首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 934 毫秒
1.
The process of vernalization is mainly controlled by two genes in winter barley (Hordeum vulgare L.), VRNH1 and VRNH2. A recessive allele at VRNH1 and a dominant allele at VRNH2 must be present to induce a vernalization requirement. In addition, this process is usually associated with greater low-temperature tolerance. Spanish barleys originated in areas with mild winters and display a reduced vernalization requirement compared with standard winter cultivars. The objective of this study was to investigate the genetic origin of this reduced vernalization requirement and its effect on frost tolerance. We introgressed the regions of a typical Spanish barley line that carry VRNH1 and VRNH2 into a winter cultivar, Plaisant, using marker-assisted backcrossing. We present the results of a set of 12 lines introgressed with all four possible combinations of VRNH1 and VRNH2, which were evaluated for vernalization requirement and frost tolerance. The reduced vernalization requirement of the Spanish parent was confirmed, and was found to be due completely to the effect of the VRNH1 region. The backcross lines showed no decline in frost tolerance compared with that of the recurrent parent unless they carried an extra segment of chromosome 5H. This extra segment, a carryover of the backcross process, apparently contained the well-known frost tolerance quantitative trait locus Fr-H2. We demonstrate that it is possible to manipulate the vernalization requirement with only minor effects on frost tolerance. This finding opens the path to creating new types of barley cultivars that are better suited to specific environments, especially in a climate-change scenario.  相似文献   

2.
3.
4.
Lee I  Amasino RM 《Plant physiology》1995,108(1):157-162
We have compared the flowering response to vernalization, photoperiod, and far-red (FR) light of the Columbia (Col) and Landsberg erecta (Ler) ecotypes of Arabidopsis into which the flowering-time locus FRIGIDA (FRI) has been introgressed with that of the wild types Col, Ler, and San Feliu-2 (Sf-2). In the early-flowering parental ecotypes, Col and Ler, a large decrease in flowering time in response to vernalization was observed only under short-day conditions. However, Sf-2 and the Ler and Col genotypes containing FRI showed a strong response to vernalization when grown in either long days or short days. Although vernalization reduced the responsiveness to photoperiod, plants vernalized for more than 80 d still showed a slight photoperiod response. The effect of FRI on flowering was eliminated by 30 to 40 d of vernalization; subsequently, the response to vernalization in both long days and short days was the same in Col and Ler with or without FRI. FR-light enrichment accelerated flowering in all ecotypes and introgressed lines. However, the FR-light effect was most conspicuous in the FRI-containing plants. Saturation of the vernalization effect eliminated the effect of FR light on flowering, although vernalization did not eliminate the increase of petiole length in FR light.  相似文献   

5.
Vernalization-2 (Vrn-2) is the major flowering repressor in temperate cereals. It is only expressed under long days in wild-type plants. We used two day-neutral (photoperiod insensitive) mutations that allow rapid flowering in short or long days to investigate the day length control of Vrn-2. The barley (Hordeum vulgare) early maturity8 (eam8) mutation affects the barley ELF3 gene. eam8 mutants disrupt the circadian clock resulting in elevated expression of Ppd-H1 and the floral activator HvFT1 under short or long days. When eam8 was crossed into a genetic background with a vernalization requirement Vrn-2 was expressed under all photoperiods and the early flowering phenotype was partially repressed in unvernalized (UV) plants, likely due to competition between the constitutively active photoperiod pathway and the repressing effect of Vrn-2. We also investigated the wheat (Triticum aestivum) Ppd-D1a mutation. This differs from eam8 in causing elevated levels of Ppd-1 and TaFT1 expression without affecting the circadian clock. We used genotypes that differed in “short-day vernalization”. Short days were effective in promoting flowering in individuals wild type at Ppd-D1, but not in individuals that carry the Ppd-D1a mutation. The latter showed Vrn-2 expression in short days. In summary, eam8 and Ppd-D1a mimic long days in terms of photoperiod response, causing Vrn-2 to become aberrantly expressed (in short days). As Ppd-D1a does not affect the circadian clock, this also shows that clock regulation of Vrn-2 operates indirectly through one or more downstream genes, one of which may be Ppd-1.  相似文献   

