首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cdc25C (cell division cycle 25C) phosphatase triggers entry into mitosis in the cell cycle by dephosphorylating cyclin B-Cdk1. Cdc25C exhibits basal phosphatase activity during interphase and then becomes activated at the G2/M transition after hyperphosphorylation on multiple sites and dissociation from 14-3-3. Although the role of Cdc25C in mitosis has been extensively studied, its function in interphase remains elusive. Here, we show that during interphase Cdc25C suppresses apoptosis signal-regulating kinase 1 (ASK1), a member of mitogen-activated protein (MAP) kinase kinase kinase family that mediates apoptosis. Cdc25C phosphatase dephosphorylates phospho-Thr-838 in the activation loop of ASK1 in vitro and in interphase cells. In addition, knockdown of Cdc25C increases the activity of ASK1 and ASK1 downstream targets in interphase cells, and overexpression of Cdc25C inhibits ASK1-mediated apoptosis, suggesting that Cdc25C binds to and negatively regulates ASK1. Furthermore, we showed that ASK1 kinase activity correlated with Cdc25C activation during mitotic arrest and enhanced ASK1 activity in the presence of activated Cdc25C resulted from the weak association between ASK1 and Cdc25C. In cells synchronized in mitosis following nocodazole treatment, phosphorylation of Thr-838 in the activation loop of ASK1 increased. Compared with hypophosphorylated Cdc25C, which exhibited basal phosphatase activity in interphase, hyperphosphorylated Cdc25C exhibited enhanced phosphatase activity during mitotic arrest, but had significantly reduced affinity to ASK1, suggesting that enhanced ASK1 activity in mitosis was due to reduced binding of hyperphosphorylated Cdc25C to ASK1. These findings suggest that Cdc25C negatively regulates proapoptotic ASK1 in a cell cycle-dependent manner and may play a role in G2/M checkpoint-mediated apoptosis.Cell division cycle 25 (Cdc25) phosphatases are dual-specificity phosphatases involved in cell cycle regulation. By removing inhibitory phosphate groups from phospho-Thr and phospho-Tyr residues of cyclin-dependent kinases (CDKs),1 Cdc25 proteins regulate cell cycle progression in S phase and mitosis. In mammals, three isoforms of Cdc25 phosphatases have been reported: Cdc25A, which controls the G1/S transition;2, 3 Cdc25B, which is a mitotic starter;4 and Cdc25C, which controls the G2/M phase.5 Overexpression of Cdc25 phosphatases is frequently associated with various cancers.6 Upon exposure to DNA-damaging reagents like UV radiation or free oxygen radicals, Cdc25 phosphatases are key targets of the checkpoint machinery, resulting in cell cycle arrest and apoptosis. The 14-3-3 proteins bind to phosphorylated Ser-216 of Cdc25C and induce Cdc25C export from the nucleus during interphase in response to DNA damage,7, 8 but they have no apparent effect on Cdc25C phosphatase activity.9, 10 In addition, hyperphosphorylation of Cdc25C correlates to its enhanced phosphatase activity.11 Most studies with Cdc25C have focused on its role in mitotic progression. However, the role of Cdc25C is not clear when it is sequestered in the cytoplasm by binding to 14-3-3.Apoptosis signal-regulating kinase 1 (ASK1), also known as mitogen-activated protein kinase kinase kinase 5 (MAPKKK5), is a ubiquitously expressed enzyme with a molecular weight of 170 kDa. The kinase activity of ASK1 is stimulated by various cellular stresses, such as H2O2,12, 13 tumor necrosis factor-α (TNF-α),14 Fas ligand,15 serum withdrawal,13 and ER stress.16 Stimulated ASK1 phosphorylates and activates downstream MAP kinase kinases (MKKs) involved in c-Jun N-terminal kinase (JNK) and p38 pathways.17, 18, 19 Phosphorylation and activation of ASK1 can induce apoptosis, differentiation, or other cellular responses, depending on the cell type. ASK1 is regulated either positively or negatively depending on its binding proteins.12, 13, 15, 18, 19, 20, 21, 22, 23, 24, 25ASK1 is regulated by phosphorylation at several Ser/Thr/Tyr residues. Phosphorylation at Thr-838 leads to activation of ASK1, whereas phosphorylation at Ser-83, Ser-967, or Ser-1034 inactivates ASK1.24, 26, 27, 28 ASK1 is basally phosphorylated at Ser-967 by an unidentified kinase, and 14-3-3 binds to this site to inhibit ASK1.24 Phosphorylation at Ser-83 is known to be catalyzed by Akt or PIM1.27, 29 Oligomerization-dependent autophosphorylation at Thr-838, which is located in the activation loop of the kinase domain, is essential for ASK1 activation.14, 18, 30 Phosphorylation at Tyr-718 by JAK2 induces ASK1 degradation.31 Several phosphatases that dephosphorylate some of these sites have been identified. Serine/threonine protein phosphatase type 5 (PP5) and PP2C dephosphorylate phosphorylated (p)-Thr-838,28, 32 whereas PP2A and SHP2 dephosphorylate p-Ser-967 and p-Tyr-718, respectively.31, 33 Little is known about the kinase or phosphatase that regulates phosphorylation at Ser-1034. Although ASK1 phosphorylation is known to be involved in the regulation of apoptosis, only a few reports show that ASK1 phosphorylation or activity is dependent on the cell cycle.21, 34In this study, we examined the functional relationship between Cdc25C and ASK1 and identified a novel function of Cdc25C phosphatase that can dephosphorylate and inhibit ASK1 in interphase but not in mitosis. Furthermore, we demonstrated that Cdc25C phosphorylation status plays a critical role in the interaction with and the activity of ASK1. These results reveal a novel regulatory function of Cdc25C in the ASK1-mediated apoptosis signaling pathway.  相似文献   

2.
Degradation of the M phase cyclins triggers the exit from M phase. Cdc14 is the major phosphatase required for the exit from the M phase. One of the functions of Cdc14 is to dephosphorylate and activate the Cdh1/APC/C complex, resulting in the degradation of the M phase cyclins. However, other crucial targets of Cdc14 for mitosis and cytokinesis remain to be elucidated. Here we systematically analyzed the positions of dephosphorylation sites for Cdc14 in the budding yeast Saccharomyces cerevisiae. Quantitative mass spectrometry identified a total of 835 dephosphorylation sites on 455 potential Cdc14 substrates in vivo. We validated two events, and through functional studies we discovered that Cdc14-mediated dephosphorylation of Smc4 and Bud3 is essential for proper mitosis and cytokinesis, respectively. These results provide insight into the Cdc14-mediated pathways for exiting the M phase.All cells proliferate following a fixed, highly coordinated cycle. Mitosis especially requires elaborate coordination for proper chromosome segregation, mitotic spindle disassembly, and cytokinesis. Much of this activity is facilitated by numerous, diverse phosphorylation and dephosphorylation signals that orchestrate the precise progression of M phase.Prior to mitosis, sister chromatids resulting from DNA replication during S phase are held together by the cohesion complex. Then, during prophase, chromosomes are condensed by the condensin (Smc2/4) complex (1) and microtubules are remodeled to form the mitotic spindle (2). Subsequently, in metaphase, the microtubules of the spindle apparatus attach to the chromosome kinetochores (3) and dissolution of the sister chromatids is triggered by the separase-mediated cleavage of cohesin (4, 5). Finally, Cdc14, Cdh1, and APC/C work together in telophase to degrade the M phase cyclins (6), promote decondensation of chromosomes (7), and finish cytokinesis (8, 9).Cdc14, a dual-specificity phosphatase that removes the phosphate group on both phosphotyrosine and phosphoserine/threonine residues (10), is required for mitosis (11, 12). Specifically, Cdc14 function is essential in late M phase: cells carrying a defective mutation arrest in telophase (13), whereas overexpression of Cdc14 results in G1 arrest (12). Cdc14 triggers mitotic cyclin-dependent kinase (CDK)1 inactivation, enabling cells to exit mitosis through dephosphorylation and activation of the inhibitors of CDKs. At interphase, Cdc14 is a subunit of the mitotic exit network (1417), which usually localizes to the nucleolus. However, the Cdc14 early anaphase release network initiates the release of Cdc14 from its inhibitor, Net1/Cfi1 (18), and the mitotic exit network promotes further release of Cdc14 from its inhibitor, allowing it to spread into the nucleus and cytoplasm, where it dephosphorylates its major targets (8, 9), leading to exit from mitosis. In addition to this essential role in late M phrase, Cdc14 substrates have also been identified in other stages of the cell cycle (19).Cdc14 putatively regulates 27 proteins (1922). Some studies have documented the substrates of Cdc14 via in vitro phosphatase assay, whereas others have provided in vivo evidence. However, dephosphorylation sites have been identified for only five of the target proteins (17, 2225), suggesting that spurious relationships cannot be ruled out. Also, experiments have not been carried out to demonstrate whether these modifications entail direct or indirect regulation. Therefore, our understanding of Cdc14 function and regulation during mitosis in metazoans is incomplete. Conceivably, Cdc14 may regulate many more substrates involved in aspects of chromosome condensation and cytokinesis. To examine this possibility we performed a systematic phosphoproteomic screen to identify new in vivo pathways regulated by Cdc14. Using this approach, we identified both known and potentially novel substrates of Cdc14, as well as their dephosphorylation sites. Many potentially novel substrates are physically associated with Cdc14 in public databases. We also provide biochemical evidence for direct dephosphorylation of the substrates, characterize the specificity of dephosphorylation in two substrates, Smc4 and Bud3, and further study their regulation and critical role in mitosis and cytokinesis.  相似文献   

