heparanase were utilized to determine how heparanase stimulates ERK signaling. We discovered that the insulin receptor was abundant on cells expressing either high or low levels of heparanase, but the receptor was highly phosphorylated in heparanase-high cells compared with heparanase-low cells. In addition, protein kinase C activity was elevated in heparanase-high cells, and this enhanced expression of insulin receptor substrate-1 (IRS-1), the principle intracellular substrate for phosphorylation by the insulin receptor. Blocking insulin receptor function with antibody or a small molecule inhibitor or knockdown of IRS-1 expression using shRNA diminished heparanase-mediated ERK activation in the tumor cells. In addition, up-regulation of the insulin signaling pathway by heparanase and the resulting ERK activation were dependent on heparanase retaining its enzyme activity. These results reveal a novel mechanism whereby heparanase enhances activation of the insulin receptor signaling pathway leading to ERK activation and modulation of myeloma behavior.  相似文献   

9.
This review summarizes a series of studies demonstrating that heparan sulfate proteoglycans act to promote the growth and metastasis of myeloma and breast tumors, two tumors that home to, and grow within, bone. Much of the growth-promoting effect of proteoglycans in these tumors may reside in the shed form of syndecan-1 that acts to favorably condition the tumor microenvironment. Moreover, the interplay between heparan sulfate and the extracellular enzyme heparanase-1 also has important regulatory implications. Recent studies indicate that the activity of heparanase, which likely releases heparin sulfate-bound growth factors and generates highly active heparan sulfate fragments, also promotes growth and metastasis of myeloma and breast tumors. Understanding the role of heparan sulfate and heparanase in the regulation of tumor behavior may lead to new therapeutic approaches for treating cancer.  相似文献   

10.
Syndecan is the major transmembrane proteoglycan in cells. Of the four syndecans, syndecan-1 is the dominant form expressed in multiple myeloma and is an indicator of poor prognosis. In the current study, we observed that early TRAIL-induced apoptotic processes were accompanied by cleavage of syndecan-1 intracellular region, and explored the possibility whether removal of syndecan-1 promotes apoptotic processes. We found that syndecan-1 knockdown by specific small interfering RNA in multiple myeloma enhanced TRAIL-induced apoptosis, even though the expression of TRAIL receptors and several apoptosis-associated molecules was unaffected. The enhanced TRAIL-mediated apoptosis in syndecan-1-deficient cells was not due to a decrease in surface heparan sulfate or a reduction in TRAIL receptor endocytosis. The increase in TRAIL-induced cell death was accompanied by an elevated caspase-8 activation and an enhanced formation of death-inducing signaling complexes, which could be attributed to an increased expression of TRAIL receptor O-glycosylation enzyme in syndecan-1-deficient cells. We also found that in H9 lymphoma and Jurkat cells, knockdown of the predominant syndecan member also led to an increase in Fas ligand-induced apoptosis. Our results demonstrate that syndecan plays a negative role in death receptor-mediated cell death, suggesting potential application of syndecan downregulation in the treatment of myeloma in combination with TRAIL.  相似文献   

11.
Heparanase activity is correlated with the metastatic potential of several cancer cells and is a key enzyme in the breakdown of tissue barriers. It is also involved in the regulation of growth factor and cytokine activity. However, little is known about the factors that induce heparanase in cancer cells. We investigated the effect of three growth factors, platelet-derived growth factor (PDGF), hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF), on heparanase mRNA induction in lung cancer cells in vitro. In addition, we examined the effect of erythromycin (EM) and clarithromycin (CAM), which are 14-membered ring macrolide antibiotics that act as biological response modifiers, on the expression of heparanase mRNA induced by growth factors. PDGF, HGF and bFGF stimulated cell migration activity and enhanced the expression of heparanase mRNA in the human lung adenocarcinoma cell line A549. Via different mechanisms, EM and CAM modulate the induction by these factors of heparanase mRNA expression on A549 cells. EM also significantly suppressed A549 cell migration induced by PDGF and HGF, and CAM significantly suppressed A549cell migration induced by bFGF. The results suggest that the growth factors PDGF, HGF and bFGF are important inducers of heparanase in potentially invasive and metastatic cancer cells. The suppressive effect of heparanase mRNA expression by EM and CAM may have interestingtherapeutic applications in the prevention of metastasis.  相似文献   

