首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Zinc ions are required to maintain the biological activity of numerous proteins. However, when mislocalized or accumulated in excess, Zn(2+) ions are toxic because of adventitious binding to proteins and displacement of other metal ions, among them Fe(2+), from their binding sites. Heterologous expression of a previously uncharacterized Arabidopsis thaliana metal tolerance protein, MTP3, in the zrc1 cot1 mutant of budding yeast restores tolerance to, and cellular accumulation of, zinc and cobalt. An MTP3-GFP fusion protein localizes to the vacuolar membrane when expressed in Arabidopsis. Ectopic over-expression of MTP3 increases Zn accumulation in both roots and rosette leaves of A. thaliana, and enhances Zn tolerance. Exposure of wild-type plants to high but non-toxic concentrations of Zn or Co, or Fe deficiency, strongly induce MTP3 expression specifically in epidermal and cortex cells of the root hair zone. Silencing of MTP3 by RNA interference causes Zn hypersensitivity and enhances Zn accumulation in above-ground organs of soil-grown plants and of seedlings exposed to excess Zn or to Fe deficiency. Our data indicate that, in wild-type A. thaliana, the AtMTP3 protein contributes to basic cellular Zn tolerance and controls Zn partitioning, particularly under conditions of high rates of Zn influx into the root symplasm.  相似文献   

3.
4.
Rogers EE  Guerinot ML 《The Plant cell》2002,14(8):1787-1799
We present the cloning and characterization of an Arabidopsis gene, FRD3, involved in iron homeostasis. Plants carrying any of the three alleles of frd3 constitutively express three strategy I iron deficiency responses and misexpress a number of iron deficiency-regulated genes. Mutant plants also accumulate approximately twofold excess iron, fourfold excess manganese, and twofold excess zinc in their shoots. frd3-3 was first identified as man1. The FRD3 gene is expressed at detectable levels in roots but not in shoots and is predicted to encode a membrane protein belonging to the multidrug and toxin efflux family. Other members of this family have been implicated in a variety of processes and are likely to transport small organic molecules. The phenotypes of frd3 mutant plants, which are consistent with a defect in either iron deficiency signaling or iron distribution, indicate that FRD3 is an important component of iron homeostasis in Arabidopsis.  相似文献   

5.
6.
7.
Rice vacuolar membrane proteins changed by gibberellin (GA) were analyzed using a proteome approach. Vacuolar membrane fractions were isolated using a discontinuous sucrose/sorbitol system and 10 proteins increased in vacuolar membrane of the root, treated with GA(3) as compared with control. Fructose-1,6-bisphosphate aldolase C-1 and vacuolar H(+)-ATPase (V-ATPase) increased in root vacuolar membrane by GA(3) interacted in rice roots. It suggests that aldolase C-1 regulates the V-ATPase mediated control of cell elongation that determines root growth.  相似文献   

8.
9.
Shin LJ  Lo JC  Yeh KC 《Plant physiology》2012,159(3):1099-1110
Copper (Cu) is essential for plant growth but toxic in excess. Specific molecular mechanisms maintain Cu homeostasis to facilitate its use and avoid the toxicity. Cu chaperones, proteins containing a Cu-binding domain(s), are thought to assist Cu intracellular homeostasis by their Cu-chelating ability. In Arabidopsis (Arabidopsis thaliana), two Cu chaperones, Antioxidant Protein1 (ATX1) and ATX1-Like Copper Chaperone (CCH), share high sequence homology. Previously, their Cu-binding capabilities were demonstrated and interacting molecules were identified. To understand the physiological functions of these two chaperones, we characterized the phenotype of atx1 and cch mutants and the cchatx1 double mutant in Arabidopsis. The shoot and root growth of atx1 and cchatx1 but not cch was specifically hypersensitive to excess Cu but not excess iron, zinc, or cadmium. The activities of antioxidant enzymes in atx1 and cchatx1 were markedly regulated in response to excess Cu, which confirms the phenotype of Cu hypersensitivity. Interestingly, atx1 and cchatx1 were sensitive to Cu deficiency. Overexpression of ATX1 not only enhanced Cu tolerance and accumulation in excess Cu conditions but also tolerance to Cu deficiency. In addition, the Cu-binding motif MXCXXC of ATX1 was required for these physiological functions. ATX1 was previously proposed to be involved in Cu homeostasis by its Cu-binding activity and interaction with the Cu transporter Heavy metal-transporting P-type ATPase5. In this study, we demonstrate that ATX1 plays an essential role in Cu homeostasis in conferring tolerance to excess Cu and Cu deficiency. The possible mechanism is discussed.  相似文献   