3.
4.

Background

The pathogenesis of appendicitis is unclear. We evaluated whether exposure to air pollution was associated with an increased incidence of appendicitis.

Methods

We identified 5191 adults who had been admitted to hospital with appendicitis between Apr. 1, 1999, and Dec. 31, 2006. The air pollutants studied were ozone, nitrogen dioxide, sulfur dioxide, carbon monoxide, and suspended particulate matter of less than 10 μ and less than 2.5 μ in diameter. We estimated the odds of appendicitis relative to short-term increases in concentrations of selected pollutants, alone and in combination, after controlling for temperature and relative humidity as well as the effects of age, sex and season.

Results

An increase in the interquartile range of the 5-day average of ozone was associated with appendicitis (odds ratio [OR] 1.14, 95% confidence interval [CI] 1.03–1.25). In summer (July–August), the effects were most pronounced for ozone (OR 1.32, 95% CI 1.10–1.57), sulfur dioxide (OR 1.30, 95% CI 1.03–1.63), nitrogen dioxide (OR 1.76, 95% CI 1.20–2.58), carbon monoxide (OR 1.35, 95% CI 1.01–1.80) and particulate matter less than 10 μ in diameter (OR 1.20, 95% CI 1.05–1.38). We observed a significant effect of the air pollutants in the summer months among men but not among women (e.g., OR for increase in the 5-day average of nitrogen dioxide 2.05, 95% CI 1.21–3.47, among men and 1.48, 95% CI 0.85–2.59, among women). The double-pollutant model of exposure to ozone and nitrogen dioxide in the summer months was associated with attenuation of the effects of ozone (OR 1.22, 95% CI 1.01–1.48) and nitrogen dioxide (OR 1.48, 95% CI 0.97–2.24).

Interpretation

Our findings suggest that some cases of appendicitis may be triggered by short-term exposure to air pollution. If these findings are confirmed, measures to improve air quality may help to decrease rates of appendicitis.Appendicitis was introduced into the medical vernacular in 1886.1 Since then, the prevailing theory of its pathogenesis implicated an obstruction of the appendiceal orifice by a fecalith or lymphoid hyperplasia.2 However, this notion does not completely account for variations in incidence observed by age,3,4 sex,3,4 ethnic background,3,4 family history,5 temporal–spatial clustering6 and seasonality,3,4 nor does it completely explain the trends in incidence of appendicitis in developed and developing nations.3,7,8The incidence of appendicitis increased dramatically in industrialized nations in the 19th century and in the early part of the 20th century.1 Without explanation, it decreased in the middle and latter part of the 20th century.3 The decrease coincided with legislation to improve air quality. For example, after the United States Clean Air Act was passed in 1970,9 the incidence of appendicitis decreased by 14.6% from 1970 to 1984.3 Likewise, a 36% drop in incidence was reported in the United Kingdom between 1975 and 199410 after legislation was passed in 1956 and 1968 to improve air quality and in the 1970s to control industrial sources of air pollution. Furthermore, appendicitis is less common in developing nations; however, as these countries become more industrialized, the incidence of appendicitis has been increasing.7Air pollution is known to be a risk factor for multiple conditions, to exacerbate disease states and to increase all-cause mortality.11 It has a direct effect on pulmonary diseases such as asthma11 and on nonpulmonary diseases including myocardial infarction, stroke and cancer.1113 Inflammation induced by exposure to air pollution contributes to some adverse health effects.1417 Similar to the effects of air pollution, a proinflammatory response has been associated with appendicitis.1820We conducted a case–crossover study involving a population-based cohort of patients admitted to hospital with appendicitis to determine whether short-term increases in concentrations of selected air pollutants were associated with hospital admission because of appendicitis.  相似文献   