6.
7.
The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare)   总被引:7,自引:0,他引:7  
Faure S  Higgins J  Turner A  Laurie DA 《Genetics》2007,176(1):599-609
The FLOWERING LOCUS T (FT) gene plays a central role in integrating flowering signals in Arabidopsis because its expression is regulated antagonistically by the photoperiod and vernalization pathways. FT belongs to a family of six genes characterized by a phosphatidylethanolamine-binding protein (PEBP) domain. In rice (Oryza sativa), 19 PEBP genes were previously described, 13 of which are FT-like genes. Five FT-like genes were found in barley (Hordeum vulgare). HvFT1, HvFT2, HvFT3, and HvFT4 were highly homologous to OsFTL2 (the Hd3a QTL), OsFTL1, OsFTL10, and OsFTL12, respectively, and this relationship was supported by comparative mapping. No rice equivalent was found for HvFT5. HvFT1 was highly expressed under long-day (inductive) conditions at the time of the morphological switch of the shoot apex from vegetative to reproductive growth. HvFT2 and HvFT4 were expressed later in development. HvFT1 was therefore identified as the main barley FT-like gene involved in the switch to flowering. Mapping of HvFT genes suggests that they provide important sources of flowering-time variation in barley. HvFTI was a candidate for VRN-H3, a dominant mutation giving precocious flowering, while HvFT3 was a candidate for Ppd-H2, a major QTL affecting flowering time in short days.  相似文献   

8.
9.
Wheat is usually classified as a long day (LD) plant because most varieties flower earlier when exposed to longer days. In addition to LD, winter wheats require a long exposure to low temperatures (vernalization) to become competent for flowering. Here we show that in some genotypes this vernalization requirement can be replaced by interrupting the LD treatment by 6 weeks of short day (SD), and that this replacement is associated with the SD down-regulation of the VRN2 flowering repressor. In addition, we found that SD down-regulation of VRN2 at room temperature is not followed by the up-regulation of the meristem identity gene VRN1 until plants are transferred to LD. This result contrasts with the VRN1 up-regulation observed after the VRN2 down-regulation by vernalization, suggesting the existence of a second VRN1 repressor. Analysis of natural VRN1 mutants indicated that a CArG-box located in the VRN1 promoter is the most likely regulatory site for the interaction with this second repressor. Up-regulation of VRN1 under SD in accessions carrying mutations in the CArG-box resulted in an earlier initiation of spike development, compared to other genotypes. However, even the genotypes with CArG box mutations required LD for a normal and timely spike development. The SD acceleration of flowering was observed in photoperiod sensitive winter varieties. Since vernalization requirement and photoperiod sensitivity are ancestral traits in Triticeae species we suggest that wheat was initially a SD–LD plant and that strong selection pressures during domestication and breeding resulted in the modification of this dual regulation. The down-regulation of the VRN2 repressor by SD is likely part of the mechanism associated with the SD–LD regulation of flowering in photoperiod sensitive winter wheat. These authors contributed equally to this work  相似文献   

10.
With the aim of dissecting the genetic determinants of flowering time, vernalization response, and photoperiod sensitivity, we mapped the candidate genes for Vrn-H2 and Vrn-H1 in a facultative × winter barley mapping population and determined their relationships with flowering time and vernalization via QTL analysis. The Vrn-H2 candidate ZCCT-H genes were completely missing from the facultative parent and present in the winter barley parent. This gene was the major determinant of flowering time under long photoperiods in controlled environment experiments, irrespective of vernalization, and under spring-sown field experiments. It was the sole determinant of vernalization response, but the effect of the deletion was modulated by photoperiods when the vernalization requirement was fulfilled. There was no effect under short photoperiods. The Vrn-H1 candidate gene (HvBM5A) was mapped based on a microsatellite polymorphism we identified in the promoter of this gene. Otherwise, the HvBM5A alleles for the two parents were identical. Therefore, the significant flowering time QTL effect associated with this locus suggests tight linkage rather than pleiotropy. This QTL effect was smaller in magnitude than those associated with the Vrn-H2 locus and was significant in two-way interactions with Vrn-H2. The Vrn-H1 locus had no effect on vernalization response. Our results support the Vrn-H2/Vrn-H1 repressor/structural gene model for vernalization response in barley and suggest that photoperiod may also affect the Vrn genes or tightly linked loci.  相似文献   