12.
The ectodomain shedding of syndecan-1, a major cell surface heparan sulfate proteoglycan, modulates molecular and cellular processes central to the pathogenesis of inflammatory diseases. Syndecan-1 shedding is a highly regulated process in which outside-in signaling accelerates the proteolytic cleavage of syndecan-1 ectodomains at the cell surface. Several extracellular agonists that induce syndecan-1 shedding and metalloproteinases that cleave syndecan-1 ectodomains have been identified, but the intracellular mechanisms that regulate syndecan-1 shedding are largely unknown. Here we examined the role of the syndecan-1 cytoplasmic domain in the regulation of agonist-induced syndecan-1 shedding. Our results showed that the syndecan-1 cytoplasmic domain is essential because mutation of invariant cytoplasmic Tyr residues abrogates ectodomain shedding, but not because it is Tyr phosphorylated upon shedding stimulation. Instead, our data showed that the syndecan-1 cytoplasmic domain binds to Rab5, a small GTPase that regulates intracellular trafficking and signaling events, and this interaction controls the onset of syndecan-1 shedding. Syndecan-1 cytoplasmic domain bound specifically to Rab5 and preferentially to inactive GDP-Rab5 over active GTP-Rab5, and shedding stimulation induced the dissociation of Rab5 from the syndecan-1 cytoplasmic domain. Moreover, the expression of dominant-negative Rab5, unable to exchange GDP for GTP, interfered with the agonist-induced dissociation of Rab5 from the syndecan-1 cytoplasmic domain and significantly inhibited syndecan-1 shedding induced by several distinct agonists. Based on these data, we propose that Rab5 is a critical regulator of syndecan-1 shedding that serves as an on-off molecular switch through its alternation between the GDP-bound and GTP-bound forms.  相似文献   