5.
6.
To prevent aneuploidy, cells require a mitotic surveillance mechanism, the spindle assembly checkpoint (SAC). The SAC prevents metaphase/anaphase transition by blocking the ubiquitylation and destruction of cyclin B and securin via the Cdc20-activated anaphase-promoting complex or cyclosome (APC/C)-mediated proteolysis pathway. This checkpoint involves the kinetochore proteins Mad2, BubR1, and Cdc20. Mad2 and BubR1 are inhibitors of the APC/C, but Cdc20 is an activator. Exactly how the SAC regulates Cdc20 via unattached kinetochores remains unclear; in vertebrates, most current models suggest that kinetochore-bound Mad2 is required for initial binding to Cdc20 to form a stable complex that includes BubR1. Here, we show that the Mad2 kinetochore dimerization recruitment mechanism is conserved and that the recruitment of Cdc20 to kinetochores in Drosophila requires BubR1 but not Mad2. BubR1 and Mad2 can bind to Cdc20 independently, and the interactions are enhanced after cells are arrested at mitosis by the depletion of Cdc27 using RNA interference (RNAi) in S2 cells or by MG132 treatment in syncytial embryos. These findings offer an explanation of why BubR1 is more important than Mad2 for SAC function in flies. These findings could lead to a better understanding of vertebrate SAC mechanisms.The spindle assembly checkpoint (SAC) is a mitotic surveillance mechanism that negatively regulates the activation of the anaphase-promoting complex or cyclosome (APC/C)-mediated proteolysis pathway to prevent the destruction of two key substrates, cyclin B and securin, thereby inhibiting the metaphase-to-anaphase transition until bipolar attachment of all chromosomes has been achieved (35). A number of conserved kinetochore proteins have been identified as SAC components, such as Mad1, Mad2, Bub1, BubR1, Bub3, Mps1, Zw10, and Rod and Aurora B kinase (reviewed by Musacchio and Salmon [35]). In vertebrates, it is believed that a diffusible inhibitory “wait anaphase” signal is generated from unattached kinetochores or lack of spindle tension (27, 45, 47) and that its primary target is Cdc20/Fzy (Fzy is the Drosophila Cdc20 homolog that we refer to as Cdc20 here), which is an essential APC/C activator (35). Mad2, BubR1 (Mad3 in Saccharomyces cerevisiae), Bub3, and Cdc20 have been found in the mitotic checkpoint complex (MCC) or its subcomplexes Bub3-BubR1-Cdc20 and Mad2-Cdc20 (42, 50, 56). Kinetochore-dependent recruitment and activation of Mad2 have been illustrated in a “template” model (12) and later a modified “two-state” model (28, 32, 35, 36, 40, 57). This model suggests that a kinetochore-bound and conformationally rearranged Mad2 is required for Cdc20 binding and that it leads to the formation of the Mad2-Cdc20 complex (8, 9, 12, 16, 48, 49). This is further supported by a more recent report that unattached kinetochores from purified HeLa cell chromosomes can catalytically generate a diffusible Cdc20 inhibitor when presented with kinetochore-bound Mad2 and that these purified chromosomes can also promote BubR1 binding to APC/C-Cdc20 by acting directly on Mad2 but not BubR1 (27). In vitro assays also suggest that Mad2 is required for Cdc20 binding to BubR1 (7, 10, 19). Fluorescence recovery after photobleaching analysis has suggested that the ∼50% of green fluorescent protein (GFP)-Cdc20 that associates with slow-phase kinetics on PtK2 cell kinetochores is Mad2 dependent (22). However, contradictory reports also exist to suggest that Mad2 might not be required for Cdc20 kinetochore localization in Xenopus and PtK2 cells (22) and that BubR1 might play a crucial role for this in human cell lines (33). In contrast to the above-mentioned slow-phase GFP-Cdc20, the remaining ∼50% of GFP-Cdc20 that associates with fast kinetics on prometaphase or metaphase kinetochores is Mad2 independent, and its kinetics parallel those of GFP-BubR1 in PtK2 cells. GFP-Cdc20 is still detectable on kinetochores through anaphase, where both Mad2 and BubR1 are greatly reduced (22, 25). Moreover, the direct requirement for the kinetochore in the formation of the SAC-inhibitory complexes has been challenged by a non-kinetochore-based formation hypothesis, with MCC found to be present in HeLa cells during S phase (50) and complex formation in yeast previously shown to be independent of intact kinetochores (17, 43). Therefore, despite the importance of Cdc20 in understanding SAC mechanisms, exactly how the SAC regulates Cdc20 via unattached kinetochores remains unclear in vertebrates.Drosophila melanogaster is a well-established model used to study the spindle assembly checkpoint (2, 3, 6, 39). More recently, phenotypes of two mad2-null Drosophila mutant alleles, mad2Δ and mad2P, have been characterized, showing that Mad2 protein is not essential for normal mitotic progression but remains essential for SAC when microtubule attachment, chromosome alignment, and congression are abnormal (5). This contrasts with its counterpart in mouse and human (14, 34, 54) and is also different from the lethality phenotypes reported for bubR1 and cdc20 mutations in Drosophila (3, 11). It has also been reported that Mad2 is less important for SAC than BubR1 and that it is regulated differently in Drosophila S2 culture cells (39). These observations led to the tentative conclusion that Drosophila Mad2 may possess different kinetochore molecular mechanisms and function differently from its homologs in mouse and human (14, 34, 54, 58). We therefore tested Mad2 kinetochore function and further investigated the mechanisms required for Cdc20 kinetochore recruitment and localization using Drosophila transgenic and mutant lines, as well as culture cells. We have characterized a new mad2-null mutant allele, mad2EY, and demonstrated that Drosophila possesses a highly conserved Mad2 kinetochore dimerization mechanism required for SAC function. However, Mad2 is not required for Cdc20 kinetochore recruitment and localization. Instead, there is an essential role for BubR1 in this mechanism during normal mitosis and SAC activation.  相似文献   

7.

Background:

The gut microbiota is essential to human health throughout life, yet the acquisition and development of this microbial community during infancy remains poorly understood. Meanwhile, there is increasing concern over rising rates of cesarean delivery and insufficient exclusive breastfeeding of infants in developed countries. In this article, we characterize the gut microbiota of healthy Canadian infants and describe the influence of cesarean delivery and formula feeding.

Methods:

We included a subset of 24 term infants from the Canadian Healthy Infant Longitudinal Development (CHILD) birth cohort. Mode of delivery was obtained from medical records, and mothers were asked to report on infant diet and medication use. Fecal samples were collected at 4 months of age, and we characterized the microbiota composition using high-throughput DNA sequencing.

Results:

We observed high variability in the profiles of fecal microbiota among the infants. The profiles were generally dominated by Actinobacteria (mainly the genus Bifidobacterium) and Firmicutes (with diverse representation from numerous genera). Compared with breastfed infants, formula-fed infants had increased richness of species, with overrepresentation of Clostridium difficile. Escherichia–Shigella and Bacteroides species were underrepresented in infants born by cesarean delivery. Infants born by elective cesarean delivery had particularly low bacterial richness and diversity.

Interpretation:

These findings advance our understanding of the gut microbiota in healthy infants. They also provide new evidence for the effects of delivery mode and infant diet as determinants of this essential microbial community in early life.The human body harbours trillions of microbes, known collectively as the “human microbiome.” By far the highest density of commensal bacteria is found in the digestive tract, where resident microbes outnumber host cells by at least 10 to 1. Gut bacteria play a fundamental role in human health by promoting intestinal homeostasis, stimulating development of the immune system, providing protection against pathogens, and contributing to the processing of nutrients and harvesting of energy.1,2 The disruption of the gut microbiota has been linked to an increasing number of diseases, including inflammatory bowel disease, necrotizing enterocolitis, diabetes, obesity, cancer, allergies and asthma.1 Despite this evidence and a growing appreciation for the integral role of the gut microbiota in lifelong health, relatively little is known about the acquisition and development of this complex microbial community during infancy.3Two of the best-studied determinants of the gut microbiota during infancy are mode of delivery and exposure to breast milk.4,5 Cesarean delivery perturbs normal colonization of the infant gut by preventing exposure to maternal microbes, whereas breastfeeding promotes a “healthy” gut microbiota by providing selective metabolic substrates for beneficial bacteria.3,5 Despite recommendations from the World Health Organization,6 the rate of cesarean delivery has continued to rise in developed countries and rates of breastfeeding decrease substantially within the first few months of life.7,8 In Canada, more than 1 in 4 newborns are born by cesarean delivery, and less than 15% of infants are exclusively breastfed for the recommended duration of 6 months.9,10 In some parts of the world, elective cesarean deliveries are performed by maternal request, often because of apprehension about pain during childbirth, and sometimes for patient–physician convenience.11The potential long-term consequences of decisions regarding mode of delivery and infant diet are not to be underestimated. Infants born by cesarean delivery are at increased risk of asthma, obesity and type 1 diabetes,12 whereas breastfeeding is variably protective against these and other disorders.13 These long-term health consequences may be partially attributable to disruption of the gut microbiota.12,14Historically, the gut microbiota has been studied with the use of culture-based methodologies to examine individual organisms. However, up to 80% of intestinal microbes cannot be grown in culture.3,15 New technology using culture-independent DNA sequencing enables comprehensive detection of intestinal microbes and permits simultaneous characterization of entire microbial communities. Multinational consortia have been established to characterize the “normal” adult microbiome using these exciting new methods;16 however, these methods have been underused in infant studies. Because early colonization may have long-lasting effects on health, infant studies are vital.3,4 Among the few studies of infant gut microbiota using DNA sequencing, most were conducted in restricted populations, such as infants delivered vaginally,17 infants born by cesarean delivery who were formula-fed18 or preterm infants with necrotizing enterocolitis.19Thus, the gut microbiota is essential to human health, yet the acquisition and development of this microbial community during infancy remains poorly understood.3 In the current study, we address this gap in knowledge using new sequencing technology and detailed exposure assessments20 of healthy Canadian infants selected from a national birth cohort to provide representative, comprehensive profiles of gut microbiota according to mode of delivery and infant diet.  相似文献   

