首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
HFR1, a basic helix-loop-helix protein, is known to be required for a subset of phytochrome A (phyA)-dependent photoresponses. To investigate the role of HFR1 in light signalling, we have examined the genetic interaction between HFR1 and HY5, a positive regulator of light signalling, and COP1, a repressor of photomorphogenesis. Double mutant analysis suggests that HFR1 mediates phyA-dependent inhibition of hypocotyl elongation independently of HY5. HFR1 was shown to be necessary for a subset of cop1-triggered photomorphogenic phenotypes in the dark, including inhibition of hypocotyl elongation, gravitropic hypocotyl growth, and expression of the light-inducible genes CAB and RBCS. Phenotypic analysis of the triple mutant cop1hy5hfr1 indicated that both HFR1 and HY5 are required for cop1-mediated photomorphogenic seedling development in darkness, consistent with their additive roles in phyA-dependent signalling. Taken together, these results suggest that HFR1 might act downstream of COP1, in a separate pathway from HY5, to mediate photomorphogenesis in Arabidopsis.  相似文献   

3.
Eleven recessive mutant loci define the class of cop / det / fus mutants of Arabidopsis. The cop / det / fus mutants mimic the phenotype of light-grown seedlings when grown in the dark. At least four cop / det / fus mutants carry mutations in subunits of the COP9 signalosome, a multiprotein complex paralogous to the 'lid' subcomplex of the 26S proteasome. COP1, another COP/DET/FUS protein, is itself not a subunit of the COP9 signalosome. In the dark, COP1 accumulates in the nucleus where it is required for the degradation of the HY5 protein, a positive regulator of photomorphogenesis. In the light, COP1 is excluded from the nucleus and the constitutively nuclear HY5 protein can accumulate. Nuclear accumulation of COP1 and degradation of HY5 are impaired in the cop / det / fus mutants that carry mutations in subunits of the COP9 signalosome. Although the cellular function of the COP/DET/FUS proteins is not yet well understood, taken together the current findings suggest that the COP/DET/FUS proteins repress photomorphogenesis in the dark by mediating specific protein degradation.  相似文献   

4.
A B-box zinc finger protein, B-BOX32 (BBX32), was identified as playing a role in determining hypocotyl length during a large-scale functional genomics study in Arabidopsis (Arabidopsis thaliana). Further analysis revealed that seedlings overexpressing BBX32 display elongated hypocotyls in red, far-red, and blue light, along with reduced cotyledon expansion in red light. Through comparative analysis of mutant and overexpression line phenotypes, including global expression profiling and growth curve studies, we demonstrate that BBX32 acts antagonistically to ELONGATED HYPOCOTYL5 (HY5). We further show that BBX32 interacts with SALT TOLERANCE HOMOLOG2/BBX21, another B-box protein previously shown to interact with HY5. Based on these data, we propose that BBX32 functions downstream of multiple photoreceptors as a modulator of light responses. As such, BBX32 potentially has a native role in mediating gene repression to maintain dark adaptation.  相似文献   

5.
6.
7.
8.
植物光形态建成调控因子COP1黑暗中积累在细胞核内,直接与碱性亮氨酸拉链(bZIP)类转录因子HY5相互作用,并被蛋白酶降解,负调控下游基因的表达;而在光下COP1从细胞核内转移到细胞核外,HY5得以在细胞核内积累,可特异结合于查尔酮合成酶基因CHS等光诱导基因启动子上,正调控相关基因的表达。  相似文献   

9.
10.
11.
12.
13.
14.
Arabidopsis (Arabidopsis thaliana) SALT TOLERANCE/B-BOX ZINC FINGER PROTEIN24 (STO/BBX24) is a negative regulator of the light signal transduction that localizes to the nucleus of plant cells and interacts with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) in the yeast (Saccharomyces cerevisiae) two-hybrid system. The protein contains two B-box zinc-finger motives at the N terminus and a conserved motif at the C-terminal part required for the interaction with COP1. BBX24 accumulates during deetiolation of young seedlings in the first hours of exposure to light. However, this accumulation is transient and decreases after prolonged light irradiation. Here, we identified the amino acidic residues necessary for the nuclear import of the protein. In addition, we created mutated forms of the protein, and analyzed them by overexpression in the bbx24-1 mutant background. Our results indicate that the degradation of BBX24 occurs, or at least is initiated in the nucleus, and this nuclear localization is a prerequisite to fulfill its function in light signaling. Moreover, mutations in the region responsible for the interaction with COP1 revealed that a physical interaction of the proteins is also required for degradation of BBX24 in the light and for normal photomorphogenesis.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号