13.
Myeloma tumors are characterized by high expression of syndecan-1 (CD138), a heparan sulfate proteoglycan present on the myeloma cell surface and shed into the tumor microenvironment. High levels of shed syndecan-1 in the serum of patients are an indicator of poor prognosis, and numerous studies have implicated syndecan-1 in promoting the growth and progression of this cancer. In the present study we directly addressed the role of syndecan-1 in myeloma by stable knockdown of its expression using RNA interference. Knockdown cells that were negative for syndecan-1 expression became apoptotic and failed to grow in vitro. Knockdown cells expressing syndecan-1 at ∼28% or ∼14% of normal levels survived and grew well in vitro but formed fewer and much smaller subcutaneous tumors in mice compared with tumors formed by cells expressing normal levels of syndecan-1. When injected intravenously into mice (experimental metastasis model), knockdown cells formed very few metastases as compared with controls. This indicates that syndecan-1 may be required for the establishment of multi-focal metastasis, a hallmark of this cancer. One mechanism of syndecan-1 action occurs via stimulation of tumor angiogenesis because tumors formed by knockdown cells exhibited diminished levels of vascular endothelial growth factor and impaired development of blood vessels. Together, these data indicate that the effects of syndecan-1 on myeloma survival, growth, and dissemination are due, at least in part, to its positive regulation of tumor-host interactions that generate an environment capable of sustaining robust tumor growth.Multiple myeloma is an aggressive and deadly hematologic malignancy of plasma cells that resides predominantly in the bone marrow (1). The term “multiple” refers to the multifocal appearance of myeloma throughout the skeleton, which identifies the intrinsic ability of myeloma cells to metastasize extensively. Despite significant progress made in the last 20 years, myeloma remains incurable, often requiring aggressive therapeutic approaches leading to a multitude of adverse effects. New biologically based therapies such as the proteasome inhibitor Velcade, bisphosphonates, and thalidomide have proven effective in some patients. Success of these therapies, at least in part, is due to their impact on the tumor microenvironment (2). Interactions between myeloma cells and the bone clearly drive the progression of this cancer and are also important in mediating drug resistance (36). Thus, understanding the myeloma microenvironment is key to devising new strategies for therapeutic intervention.Heparan sulfate proteoglycans are known to regulate the initiation and progression of some cancers (79). Syndecan-1 is a cell surface heparan sulfate-bearing proteoglycan that plays an important role in regulating myeloma (5). Syndecan-1 is expressed by all myeloma tumors within the bone marrow and is present in relatively high levels on the surface of most myeloma tumor cells (10, 11). The extracellular domain of this proteoglycan can be cleaved from the cell surface by sheddases, and high levels of shed syndecan-1 correlate with poor prognosis in myeloma patients (12). Shed syndecan-1 remains biologically active and can participate in regulating many cellular behaviors, including myeloma growth (13, 14). Much of syndecan-1 function is mediated by its heparan sulfate chains that bind to, and regulate the activity of, many of the factors known to influence myeloma growth (e.g. IL-6,3 IL-7, IL-8, VEGF, HGF, fibroblast growth factor 2, and fibroblast growth factor family ligands). Signaling events propagated by these growth factors, particularly those events occurring between tumor cell and bone marrow components, are critical to the growth and development of myeloma (15). In addition, syndecan-1 becomes lodged within fibrotic regions of bone marrow following treatment of patients (11). This residual syndecan-1 may retain growth factors that aid in forming niches that facilitate tumor relapse. Thus, both on the cell surface and within the extracellular matrix, syndecan-1 is strategically placed to act as an important moderator of cross-talk between tumor and host cells, thereby promoting the growth and maintenance of the tumor as an “organ” and contributing to development of refractory disease.We previously demonstrated in a limited study that knockdown of syndecan-1 expression inhibited growth of subcutaneous myeloma tumors (16). This is confirmed in the present work using a second shRNA targeting sequence and a different myeloma cell line. More importantly, we now demonstrate that disruption of syndecan-1 expression impacts two of the hallmarks of myeloma: angiogenesis and metastasis. When tumors do form from cells having low syndecan-1 expression, angiogenesis is initiated, but vessels fail to develop extensively, suggesting that tumor growth is limited by inadequate blood supply. Moreover, myeloma cells having low syndecan-1 expression are greatly impaired in their ability to form metastatic lesions following intravenous injection of cells, indicating that syndecan-1 may play a key role in driving the highly metastatic phenotype observed in essentially all myeloma patients. These results provide novel insight into regulation of myeloma tumor growth by syndecan-1.  相似文献   

14.
Syndecans are a family of four transmembrane heparan sulfate proteoglycans that act as coreceptors for a variety of cell-surface ligands and receptors. Receptor activation in several cell types leads to shedding of syndecan-1 and syndecan-4 ectodomains into the extracellular space by metalloproteinase-mediated cleavage of the syndecan core protein. We have found that 3T3-L1 adipocytes express syndecan-1 and syndecan-4 and that their ectodomains are shed in response to insulin in a dose-, time-, and metalloproteinase-dependent manner. Insulin responsive shedding is not seen in 3T3-L1 fibroblasts. This shedding involves both Ras-MAP kinase and phosphatidylinositol 3-kinase pathways. In response to insulin, adipocytes are known to secrete active lipoprotein lipase, an enzyme that binds to heparan sulfate on the luminal surface of capillary endothelia. Lipoprotein lipase is transported as a stable enzyme from its site of synthesis to its site of action, but the transport mechanism is unknown. Our studies indicate that shed adipocyte syndecans associate with lipoprotein lipase. The shed syndecan ectodomain can stabilize active lipoprotein lipase. These data suggest that syndecan ectodomains, shed by adipocytes in response to insulin, are physiological extracellular chaperones for lipoprotein lipase as it translocates from its site of synthesis to its site of action.  相似文献   