8.
9.
To grant faithful chromosome segregation, the spindle assembly checkpoint (SAC) delays mitosis exit until mitotic spindle assembly. An exceedingly prolonged mitosis, however, promotes cell death and by this means antimicrotubule cancer drugs (AMCDs), that impair spindle assembly, are believed to kill cancer cells. Despite malformed spindles, cancer cells can, however, slip through SAC, exit mitosis prematurely and resist killing. We show here that the Fcp1 phosphatase and Wee1, the cyclin B-dependent kinase (cdk) 1 inhibitory kinase, play a role for this slippage/resistance mechanism. During AMCD-induced prolonged mitosis, Fcp1-dependent Wee1 reactivation lowered cdk1 activity, weakening SAC-dependent mitotic arrest and leading to mitosis exit and survival. Conversely, genetic or chemical Wee1 inhibition strengthened the SAC, further extended mitosis, reduced antiapoptotic protein Mcl-1 to a minimum and potentiated killing in several, AMCD-treated cancer cell lines and primary human adult lymphoblastic leukemia cells. Thus, the Fcp1-Wee1-Cdk1 (FWC) axis affects SAC robustness and AMCDs sensitivity.The spindle assembly checkpoint (SAC) delays mitosis exit to coordinate anaphase onset with spindle assembly. To this end, SAC inhibits the ubiquitin ligase Anaphase-Promoting Complex/Cyclosome (APC/C) to prevent degradation of the anaphase inhibitor securin and cyclin B, the major mitotic cyclin B-dependent kinase 1 (cdk1) activator, until spindle assembly.1 However, by yet poorly understood mechanisms, exceedingly prolonging mitosis translates into cell death induction.2, 3, 4, 5, 6, 7 Although mechanistic details are still missing on how activation of cell death pathways is linked to mitosis duration, prolongation of mitosis appears crucial for the ability of antimicrotubule cancer drugs (AMCDs) to kill cancer cells.2, 3, 4, 5, 6, 7 These drugs, targeting microtubules, impede mitotic spindle assembly and delay mitosis exit by chronically activating the SAC. Use of these drugs is limited, however, by toxicity and resistance. A major mechanism for resistance is believed to reside in the ability of cancer cells to slip through the SAC and exit mitosis prematurely despite malformed spindles, thus resisting killing by limiting mitosis duration.2, 3, 4, 5, 6, 7 Under the AMCD treatment, cells either die in mitosis or exit mitosis, slipping through the SAC, without or abnormally dividing.2, 3, 4 Cells that exit mitosis either die at later stages or survive and stop dividing or proliferate, giving rise to resistance.2, 3, 4 Apart from a role for p53, what dictates cell fate is still unknown; however, it appears that the longer mitosis is protracted, the higher the chances for cell death pathway activation are.2, 3, 4, 5, 6, 7Although SAC is not required per se for killing,6 preventing SAC adaptation should improve the efficacy of AMCD by increasing mitosis duration.2, 3, 4, 5, 6, 7 Therefore, further understanding of the mechanisms by which cells override SAC may help to improve the current AMCD therapy. Several kinases are known to activate and sustain SAC, and cdk1 itself appears to be of primary relevance.1, 8, 9 By studying mitosis exit and SAC resolution, we recently reported a role for the Fcp1 phosphatase to bring about cdk1 inactivation.10, 11 Among Fcp1 targets, we identified cyclin degradation pathway components, such as Cdc20, an APC/C co-activator, USP44, a deubiquitinating enzyme, and Wee1.10, 11 Wee1 is a crucial kinase that controls the G2 phase by performing inhibitory phosphorylation of cdk1 at tyr-15 (Y15-cdk1). Wee1 is also in a feedback relationship with cdk1 itself that, in turn, can phosphorylate and inhibit Wee1 in an autoamplification loop to promote the G2-to-M phase transition.12 At mitosis exit, Fcp1 dephosphorylated Wee1 at threonine 239, a cdk1-dependent inhibitory phosphorylation, to dampen down the cdk1 autoamplification loop, and Cdc20 and USP44, to promote APC/C-dependent cyclin B degradation.10, 11, 12 In this study we analysed the Fcp1 relevance in SAC adaptation and AMCD sensitivity.  相似文献   

10.
Background:Rates of imaging for low-back pain are high and are associated with increased health care costs and radiation exposure as well as potentially poorer patient outcomes. We conducted a systematic review to investigate the effectiveness of interventions aimed at reducing the use of imaging for low-back pain.Methods:We searched MEDLINE, Embase, CINAHL and the Cochrane Central Register of Controlled Trials from the earliest records to June 23, 2014. We included randomized controlled trials, controlled clinical trials and interrupted time series studies that assessed interventions designed to reduce the use of imaging in any clinical setting, including primary, emergency and specialist care. Two independent reviewers extracted data and assessed risk of bias. We used raw data on imaging rates to calculate summary statistics. Study heterogeneity prevented meta-analysis.Results:A total of 8500 records were identified through the literature search. Of the 54 potentially eligible studies reviewed in full, 7 were included in our review. Clinical decision support involving a modified referral form in a hospital setting reduced imaging by 36.8% (95% confidence interval [CI] 33.2% to 40.5%). Targeted reminders to primary care physicians of appropriate indications for imaging reduced referrals for imaging by 22.5% (95% CI 8.4% to 36.8%). Interventions that used practitioner audits and feedback, practitioner education or guideline dissemination did not significantly reduce imaging rates. Lack of power within some of the included studies resulted in lack of statistical significance despite potentially clinically important effects.Interpretation:Clinical decision support in a hospital setting and targeted reminders to primary care doctors were effective interventions in reducing the use of imaging for low-back pain. These are potentially low-cost interventions that would substantially decrease medical expenditures associated with the management of low-back pain.Current evidence-based clinical practice guidelines recommend against the routine use of imaging in patients presenting with low-back pain.13 Despite this, imaging rates remain high,4,5 which indicates poor concordance with these guidelines.6,7Unnecessary imaging for low-back pain has been associated with poorer patient outcomes, increased radiation exposure and higher health care costs.8 No short- or long-term clinical benefits have been shown with routine imaging of the low back, and the diagnostic value of incidental imaging findings remains uncertain.912 A 2008 systematic review found that imaging accounted for 7% of direct costs associated with low-back pain, which in 1998 translated to more than US$6 billion in the United States and £114 million in the United Kingdom.13 Current costs are likely to be substantially higher, with an estimated 65% increase in spine-related expenditures between 1997 and 2005.14Various interventions have been tried for reducing imaging rates among people with low-back pain. These include strategies targeted at the practitioner such as guideline dissemination,1517 education workshops,18,19 audit and feedback of imaging use,7,20,21 ongoing reminders7 and clinical decision support.2224 It is unclear which, if any, of these strategies are effective.25 We conducted a systematic review to investigate the effectiveness of interventions designed to reduce imaging rates for the management of low-back pain.  相似文献   

11.

Background:

Polymyalgia rheumatica is one of the most common inflammatory rheumatologic conditions in older adults. Other inflammatory rheumatologic disorders are associated with an excess risk of vascular disease. We investigated whether polymyalgia rheumatica is associated with an increased risk of vascular events.