11.
A genetic map of 92 RFLP loci and two storage protein loci was made using 94 doubled-haploid lines from a cross between the winter barley variety Igri and the spring variety Triumph. The markers were combined with data from two field experiments (one spring sown and one autumn (fall) sown) and a glasshouse experiment to locate a total of 13 genes (five major genes and eight quantitative trait loci (QTL)) controlling flowering time. Two photoperiod response genes were found; Ppd-H1 on chromosome 2(2H)S regulated flowering time under long days, while Ppd-H2 on chromosome 5(1H)L was detected only under short days. In the field experiments Ppd-H1 strongly affected flowering time from spring and autumn sowings, while Ppd-H2 was detected only in the autumn sowing. The glasshouse experiment also located two vernalization response genes, probably Sh and Sh2, on chromosomes 4(4H)L and 7(5H)L, respectively. The vernalization response genes had little effect on flowering time in the field. Variation in flowering time was also affected by nine additional genes, whose effects were not specifically dependent on photoperiod or vernalization. One was the denso dwarfing gene on chromosome 3(3H)L. The remaining eight were QTLs of smaller effect. One was located on chromosome 2(2H), one on 3(3H), one on 4(4H), one on 7(5H), two on 6(6H), and two on 1(7H). Model fitting showed that the 13 putative genes, and their interactions, could account for all the observed genetical variation from both spring and autumn sowings, giving a complete model for the control of flowering time in this cross.  相似文献   

12.
13.
Three genotypes of barley were subjected to 18 potentially vernalizingpre-treatments, comprising constant temperatures of 1, 5 or9 °C in factorial combination with photoperiods of 8 or16 h d–1 for 10, 30 or 60 d–1. These pre-treatedseeds or seedlings, together with non-pre-treated seeds as controls,were then transferred to each of four growing-on regimes, namelyday/night temperatures of 18/5 °C or 24/3 °C in factorialcombination with photoperiods of 11 or 16 h d–1. The timesfrom sowing to awn emergence were recorded. The warmer growing-onregime (mean 19 °C) was not supra-optimal in long days,but in short days it considerably delayed awn emergence in allthree genotypes. In cv. Athenais there was no specific responseto the potentially vernalizing pre-trcatments: the rate of progresstowards awn emergence could be treated as a linear functionof the integrated responses to temperature and photoperiod actingindependently throughout development. In addition to these responses,cv. Gerbel B and the land-race Arabi Abiad also responded tolow-temperature vernalization and the response became saturatedduring the longer-duration pre-treatments. In Arabi Abiad, therate at which vernalization occurred, and the period requiredto saturate the response, were not greatly influenced by differencein pre-treatment temperature between 1 and 9 °C. In contrast,in Gerbel B the cooler the temperature of pre-treatment thegreater the saturated response to vernalization, the greaterthe effect of each day of pre-treatment, and the shorter theperiod required to saturate the response. Models of the photothennaland vernalization responses were combined in a single entitywhich described the influence of environment on rate of development.Simple germplasm-screening techniques are proposed for genotypecharacterization so that the phenotypic flowering response canbe estimated for any environment Hordeum vulgare L., barley, flowering, phtoperiodism, vernalization, photothennal time, germplasm screening  相似文献   

14.
The extent of natural variation among wild type Arabidopsis thaliana L. Heynh for response to environmental stimuli that affect flowering is poorly documented. The effects of photoperiod and vernalization on the number of rosette leaves at the time of anthesis was measured for 32 Arabidopsis ecotypes. All ecotypes were vernalized 24 days at 4 C under continuous illumination. Vernalized and nonvernalized plants were transplanted into 8- (short-day) and 20-hour (long-day) photoperiods in controlled environment growth chambers. Two ecotypes failed to flower after 110 days. Mean leaf number was less for all ecotypes under long day compared to short day. Sixteen ecotypes responded to vernalization; eight had reduced leaf number regardless of photoperiod, and eight had reduced leaf number only under short day. Two ecotypes required vernalization to flower in this study. For three ecotypes, vernalization and short day resulted in a reduction in leaf number whereas vernalization and long day resulted in increased leaf number. Documentation of the effects and interactions of photoperiod and vernalization across many ecotypes provides a broader range of described natural variation for genetic and physiologic study.  相似文献   