15.
Heparanase is known to enhance the progression of many cancer types and is associated with poor patient prognosis. We recently reported that after patients with multiple myeloma were treated with high dose chemotherapy, the tumor cells that emerged upon relapse expressed a much higher level of heparanase than was present prior to therapy. Because tumor cells having stemness properties are thought to seed tumor relapse, we investigated whether heparanase had a role in promoting myeloma stemness. When plated at low density and grown in serum-free conditions that support survival and expansion of stem-like cells, myeloma cells expressing a low level of heparanase formed tumor spheroids poorly. In contrast, cells expressing a high level of heparanase formed significantly more and larger spheroids than did the heparanase low cells. Importantly, heparanase-low expressing cells exhibited plasticity and were induced to exhibit stemness properties when exposed to recombinant heparanase or to exosomes that contained a high level of heparanase cargo. The spheroid-forming heparanase-high cells had elevated expression of GLI1, SOX2 and ALDH1A1, three genes known to be associated with myeloma stemness. Inhibitors that block the heparan sulfate degrading activity of heparanase significantly diminished spheroid formation and expression of stemness genes implying a direct role of the enzyme in regulating stemness. Blocking the NF-κB pathway inhibited spheroid formation and expression of stemness genes demonstrating a role for NF-κB in heparanase-mediated stemness. Myeloma cells made deficient in heparanase exhibited decreased stemness properties in vitro and when injected into mice they formed tumors poorly compared to the robust tumorigenic capacity of cells expressing higher levels of heparanase. These studies reveal for the first time a role for heparanase in promoting cancer stemness and provide new insight into its function in driving tumor progression and its association with poor prognosis in cancer patients.  相似文献   

16.
In asthma, airway smooth muscle (ASM) chemokine secretion can induce mast cell recruitment into the airways. The functions of the mast cell chemoattractant CXCL10, and other chemokines, are regulated by binding to heparan sulphates such as syndecan-4. This study is the first demonstration that airway smooth muscle cells (ASMC) from people with and without asthma express and shed syndecan-4 under basal conditions. Syndecan-4 shedding was enhanced by stimulation for 24 h with the Th1 cytokines interleukin-1β (IL-1β) or tumor necrosis factor-α (TNF-α), but not interferon-γ (IFNγ), nor the Th2 cytokines IL-4 and IL-13. ASMC stimulation with IL-1β, TNF-α, and IFNγ (cytomix) induced the highest level of syndecan-4 shedding. Nonasthmatic and asthmatic ASM cell-associated syndecan-4 protein expression was also increased by TNF-α or cytomix at 4-8 h, with the highest levels detected in cytomix-stimulated asthmatic cells. Cell-associated syndecan-4 levels were decreased by 24 h, whereas shedding remained elevated at 24 h, consistent with newly synthesized syndecan-4 being shed. Inhibition of ASMC matrix metalloproteinase-2 did not prevent syndecan-4 shedding, whereas inhibition of ERK MAPK activation reduced shedding from cytomix-stimulated ASMC. Although ERK inhibition had no effect on syndecan-4 mRNA levels stimulated by cytomix, it did cause an increase in cell-associated syndecan-4 levels, consistent with the shedding being inhibited. In conclusion, ASMC produce and shed syndecan-4 and although this is increased by the Th1 cytokines, the MAPK ERK only regulates shedding. ASMC syndecan-4 production during Th1 inflammatory conditions may regulate chemokine activity and mast cell recruitment to the ASM in asthma.  相似文献   