10.
11.
The present study employed a sand culture experiment with three levels of zinc viz., 0.065 (control), 65.0 and 130 mg l?1 Zn (excess) as zinc sulfate, respectively, in sugarcane (Saccharum spp.), cultivar CoLk 8102. The results indicated growth depression, dark green leaves, decreased root number and length and sharp depression in mitotic activity of roots due to high doses of Zn (65 and 130 mg l?1); effects were significant at 130 mg l?1 Zn supply. The endogenous ion contents measurements revealed roots to be the major sink for excess Zn with lower amounts in leaves of sugarcane plants. High level of Zn decreased total phosphorus in leaves and increased it in roots. Fe and Cu content decreased, while, Mn increased in sugarcane plants due to high Zn in the growing medium. Plants experienced oxidative stress when exposed to higher levels of zinc. Biochemical investigations indicated high level of hydrogen peroxide, malondialdehyde contents with high chlorophyll a, b and carotenoids contents and activity of superoxide dismutase, catalase and peroxidase enzymes under high Zn conditions. These findings confirm suggest that excess Zn adversely affects root growth and mitotic efficiency, enhances chromosomal aberrations and increases growth and nutrient accumulation abnormalities, as well as oxidative stress.  相似文献   

12.
13.
Iron, an essential nutrient, is not readily available to plants because of its low solubility. In addition, iron is toxic in excess, catalyzing the formation of hydroxyl radicals that can damage cellular constituents. Consequently, plants must carefully regulate iron uptake so that iron homeostasis is maintained. The Arabidopsis IRT1 gene is the major transporter responsible for high-affinity iron uptake from the soil. Here, we show that the steady state level of IRT1 mRNA was induced within 24 h after transfer of plants to iron-deficient conditions, with protein levels peaking 72 h after transfer. IRT1 mRNA and protein were undetectable 12 h after plants were shifted back to iron-sufficient conditions. Overexpression of IRT1 did not confer dominant gain-of-function enhancement of metal uptake. Analysis of 35S-IRT1 transgenic plants revealed that although IRT1 mRNA was expressed constitutively in these plants, IRT1 protein was present only in the roots when iron is limiting. Under these conditions, plants that overexpressed IRT1 accumulated higher levels of cadmium and zinc than wild-type plants, indicating that IRT1 is responsible for the uptake of these metals and that IRT1 protein levels are indeed increased in these plants. Our results suggest that the expression of IRT1 is controlled by two distinct mechanisms that provide an effective means of regulating metal transport in response to changing environmental conditions.  相似文献   

14.
The growing importance of vesicular trafficking and cytoskeleton dynamic reorganization during plant development requires the exploitation of novel experimental approaches. Several genetic and cell biological studies have used diverse pharmaceutical drugs that inhibit vesicular trafficking and secretion to study these phenomena. Here, proteomic and cell biology approaches were applied to study effects of brefeldin A (BFA), an inhibitor of vesicle recycling and secretion, in Arabidopsis roots. The main aim of this study was to obtain an overview of proteins affected by BFA, but especially to identify new proteins involved in the vesicular trafficking and its cross-talk to the actin cytoskeleton. The results showed that BFA altered vesicular trafficking and caused the formation of BFA-compartments which was accompanied by differential expression of several proteins in root cells. Some of the BFA-up-regulated proteins belong to the class of the vesicular trafficking proteins, such as V-ATPase and reversibly glycosylated polypeptide, while others, such as profilin 2 and elongation factor 1 alpha, are rather involved in the remodeling of the actin cytoskeleton. Upregulation of profilin 2 by BFA was verified by immunoblot and live imaging at subcellular level. The latter approach also revealed that profilin 2 accumulated in BFA-compartments which was accompanied by remodeling of the actin cytoskeleton in BFA-treated root cells. Thus, profilin 2 seems to be involved in the cross-talk between vesicular trafficking and the actin cytoskeleton, in a BFA-dependent manner.  相似文献   