Methods:

We used the General Practice Research Database to identify patients with a diagnosis of incident polymyalgia rheumatica between Jan. 1, 1987, and Dec. 31, 1999. Patients were matched by age, sex and practice with up to 5 patients without polymyalgia rheumatica. Patients were followed until their first vascular event (cardiovascular, cerebrovascular, peripheral vascular) or the end of available records (May 2011). All participants were free of vascular disease before the diagnosis of polymyalgia rheumatica (or matched date). We used Cox regression models to compare time to first vascular event in patients with and without polymyalgia rheumatica.

Results:

A total of 3249 patients with polymyalgia rheumatica and 12 735 patients without were included in the final sample. Over a median follow-up period of 7.8 (interquartile range 3.3–12.4) years, the rate of vascular events was higher among patients with polymyalgia rheumatica than among those without (36.1 v. 12.2 per 1000 person-years; adjusted hazard ratio 2.6, 95% confidence interval 2.4–2.9). The increased risk of a vascular event was similar for each vascular disease end point. The magnitude of risk was higher in early disease and in patients younger than 60 years at diagnosis.

Interpretation:

Patients with polymyalgia rheumatica have an increased risk of vascular events. This risk is greatest in the youngest age groups. As with other forms of inflammatory arthritis, patients with polymyalgia rheumatica should have their vascular risk factors identified and actively managed to reduce this excess risk.Inflammatory rheumatologic disorders such as rheumatoid arthritis,1,2 systemic lupus erythematosus,2,3 gout,4 psoriatic arthritis2,5 and ankylosing spondylitis2,6 are associated with an increased risk of vascular disease, especially cardiovascular disease, leading to substantial morbidity and premature death.26 Recognition of this excess vascular risk has led to management guidelines advocating screening for and management of vascular risk factors.79Polymyalgia rheumatica is one of the most common inflammatory rheumatologic conditions in older adults,10 with a lifetime risk of 2.4% for women and 1.7% for men.11 To date, evidence regarding the risk of vascular disease in patients with polymyalgia rheumatica is unclear. There are a number of biologically plausible mechanisms between polymyalgia rheumatica and vascular disease. These include the inflammatory burden of the disease,12,13 the association of the disease with giant cell arteritis (causing an inflammatory vasculopathy, which may lead to subclinical arteritis, stenosis or aneurysms),14 and the adverse effects of long-term corticosteroid treatment (e.g., diabetes, hypertension and dyslipidemia).15,16 Paradoxically, however, use of corticosteroids in patients with polymyalgia rheumatica may actually decrease vascular risk by controlling inflammation.17 A recent systematic review concluded that although some evidence exists to support an association between vascular disease and polymyalgia rheumatica,18 the existing literature presents conflicting results, with some studies reporting an excess risk of vascular disease19,20 and vascular death,21,22 and others reporting no association.2326 Most current studies are limited by poor methodologic quality and small samples, and are based on secondary care cohorts, who may have more severe disease, yet most patients with polymyalgia rheumatica receive treatment exclusively in primary care.27The General Practice Research Database (GPRD), based in the United Kingdom, is a large electronic system for primary care records. It has been used as a data source for previous studies,28 including studies on the association of inflammatory conditions with vascular disease29 and on the epidemiology of polymyalgia rheumatica in the UK.30 The aim of the current study was to examine the association between polymyalgia rheumatica and vascular disease in a primary care population.  相似文献   

12.

Background:

Persistent postoperative pain continues to be an underrecognized complication. We examined the prevalence of and risk factors for this type of pain after cardiac surgery.

Methods:

We enrolled patients scheduled for coronary artery bypass grafting or valve replacement, or both, from Feb. 8, 2005, to Sept. 1, 2009. Validated measures were used to assess (a) preoperative anxiety and depression, tendency to catastrophize in the face of pain, health-related quality of life and presence of persistent pain; (b) pain intensity and interference in the first postoperative week; and (c) presence and intensity of persistent postoperative pain at 3, 6, 12 and 24 months after surgery. The primary outcome was the presence of persistent postoperative pain during 24 months of follow-up.

Results:

A total of 1247 patients completed the preoperative assessment. Follow-up retention rates at 3 and 24 months were 84% and 78%, respectively. The prevalence of persistent postoperative pain decreased significantly over time, from 40.1% at 3 months to 22.1% at 6 months, 16.5% at 12 months and 9.5% at 24 months; the pain was rated as moderate to severe in 3.6% at 24 months. Acute postoperative pain predicted both the presence and severity of persistent postoperative pain. The more intense the pain during the first week after surgery and the more it interfered with functioning, the more likely the patients were to report persistent postoperative pain. Pre-existing persistent pain and increased preoperative anxiety also predicted the presence of persistent postoperative pain.

Interpretation:

Persistent postoperative pain of nonanginal origin after cardiac surgery affected a substantial proportion of the study population. Future research is needed to determine whether interventions to modify certain risk factors, such as preoperative anxiety and the severity of pain before and immediately after surgery, may help to minimize or prevent persistent postoperative pain.Postoperative pain that persists beyond the normal time for tissue healing (> 3 mo) is increasingly recognized as an important complication after various types of surgery and can have serious consequences on patients’ daily living.13 Cardiac surgeries, such as coronary artery bypass grafting (CABG) and valve replacement, rank among the most frequently performed interventions worldwide.4 They aim to improve survival and quality of life by reducing symptoms, including anginal pain. However, persistent postoperative pain of nonanginal origin has been reported in 7% to 60% of patients following these surgeries.523 Such variability is common in other types of major surgery and is due mainly to differences in the definition of persistent postoperative pain, study design, data collection methods and duration of follow-up.13,24Few prospective cohort studies have examined the exact time course of persistent postoperative pain after cardiac surgery, and follow-up has always been limited to a year or less.9,14,25 Factors that put patients at risk of this type of problem are poorly understood.26 Studies have reported inconsistent results regarding the contribution of age, sex, body mass index, preoperative angina, surgical technique, grafting site, postoperative complications or level of opioid consumption after surgery.57,9,13,14,1619,2123,25,27 Only 1 study investigated the role of chronic nonanginal pain before surgery as a contributing factor;21 5 others prospectively assessed the association between persistent postoperative pain and acute pain intensity in the first postoperative week but reported conflicting results.13,14,21,22,25 All of the above studies were carried out in a single hospital and included relatively small samples. None of the studies examined the contribution of psychological factors such as levels of anxiety and depression before cardiac surgery, although these factors have been shown to influence acute or persistent postoperative pain in other types of surgery.1,24,28,29We conducted a prospective multicentre cohort study (the CARD-PAIN study) to determine the prevalence of persistent postoperative pain of nonanginal origin up to 24 months after cardiac surgery and to identify risk factors for the presence and severity of the condition.  相似文献   