15.
Winterhardiness has three primary components: photoperiod (day length) sensitivity, vernalization response, and low temperature tolerance. Photoperiod and vernalization regulate the vegetative to reproductive phase transition, and photoperiod regulates expression of key vernalization genes. Using two barley mapping populations, we mapped six individual photoperiod response QTL and determined their positional relationship to the phytochrome and cryptochrome photoreceptor gene families and the vernalization regulatory genes HvBM5A, ZCCT-H, and HvVRT-2. Of the six photoreceptors mapped in the current study (HvPhyA and HvPhyB to 4HS, HvPhyC to 5HL, HvCry1a and HvCry2 to 6HS, and HvCry1b to 2HL), only HvPhyC coincided with a photoperiod response QTL. We recently mapped the candidate genes for the 5HL VRN-H1 (HvBM5A) and 4HL VRN-H2 (ZCCT-H) loci, and in this study, we mapped HvVRT-2, the barley TaVRT-2 ortholog (a wheat flowering repressor regulated by vernalization and photoperiod) to 7HS. Each of these three vernalization genes is located in chromosome regions determining small photoperiod response QTL effects. HvBM5A and HvPhyC are closely linked on 5HL and therefore are currently both positional candidates for the same photoperiod effect. The coincidence of photoperiod-responsive vernalization genes with photoperiod QTL suggests vernalization genes should also be considered candidates for photoperiod effects.  相似文献   

16.
Heading date is a key trait for the adaptation of barley to Mediterranean environments. We studied the genetic control of flowering time under Northern Spanish (Mediterranean) conditions using a new population derived from the spring/winter cross Beka/Mogador. A set of 120 doubled haploid lines was evaluated in the field, and under controlled temperature and photoperiod conditions. Genotyping was carried out with 215 markers (RFLP, STS, RAPD, AFLP, SSR), including markers for vernalization candidate genes, HvBM5 (Vrn-H1), HvZCCT (Vrn-H2), and HvT SNP22 (Ppd-H1). Four major QTL, and the interactions between them, accounted for most of the variation in both field (71–92%) and greenhouse trials (55–86%). These were coincident with the location of the major genes for response to vernalization and short photoperiod (Ppd-H2 on chromosome 1H). A major QTL, near the centromere of chromosome 2H was the most important under autumn sowing conditions. Although it is detected under all conditions, its action seems not independent from environmental cues. An epistatic interaction involving the two vernalization genes was detected when the plants were grown without vernalization and under long photoperiod. The simultaneous presence of the winter Mogador allele at the two loci produced a marked delay in heading date, beyond a mere additive effect. This interaction, combined with the effect of the gene responsive to short photoperiod, Ppd-H2, was found responsible of the phenomenon known as short-day vernalization, present in some of the lines of the population. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Variation in photoperiod response plays an important role in adapting crops to agricultural environments. In hexaploid wheat, mutations conferring photoperiod insensitivity (flowering after a similar time in short or long days) have been mapped on the 2B (Ppd-B1) and 2D (Ppd-D1) chromosomes in colinear positions to the 2H Ppd-H1 gene of barley. No A genome mutation is known. On the D genome, photoperiod insensitivity is likely to be caused by deletion of a regulatory region that causes misexpression of a member of the pseudo-response regulator (PRR) gene family and activation of the photoperiod pathway irrespective of day length. Photoperiod insensitivity in tetraploid (durum) wheat is less characterized. We compared pairs of near-isogenic lines that differ in photoperiod response and showed that photoperiod insensitivity is associated with two independent deletions of the A genome PRR gene that cause altered expression. This is associated with induction of the floral regulator FT. The A genome deletions and the previously described D genome deletion of hexaploid wheat remove a common region, suggesting a shared mechanism for photoperiod insensitivity. The identification of the A genome mutations will allow characterization of durum wheat germplasm and the construction of genotypes with novel combinations of photoperiod insensitive alleles.  相似文献   