15.
The Arabidopsis Yellow Stripe 1-Like (YSL) proteins have been identified by homology with the maize (Zea mays) Yellow Stripe 1 (YS1) transporter which is responsible for iron-phytosiderophore (PS) uptake by roots in response to iron shortage. Although dicotyledonous plants do not synthesize PS, they do synthesize the PS precursor nicotianamine, a strong metal chelator essential for maintenance of iron homeostasis and copper translocation. Furthermore, ZmYS1 and the rice (Oryza sativa) protein OsYSL2 have metal-nicotianamine transport activities in heterologous expression systems. In this work, we have characterized the function of AtYSL1 in planta. Two insertional loss-of-function ysl1 mutants of Arabidopsis were found to exhibit increased nicotianamine accumulation in shoots. More importantly, seeds of both ysl1 knockouts contained less iron and nicotianamine than wild-type seeds, even when produced by plants grown in the presence of an excess of iron. This phenotype could be reverted by expressing the wild-type AtYSL1 gene in ysl1 plants. ysl1 seeds germinated slowly, but this defect was rescued by an iron supply. AtYSL1 was expressed in the xylem parenchyma of leaves, where it was upregulated in response to iron excess, as well as in pollen and in young silique parts. This pattern is consistent with long-distance circulation of iron and nicotianamine and their delivery to the seed. Taken together, our work provides strong physiological evidence that iron and nicotianamine levels in seeds rely in part on AtYSL1 function.  相似文献   

16.
17.
Dicotyledonous plants growing under limited iron availability initiate a response resulting in the solubilization, reduction, and uptake of soil iron. The protein factors responsible for these steps are transmembrane proteins, suggesting that the intracellular trafficking machinery may be involved in iron acquisition. In search for components involved in the regulation of Arabidopsis thaliana iron deficiency responses, we identified the members of the SORTING NEXIN (SNX) protein family. SNX loss-of-function plants display enhanced susceptibility to iron deficiency in comparison to the wild type. The absence of SNX led to reduced iron import efficiency into the root. SNX1 showed partial colocalization with the principal root iron importer IRON-REGULATED TRANSPORTER1 (IRT1). In SNX loss-of-function plants, IRT1 protein levels were decreased compared with the wild type due to enhanced IRT1 degradation. This resulted in diminished amounts of the IRT1 protein at the plasma membrane. snx mutants exhibited enhanced iron deficiency responses compared with the wild type, presumably due to the lower iron uptake through IRT1. Our results reveal a role of SNX1 for the correct trafficking of IRT1 and, thus, for modulating the activity of the iron uptake machinery.  相似文献   

18.
19.
20.
Ryu J  Kim H  Lee SK  Chang EJ  Kim HJ  Kim HH 《Proteomics》2005,5(16):4152-4160
Osteoclasts are cells specialized for bone resorption. For osteoclast activation, tumor necrosis factor receptor-associated factor 6 (TRAF6) plays a pivotal role. To find new molecules that bind TRAF6 and have a function in osteoclast activation, we employed a proteomic approach. TRAF6-binding proteins were purified from osteoclast cell lysates by affinity chromatography and their identity was disclosed by MS. The identified proteins included several heat shock proteins, actin and actin-binding proteins, and vacuolar ATPase (V-ATPase). V-ATPase, documented for a great increase in expression during osteoclast differentiation, is an important enzyme for osteoclast function; it transports proton to resorption lacunae for hydroxyapatite dissolution. The binding of V-ATPase with TRAF6 was confirmed both in vitro by GST pull-down assays and in osteoclasts by co-immunoprecipitation and confocal microscopy experiments. In addition, the V-ATPase activity associated with TRAF6 increased in osteoclasts stimulated with receptor activator of nuclear factor kappaB ligand (RANKL). Furthermore, a dominant-negative form of TRAF6 abrogated the RANKL stimulation of V-ATPase activity. Our study identified V-ATPase as a TRAF6-binding protein using a proteomics strategy and proved a direct link between these two important molecules for osteoclast function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号