13.
Proper activation of checkpoint during mitotic stress is an important mechanism to prevent genomic instability. Chfr (Check point protein with FHA (Forkhead-associated domain) and RING domains) is a ubiquitin-protein isopeptide ligase (E3) that is important for the control of an early mitotic checkpoint, which delays entry into metaphase in response to mitotic stress. Because several lines of evidence indicate that Chfr is a potential tumor suppressor, it is critically important for us to identify Chfr substrates and understand how Chfr may regulate these substrates, control mitotic transitions, and thus, act as a tumor suppressor in vivo. Here, we report the discovery of a new Chfr-associated protein Kif22, a chromokinesin that binds to both DNA and microtubules. We demonstrated that Kif22 is a novel substrate of Chfr. We showed that Chfr-mediated Kif22 down-regulation is critical for the maintenance of chromosome stability. Collectively, our results reveal a new substrate of Chfr that plays a role in the maintenance of genome integrity.Chfr (Check point protein with FHA and RING domains) is an early mitotic checkpoint protein that delays entry into metaphase in response to mitotic stress (1, 2). The checkpoint function of Chfr requires both of its FHA3 and RING domains. The exact role of FHA domain in Chfr function is largely unknown. Chfr via its RING domain transfers both lysine 48-linked and lysine 63-linked polyubiquitin chains to its target proteins, which either promotes the degradation of target proteins or alters their function (3, 4). Recently, a PAR-binding zinc finger motif, which binds directly to polyADP-ribosylated substrates catalyzed by PARP1, was identified at the C-terminal region of Chfr (5). This PAR-binding zinc finger motif was reported to be required for Chfr function in antephase checkpoint (2, 5).Chfr delays the cell cycle progression at mitosis by inactivating cyclin B1-bound Cdc2 and then exporting them from nucleus (6). Further, mechanistic studies have suggested that the inactivation of Cdc2 may be due to a negative regulation of Plk1 by Chfr (3). Polyubiquitination of Plk1 by Chfr negatively regulates the Plk1 protein levels, which delay the inactivation of Cdc2 inhibitory Wee1 kinase and the activation of Cdc25 phosphatase and thus maintain Cdc2 at its inactive state.Several lines of evidence indicate that Chfr is a potential tumor suppressor. Loss or down-regulation of Chfr has been reported in several types of cancers including primary breast, lung, esophagus, colon, and gastric carcinomas (1, 7, 8). To investigate directly whether Chfr loss contributes to tumorigenesis, our laboratory has generated Chfr knock-out mice, which were cancer-prone and developed spontaneous tumors (9). The increased tumor incidence in Chfr null mice is likely due to a failure in maintaining chromosomal stability, which occurs at least partially due to the overexpression of a key mitotic kinase Aurora A (9). Chfr physically interacts with Aurora A and promotes its ubiquitination and degradation; thus, higher protein levels of Aurora A in Chfr null mice may contribute to chromosomal instability and eventually tumorigenesis. Therefore, our current hypothesis is that Chfr may regulate the stability of several of its substrates including Aurora A, and thus, control mitotic progression and prevent chromosomal instability. In this study, we reported the identification of another Chfr substrate as chromokinesin protein Kif22 and revealed that Kif22 overexpression also contributes to chromosomal instability observed in Chfr-deficient cells.  相似文献   

14.
15.
Infection of quiescent cells by human cytomegalovirus (HCMV) elicits severe cell cycle deregulation, resulting in a G1/S arrest, which can be partly attributed to the inactivation of the anaphase-promoting complex (APC). As we previously reported, the premature phosphorylation of its coactivator Cdh1 and/or the dissociation of the core complex can account for the inactivation. We have expanded on these results and further delineated the key components required for disabling the APC during HCMV infection. The viral protein kinase UL97 was hypothesized to phosphorylate Cdh1, and consistent with this, phosphatase assays utilizing a virus with a UL97 deletion mutation (ΔUL97 virus) indicated that Cdh1 is hypophosphorylated at early times in the infection. Mass spectrometry analysis demonstrated that UL97 can phosphorylate Cdh1 in vitro, and the majority of the sites identified correlated with previously characterized cyclin-dependent kinase (Cdk) consensus sites. Analysis of the APC core complex during ΔUL97 virus infection showed APC dissociation occurring at the same time as during infection with wild-type virus, suggesting that the UL97-mediated phosphorylation of Cdh1 is not required for this to occur. Further investigation of the APC subunits showed a proteasome-dependent loss of the APC5 and APC4 subunits that was temporally associated with the disassembly of the APC. Immediate early viral gene expression was not sufficient for the degradation of APC4 and APC5, indicating that a viral early gene product(s), possibly in association with a de novo-synthesized cellular protein(s), is involved.Human cytomegalovirus (HCMV), a highly prevalent β-herpesvirus, can cause serious birth defects and disease in immunocompromised individuals, and it may be associated with cancer and cardiovascular disease (53). Viral gene expression is temporally regulated and is dependent on many cellular factors for a productive infection. Immediate early (IE) genes are expressed by 2 h postinfection (p.i.) and transactivate the early genes required for viral DNA replication. The expression of the late genes, which encode proteins involved in virion maturation and egress, is dependent on viral DNA replication.The virus has adopted different strategies for altering the cellular environment to make it more conducive to productive infection, including the stimulation of host cell DNA replication pathways, cell cycle deregulation and arrest, immune evasion, and inhibition of apoptosis (53). Although HCMV encodes its own DNA polymerase, it is dependent on other cellular resources for DNA replication. Infection of quiescent cells induces passage toward S phase such that the host cell is stimulated to generate proteins and DNA precursors necessary for genome replication; however, entry into S phase and cellular DNA replication are subsequently blocked and the cell arrests in G1/S (1, 10, 11, 14, 30, 45). Cellular resources are thereby presumably free to be efficiently utilized for viral replication. Cell cycle arrest by HCMV is achieved in part through the misregulation of several cell cycle proteins, including the phosphorylation and accumulation of the Rb family pocket proteins, upregulation of cyclins E and B and their associated kinase activities, inhibition of cyclin A expression, stabilization of p53, and accumulation of Cdc6 and geminin, which inhibits licensing of the cellular origins of DNA replication (8, 17, 30, 49, 54, 65). Some of these cell cycle defects can be attributed to a deregulation of the anaphase-promoting complex (APC) (8, 72, 79, 80), an E3 ubiquitin ligase that is responsible for the timely degradation of cell cycle proteins and mitotic cyclins to promote cycle progression from mitosis through G1 to S phase (58, 74). As the APC also appears to be a common target among other viruses, including the chicken anemia virus, adenoviruses, and poxviruses (23, 36, 52, 70), understanding the mechanisms leading to its inactivation during viral infection has been of great interest.As we have previously reported, multiple mechanisms may be involved in disabling the APC during HCMV infection (72), which is not surprising given the complexity of its structure and regulation (for a review, see references 58 and 74). The APC is a large multisubunit complex consisting of at least 11 conserved core subunits, as well as other species-specific subunits. In metazoans, the APC2 and APC11 subunits form the catalytic core, and along with APC10, provide the platform for binding the E2 ubiquitin-conjugating enzyme. Each of the APC3, APC8, APC6, and APC7 subunits contain multiple copies of the tetratricopeptide repeat (TPR) motif and together make up the TPR subcomplex, which provides a platform of protein interaction surfaces for binding the coactivators (i.e., Cdh1 and Cdc20) and various substrates. These two subcomplexes are bridged by the large scaffolding subunit APC1, with the TPR subcomplex tethered to APC1 through APC4 and APC5. The binding between APC1, APC4, APC5, and APC8 is also interdependent, such that the loss of one subunit decreases the association of the other three (71).The APC is activated by either of its coactivators, Cdh1 or Cdc20, which also function in recruiting specific substrates to the APC during different phases of the cell cycle. The phosphorylation of several APC subunits at the onset of mitosis, including APC1 and the TPR subunits, by cyclin B/cyclin-dependent kinase 1 (Cdk1) and Plk1 allows the binding of Cdc20 and subsequent activation of the APC (APCCdc20) (19, 37), whereas the binding and activation of the complex by Cdh1 is inhibited through its phosphorylation by cyclin B/Cdk1 (9, 29, 38, 83). As cells pass the spindle assembly checkpoint, APCCdc20 ubiquitinates securin (to allow for sister chromatid separation) and cyclin B for degradation by the proteasome (42, 67). The subsequent inactivation of Cdk1 and activation of mitotic phosphatases during late anaphase relieves the inhibitory phosphorylation on Cdh1, presumably by Cdc14 (6, 38, 44), which then allows Cdh1 to bind and activate the APC (APCCdh1). APCCdh1 ubiquitinates Cdc20 and mitotic cyclins for degradation to facilitate mitotic exit and maintains their low levels, along with S-phase regulators (e.g., Cdc6, geminin, etc.), during G1 (16, 50, 59, 63). The inactivation of APCCdh1 as cells enter S phase may be mediated in part through the phosphorylation of Cdh1 by cyclin A/Cdk2 (46) and Cdh1 binding to the inhibitor Emi1 (25). The inactivation of Cdh1 by phosphorylation has been shown in all organisms studied thus far (e.g., yeast, Drosophila, plants, mammals, etc.), and mutants mimicking constitutively phosphorylated Cdh1 on Cdk consensus sites can neither bind nor activate the APC in vivo or in vitro (9, 29, 38, 69, 83).During HCMV infection of fibroblasts in G0/G1, however, Cdh1 becomes prematurely phosphorylated in a Cdk-independent manner and no longer associates with the APC (72). This dissociation does not appear to be due to an overexpression of Emi1 (79). Cdc20 also can no longer associate with the APC (79), suggesting a defect in the APC core. We have further shown that the APC core complex disassembles during the infection, with the TPR subunits (i.e., APC3, APC7, and APC8) and APC10 localizing to the cytosol, while APC1 remains nuclear (72). Interestingly, both the phosphorylation of Cdh1 and the dissociation of the APC occur at similar times during HCMV infection. Although either of these mechanisms could render the APC inactive, it was unclear whether these processes are linked or represent independent (or redundant) pathways. The causative factor(s) in mediating these events and the question of whether such a factor(s) was of cellular or viral origin also remained unresolved.On the basis of the results of several recent studies (26, 32, 62), the viral protein kinase UL97 emerged as a likely candidate for involvement in the phosphorylation of Cdh1. Conserved among herpesviruses, UL97 functions in viral genome replication (7, 32, 81) and in nuclear egress of viral capsids (21, 39, 48). UL97 is present in the tegument of the virus particle (76) and is also expressed de novo with early kinetics (i.e., detectable by 5 h p.i. by Western blot assay), with increased expression at later times of the infection (51, 76, 77). UL97 is a serine/threonine (S/T) protein kinase (22), and recent studies have further characterized it as a Cdkl mimic, with predicted structural similarity to Cdk2 (64) and common substrates. UL97 has been shown to phosphorylate in vitro nuclear lamin A/C (21), the carboxyl-terminal domain of RNA polymerase II (5), the translation elongation factor 1δ (EF1δ) (33), and Rb (26, 62) on sites targeted by Cdks, and there is considerable evidence that UL97 phosphorylates lamin A/C, EF1δ, and Rb on these sites in infected cells as well (21, 26, 33, 62). Given that cyclin A/Cdk2 and cyclin B/Cdk1 complexes normally phosphorylate Cdh1, thus preventing its association with the APC, we hypothesized that UL97 phosphorylates Cdh1 during HCMV infection.In the present study, we provide further mechanistic details of the events and players involved in inactivating the APC during HCMV infection. Evidence that UL97 is the viral factor mediating the phosphorylation of Cdh1 was obtained. However, APC disassembly still occurred at similar times in ΔUL97 and wild-type virus infections, indicating that UL97-mediated phosphorylation of Cdh1 is not required for this event. The inactivation of the APC core complex is further attributed to the loss of the APC5 and APC4 subunits early during the infection. The degradation of these subunits is proteasome dependent and requires de novo synthesis of viral early or cellular proteins. While the primary mechanism of inactivation appears to be the dissociation of the complex and the targeted loss of APC5 and APC4, phosphorylation of Cdh1 may provide a small kinetic advantage and backup mechanism for disabling the APC.  相似文献   