17.
Heparanase is the only mammalian endoglycosidase which has been widely implicated in cancer because of its capability to degrade heparan sulfate chains of heparan sulfate proteoglycans (HSPG). Specifically, the cell surface HSPG syndecan-1 and -4 (SDC1 and SDC4) are modulators of growth factor action, and SDC4 is implicated in cell adhesion as a key member of focal adhesion complexes. We hypothesized that extracellular heparanase modulates brain metastatic breast cancer (BMBC) cell invasiveness by affecting cytoskeletal dynamics, SDC4 carboxy-terminal-associated proteins, and downstream targets. We used two independently derived human BMBC cell systems (MB-231BR and MB-231BR3), which possess distinct cellular morphologies and properties. Highly aggressive spindle-shaped 231BR3 cells changed to a round cell morphology associated with expression of the small GTPase guanine nucleotide exchange factor-H1 (GEF-H1). We showed that GEF-H1 is a new component of the SDC4 signaling complex in BMBC cells. Treatment with heparanase resulted in regulation of the SDC4/protein kinase C α axis while maintaining a constitutive GEF-H1 level. Third, GEF-H1 knockdown followed by cell exposure to heparanase caused a significant regulation of activities of Rac1 and RhoA, which are GEF-H1 targets and fundamental effectors in cell plasticity control. Fourth, L-heparanase augmented expression of β1 integrin in BMBC cells and of vascular cell adhesion molecule 1 (VCAM1; the major β1 integrin receptor) in human brain microvascular endothelial cells. Finally, using a newly developed blood-brain barrier in vitro model, we show that BMBC cell transmigration was significantly reduced in GEF-H1 knockdown cells. These findings implicate heparanase in mechanisms of cytoskeletal dynamics and in the cross-talk between tumor cells and vascular brain endothelium. They are of relevance because they elucidate molecular events in the initial steps leading to BMBC onset and capturing distinct roles of latent and active heparanase in the brain microenvironment.  相似文献   

18.
Syndecans are constitutively shed from growing epithelial cells as the part of normal cell surface turnover. However, increased serum levels of the soluble syndecan ectodomain have been reported to occur during bacterial infections. The aim of this study was to evaluate the potential of lipopolysaccharide (LPS) from the periodontopathogen Porphyromonas gingivalis to induce the shedding of syndecan-1 expressed by human gingival epithelial cells. We showed that the syndecan-1 ectodomain is constitutively shed from the cell surface of human gingival epithelial cells. This constitutive shedding corresponding to the basal level of soluble syndecan-1 ectodomain was significantly increased when cells were stimulated with P. gingivalis LPS and reached a level comparable to that caused by phorbol myristic acid (PMA), an activator of protein kinase C (PKC) which is well known as a shedding agonist. The syndecan-1 shedding was paralleled by pro-inflammatory cytokine interleukin-1 beta (IL-1beta), IL-6, IL-8, and tumor necrosis factor alpha (TNF-alpha) release. Indeed, secretion of IL-1beta and TNF-alpha increased following stimulation by P. gingivalis LPS and PMA, respectively. When recombinant forms of these proteins were added to the cell culture, they induced a concentration-dependent increase in syndecan-1 ectodomain shedding. A treatment with IL-1beta converting enzyme (ICE) specific inhibitor prevented IL-1beta secretion by epithelial cells stimulated by P. gingivalis LPS and decreased the levels of shed syndecan-1 ectodomain. We also observed that PMA and TNF-alpha stimulated matrix metalloproteinase-9 secretion, whereas IL-1beta and P. gingivalis LPS did not. Our results demonstrated that P. gingivalis LPS stimulated syndecan-1 shedding, a phenomenon that may be mediated in part by IL-1beta, leading to an activation of intracellular signaling pathways different from those involved in PMA stimulation.  相似文献   

19.
20.
The cell surface heparan sulfate proteoglycan, syndecan-2, is known to play an important role in the tumorigenic activity of colon cancer cells. In addition, the extracellular domain of syndecan-2 is cleaved by matrix metalloproteinase-7 (MMP-7) in various colon cancer cells, but factors involved in regulating this process remain unknown. Here, we demonstrate a role for interleukin-1α (IL-1α) in syndecan-2 shedding in colon cancer cells. Treatment of low metastatic (HT-29) and highly metastatic (HCT-116) colon cancer cells with various soluble growth factors and cytokines revealed that IL-1α specifically increased extracellular shedding of syndecan-2 in a concentration- and time-dependent manner. IL-1α did not affect the expression of syndecan-2, but did significantly reduce its cell surface levels. Notably, IL-1α increased the mRNA expression and subsequent secreted levels of MMP-7 protein and enhanced the phosphorylation of p38 and ERK mitogen-activated protein kinases. Furthermore, increased syndecan-2 shedding was dependent on the mitogen-activated protein kinase-mediated MMP-7 expression. Taken together, these data suggest that IL-1α regulates extracellular domain shedding of syndecan-2 through regulation of the MAP kinase-mediated MMP-7 expression in colon cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号