18.
Time to flowering in the winter growth habit bread wheat is dependent on vernalization (exposure to cold conditions) and exposure to long days (photoperiod). Dominant Vrn-1 (Vrn-A1, Vrn-B1 and Vrn-D1) alleles are associated with vernalization independent spring growth habit. The semidominant Ppd-D1a mutation confers photoperiod-insensitivity or rapid flowering in wheat under short day and long day conditions. The objective of this study was to reveal the nature of interaction between Vrn-1 and Ppd-D1a mutations (active alleles of the respective genes vrn-1 and Ppd-D1b). Twelve Indian spring wheat cultivars and the spring wheat landrace Chinese Spring were characterized for their flowering times by seeding them every month for five years under natural field conditions in New Delhi. Near isogenic Vrn-1 Ppd-D1 and Vrn-1 Ppd-D1a lines constructed in two genetic backgrounds were also phenotyped for flowering time by seeding in two different seasons. The wheat lines of Vrn-A1a Vrn-B1 Vrn-D1 Ppd-D1a, Vrn-A1a Vrn-B1 Ppd-D1a and Vrn-A1a Vrn-D1 Ppd-D1a (or Vrn-1 Ppd-D1a) genotypes flowered several weeks earlier than that of Vrn-A1a Vrn-B1 Vrn-D1 Ppd-D1b, Vrn-A1b Ppd-D1b and Vrn-D1 Ppd-D1b (or Vrn-1 Ppd-D1b) genotypes. The flowering time phenotypes of the isogenic vernalization-insensitive lines confirmed that Ppd-D1a hastened flowering by several weeks. It was concluded that complementary interaction between Vrn-1 and Ppd-D1a active alleles imparted super/very-early flowering habit to spring wheats. The early and late flowering wheat varieties showed differences in flowering time between short day and long day conditions. The flowering time in Vrn-1 Ppd-D1a genotypes was hastened by higher temperatures under long day conditions. The ambient air temperature and photoperiod parameters for flowering in spring wheat were estimated at 25°C and 12 h, respectively.  相似文献   

19.
In barley, three genes are responsible for the vernalization requirement: VrnH1, VrnH2 and VrnH3. The winter growth habit of barley requires the presence of a recessive VrnH1 allele, together with an active VrnH2 allele. The candidate for VrnH3 (HvFT1) has been recently identified, with evidences pointing at a central role in the integration of the vernalization and photoperiod pathways. Functional polymorphisms have been proposed, but experimental evidence of their role on agronomic performance and adaptation is needed. We examined allelic variation at the promoter and intron 1 of the HvFT1 gene in a landrace collection of barley, finding a high diversity level, with its geographic distribution correlated with latitude. Focusing on genotypes with winter alleles in VrnH1 and VrnH2, an association analysis of the four main HvFT1 haplotypes found in the landrace collection detected differences in time to flowering. Landraces with the intron 1 TC allele, prevalent in the south, flowered 6?C7?days earlier than those with the AG allele, under natural conditions. These results were validated in an independent F2 population. In both data sets, the effect found was similar, but in opposite direction to that described in literature. The polymorphism reported at intron 1 contributes to variation in flowering time under field conditions. We have found that polymorphisms at the promoter also contribute to the effect of the gene on flowering time under field and controlled conditions. The variety of HvFT1 alleles described constitutes an allelic series that may have been a factor in agro-ecological adaptation of barley.  相似文献   

20.
Temperate cereals, such as wheat (Triticum spp.) and barley (Hordeum vulgare), respond to prolonged cold by becoming more tolerant of freezing (cold acclimation) and by becoming competent to flower (vernalization). These responses occur concomitantly during winter, but vernalization continues to influence development during spring. Previous studies identified VERNALIZATION1 (VRN1) as a master regulator of the vernalization response in cereals. The extent to which other genes contribute to this process is unclear. In this study the Barley1 Affymetrix chip was used to assay gene expression in barley seedlings during short or prolonged cold treatment. Gene expression was also assayed in the leaves of plants after prolonged cold treatment, in order to identify genes that show lasting responses to prolonged cold, which might contribute to vernalization-induced flowering. Many genes showed altered expression in response to short or prolonged cold treatment, but these responses differed markedly. A limited number of genes showed lasting responses to prolonged cold treatment. These include genes known to be regulated by vernalization, such as VRN1 and ODDSOC2, and also contigs encoding a calcium binding protein, 23-KD jasmonate induced proteins, an RNase S-like protein, a PR17d secretory protein and a serine acetyltransferase. Some contigs that were up-regulated by short term cold also showed lasting changes in expression after prolonged cold treatment. These include COLD REGULATED 14B (COR14B) and the barley homologue of WHEAT COLD SPECIFIC 19 (WSC19), which were expressed at elevated levels after prolonged cold. Conversely, two C-REPEAT BINDING FACTOR (CBF) genes showed reduced expression after prolonged cold. Overall, these data show that a limited number of barley genes exhibit lasting changes in expression after prolonged cold treatment, highlighting the central role of VRN1 in the vernalization response in cereals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号