16.
Sophisticated models for the regulation of mitotic entry are lacking for human cells. Inactivating human cyclin A/Cdk2 complexes through diverse approaches delays mitotic entry and promotes inhibitory phosphorylation of Cdk1 on tyrosine 15, a modification performed by Wee1. We show here that cyclin A/Cdk2 complexes physically associate with Wee1 in U2OS cells. Mutation of four conserved RXL cyclin A/Cdk binding motifs (RXL1 to RXL4) in Wee1 diminished stable binding. RXL1 resides within a large regulatory region of Wee1 that is predicted to be intrinsically disordered (residues 1 to 292). Near RXL1 is T239, a site of inhibitory Cdk phosphorylation in Xenopus Wee1 proteins. We found that T239 is phosphorylated in human Wee1 and that this phosphorylation was reduced in an RXL1 mutant. RXL1 and T239 mutants each mediated greater Cdk phosphorylation and G2/M inhibition than the wild type, suggesting that cyclin A/Cdk complexes inhibit human Wee1 through these sites. The RXL1 mutant uniquely also displayed increased nuclear localization. RXL1 is embedded within sequences homologous to Crm1-dependent nuclear export signals (NESs). Coimmunoprecipitation showed that Crm1 associated with Wee1. Moreover, treatment with the Crm1 inhibitor leptomycin B or independent mutation of the potential NES (NESm) abolished Wee1 nuclear export. Export was also reduced by Cdk inhibition or cyclin A RNA interference, suggesting that cyclin A/Cdk complexes contribute to Wee1 export. Somewhat surprisingly, NESm did not display increased G2/M inhibition. Thus, nuclear export of Wee1 is not essential for mitotic entry though an important functional role remains likely. These studies identify a novel bifunctional regulatory element in Wee1 that mediates cyclin A/Cdk2 association and nuclear export.Despite broad progress in studies of cell cycle control in eukaryotes, advanced models are lacking for the regulation of mitotic entry in human cells. This regulation is pivotal in cell cycle control, and a better understanding of it may be crucial to improving cytotoxic cancer chemotherapy, the mainstay of cancer treatment. Models of mitotic entry in higher eukaryotes revolve around activation of the cyclin B/Cdk1 (cyclin-dependent kinase 1 or Cdc2) complex, which drives the major events of mitosis. A rise in the cyclin B level triggers mitotic entry in Xenopus egg extracts but not in mammalian cells (15, 47). Inhibitory phosphorylation of Cdk1 on the ATP-binding site residue tyrosine 15 (Y15) has been recognized as a key constraint throughout eukaryotes (29, 42). Wee1 and Myt kinases perform this phosphorylation in vertebrate cells, where Wee1 appears to be dominant (34). Kim and Ferrell and others have recently developed an elegant model for ultrasensitive, switch-like inactivation of Wee1 by cyclin B/Cdk1 in a positive feedback loop that contributes to mitotic entry in Xenopus egg extracts (27).Although cyclin A(A2)/Cdk2 is traditionally omitted from models of mitotic entry, accumulating evidence from several different approaches suggests that cyclin A/Cdk complexes play roles. Cyclin A levels rise during S phase and peak in G2 before falling abruptly in prometaphase of mitosis (60). Microinjection of cyclin A/Cdk2 complexes in human G2 phase cells was observed to drive mitotic entry (14). Conversely, microinjection of antibodies directed against cyclin A in S-phase cells inhibited mitotic entry without an apparent effect on bulk DNA synthesis (45). In complementary approaches that supported biochemical analyses, cyclin A RNA interference (RNAi) or induction of a dominant negative mutant of Cdk2 (Cdk2-dn), the major cyclin A binding partner, inhibited mitotic entry (13, 15, 21, 37). In these settings, cyclin B/Cdk1 complexes accumulated in inactive, Y15-phosphorylated forms (13, 21, 37). Cdc25 phosphatases, which can reverse this phosphorylation, show reduced activity in this context (37), but increased Cdc25 activity could not readily overcome the arrest (13). RNAi-mediated knockdown of Wee1 was found capable of overriding the arrest mediated by cyclin A RNAi, suggesting that Wee1 is a key rate-limiting factor (13). However, whether and by what mechanisms cyclin A complexes might regulate Wee1 and drive Cdk1 dephosphorylation and mitotic entry have remained unclear.Recently, genetic studies in mice have reinforced these observations while providing evidence for some cell type differences (24). Although Cdk2 is not essential, in its absence Cdk1 binds more cyclin A and E and provides redundant functions (4, 25, 44). Deletion of the cyclin A gene is lethal for embryos and adults (24). Gene deletion in fibroblasts in vitro did not completely abrogate their proliferation but caused S and G2/M delays. In this setting cyclin E was upregulated, and combined deletion of cyclin E yielded arrest in G1, S, and G2/M phases. Cyclin A gene deletion was alone sufficient to block proliferation of hematopoietic stem cells, suggesting that cyclin A is essential for their proliferation.Wee1 is regulated on multiple levels, including inhibitory phosphorylation in the amino-terminal regulatory domain (NRD), residues 1 to 292. This region is predicted to be intrinsically disordered (56), and few functional elements have been identified in it. The cyclin B/Cdk1 complex has been thought to be the principal or exclusive kinase responsible for NRD phosphorylation (18, 27, 28). Two sites in the Xenopus embryonic Wee1 NRD, Thr 104 and Thr 150 (referred to here by the homologous residue, T239, in human somatic Wee1), have been identified as Cdk phosphorylation sites that inhibit Wee1 activity (28). Recent studies of Xenopus somatic Wee1 suggest that T239 phosphorylation may antagonize the function of a surrounding motif, dubbed the Wee box (43). This small, conserved region appears to augment the activity of the carboxy-terminal kinase domain.We show here that cyclin A/Cdk2 complexes directly bind Wee1 as a substrate in human cells. In particular, a conserved cyclin A/Cdk binding RXL motif in the Wee1 NRD is required for efficient T239 phosphorylation. Further analysis revealed that RXL1 is located within a Crm1 binding site that mediates Wee1 export during S and G2 phases. Cyclin A/Cdk2 activity appears to foster Wee1 export, but this export is not essential for mitotic entry. These findings further define roles of cyclin A/Cdk complexes in regulating Wee1 and mitotic entry in human cells and dissect the mechanisms and consequences of Wee1 redistribution during the run-up to mitosis.  相似文献   

17.
18.
19.

Background

Fractures have largely been assessed by their impact on quality of life or health care costs. We conducted this study to evaluate the relation between fractures and mortality.

Methods

A total of 7753 randomly selected people (2187 men and 5566 women) aged 50 years and older from across Canada participated in a 5-year observational cohort study. Incident fractures were identified on the basis of validated self-report and were classified by type (vertebral, pelvic, forearm or wrist, rib, hip and “other”). We subdivided fracture groups by the year in which the fracture occurred during follow-up; those occurring in the fourth and fifth years were grouped together. We examined the relation between the time of the incident fracture and death.

Results

Compared with participants who had no fracture during follow-up, those who had a vertebral fracture in the second year were at increased risk of death (adjusted hazard ratio [HR] 2.7, 95% confidence interval [CI] 1.1–6.6); also at risk were those who had a hip fracture during the first year (adjusted HR 3.2, 95% CI 1.4–7.4). Among women, the risk of death was increased for those with a vertebral fracture during the first year (adjusted HR 3.7, 95% CI 1.1–12.8) or the second year of follow-up (adjusted HR 3.2, 95% CI 1.2–8.1). The risk of death was also increased among women with hip fracture during the first year of follow-up (adjusted HR 3.0, 95% CI 1.0–8.7).

Interpretation

Vertebral and hip fractures are associated with an increased risk of death. Interventions that reduce the incidence of these fractures need to be implemented to improve survival.Osteoporosis-related fractures are a major health concern, affecting a growing number of individuals worldwide. The burden of fracture has largely been assessed by the impact on health-related quality of life and health care costs.1,2 Fractures can also be associated with death. However, trials that have examined the relation between fractures and mortality have had limitations that may influence their results and the generalizability of the studies, including small samples,3,4 the examination of only 1 type of fracture,410 the inclusion of only women,8,11 the enrolment of participants from specific areas (i.e., hospitals or certain geographic regions),3,4,7,8,10,12 the nonrandom selection of participants311 and the lack of statistical adjustment for confounding factors that may influence mortality.3,57,12We evaluated the relation between incident fractures and mortality over a 5-year period in a cohort of men and women 50 years of age and older. In addition, we examined whether other characteristics of participants were risk factors for death.  相似文献   

20.
Schultz AS  Finegan B  Nykiforuk CI  Kvern MA 《CMAJ》2011,183(18):E1334-E1344

Background:

Many hospitals have adopted smoke-free policies on their property. We examined the consequences of such polices at two Canadian tertiary acute-care hospitals.

Methods:

We conducted a qualitative study using ethnographic techniques over a six-month period. Participants (n = 186) shared their perspectives on and experiences with tobacco dependence and managing the use of tobacco, as well as their impressions of the smoke-free policy. We interviewed inpatients individually from eight wards (n = 82), key policy-makers (n = 9) and support staff (n = 14) and held 16 focus groups with health care providers and ward staff (n = 81). We also reviewed ward documents relating to tobacco dependence and looked at smoking-related activities on hospital property.

Results:

Noncompliance with the policy and exposure to secondhand smoke were ongoing concerns. Peoples’ impressions of the use of tobacco varied, including divergent opinions as to whether such use was a bad habit or an addiction. Treatment for tobacco dependence and the management of symptoms of withdrawal were offered inconsistently. Participants voiced concerns over patient safety and leaving the ward to smoke.

Interpretation:

Policies mandating smoke-free hospital property have important consequences beyond noncompliance, including concerns over patient safety and disruptions to care. Without adequately available and accessible support for withdrawal from tobacco, patients will continue to face personal risk when they leave hospital property to smoke.Canadian cities and provinces have passed smoking bans with the goal of reducing people’s exposure to secondhand smoke in workplaces, public spaces and on the property adjacent to public buildings.1,2 In response, Canadian health authorities and hospitals began implementing policies mandating smoke-free hospital property, with the goals of reducing the exposure of workers, patients and visitors to tobacco smoke while delivering a public health message about the dangers of smoking.25 An additional anticipated outcome was the reduced use of tobacco among patients and staff. The impetuses for adopting smoke-free policies include public support for such legislation and the potential for litigation for exposure to second-hand smoke.2,4Tobacco use is a modifiable risk factor associated with a variety of cancers, cardiovascular diseases and respiratory conditions.611 Patients in hospital who use tobacco tend to have more surgical complications and exacerbations of acute and chronic health conditions than patients who do not use tobacco.611 Any policy aimed at reducing exposure to tobacco in hospitals is well supported by evidence, as is the integration of interventions targetting tobacco dependence.12 Unfortunately, most of the nearly five million Canadians who smoke will receive suboptimal treatment,13 as the routine provision of interventions for tobacco dependence in hospital settings is not a practice norm.1416 In smoke-free hospitals, two studies suggest minimal support is offered for withdrawal, 17,18 and one reports an increased use of nicotine-replacement therapy after the implementation of the smoke-free policy.19Assessments of the effectiveness of smoke-free policies for hospital property tend to focus on noncompliance and related issues of enforcement.17,20,21 Although evidence of noncompliance and litter on hospital property2,17,20 implies ongoing exposure to tobacco smoke, half of the participating hospital sites in one study reported less exposure to tobacco smoke within hospital buildings and on the property.18 In addition, there is evidence to suggest some decline in smoking among staff.18,19,21,22We sought to determine the consequences of policies mandating smoke-free hospital property in two Canadian acute-care hospitals by eliciting lived experiences of the people faced with enacting the policies: patients and health care providers. In addition, we elicited stories from hospital support staff and administrators regarding the policies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号