首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
The intraperitoneal administration of a single dose of methyl mercuric chloride (MeHg) (10 or 50 nmol/g body weight) to adult male mice led to a significant stimulation of protein synthesis directed by isolated brain mitochondria in a special cell-free translation system prepared from rabbit reticulocyte lysates. The pre0treatment of the isolated mouse brain mitochondria from MeHg-injected and control (saline-injected) animals with an inhibitor (oligomycin) or inducers (ADP, succinate) of ATP synthesis showed that mitochondrical translation activity was high when ATP synthesis was suppressed and low when ATP synthesis was stimulated.  相似文献   

3.
4.
Under standard conditions, liver regeneration is not impaired if mitochondrial protein synthesis is completely blocked. By treating rats with oxytetracycline for various periods of time directly prior to partial hepatectomy, livers were led to a condition of relative deficiency in cytochrome c oxidase and ATP synthetase. To this end, oxytetracycline was administered by means of continuous intravenous infusion up to concentrations of 20 μg/ml serum, giving a gradual decrease in cytochrome c oxidase activity. This activity was used as a marker for functionally capable mitochondria and as a tool to monitor the efficiency of inhibition of mitochondrial protein synthesis. It is shown that liver regeneration is strongly impaired after a period of pretreatment of 22 days or more and continuation of oxytetracycline treatment during regeneration. The mitochondrial respiratory capacity is reduced to 14% of the control value under these conditions. To obtain inhibitory levels within the regenerating liver, it was necessary to raise the serum levels slightly above 20 μg/ml. This measure is most likely required because of the poor vascularization of the regenerating liver. The serum levels were kept, however, far below those known to inhibit cytoplasmic protein synthesis. The results show that in normal liver the respiratory capacity must be reduced drastically before energy-requiring processes become affected. In Zajdela hepatoma cells, similar effects are found after reduction of the cytochrome c oxidase activity to 38%. This difference in sensitivity is probably based on the different mitochondrial content of liver cells and the liver-derived Zajdela cells.  相似文献   

5.
We have reported that the hsp70 chaperone DnaK from Escherichia coli might assist protein folding by catalyzing the cis/trans isomerization of secondary amide peptide bonds in unfolded or partially folded proteins. In this study a series of fatty acylated benzamido inhibitors of the cis/trans isomerase activity of DnaK was developed and tested for antibacterial effects in E. coli MC4100 cells. N(alpha)-[Tetradecanoyl-(4-aminomethylbenzoyl)]-l-asparagine is the most effective antibacterial with a minimal inhibitory concentration of 100 +/- 20 microg/ml. The compounds were shown to compete with fluorophore-labeled sigma(32)-derived peptide for the peptide binding site of DnaK and to increase the fraction of aggregated proteins in heat-shocked bacteria. Despite its inability to serve as a folding helper in vivo a DnaK-inhibitor complex was still able to sequester an unfolded protein in vitro. Structure activity relationships revealed a distinct dependence of DnaK-assisted refolding of luciferase on the fatty acyl chain length, whereas the minimal inhibitory concentration was most sensitive to the structural nature of the benzamido core. We conclude that the isomerase activity of DnaK is a major survival factor in the heat shock response of bacteria and that small molecule inhibitors can lead to functional inactivation of DnaK and thus will display antibacterial activity.  相似文献   

6.
7.
Mitochondria possess an endogenous system of translation, in which all constituent components are unique. An electrophoretic analysis of mitochondrial translation products revealed that the content of polypeptides in mitochondria is two times as high as that of mitochondrial DNA genes. The electrophoretically determined molecular mass of proteins synthesized in mitochondria is much less than that calculated from gene sequencing data. The average amino acid composition of the proteins synthesized in mitochondria differs significantly from that encoded by the nucleotide sequence of corresponding mitochondrial genes. These enigmas of mitochondrial protein synthesis await further solution.  相似文献   

8.
Products of mitochondrial protein synthesis   总被引:2,自引:0,他引:2  
L W Wheeldon 《Biochimie》1973,55(6):805-814
  相似文献   

9.
10.
11.
12.
Proflavine inhibition of protein synthesis   总被引:4,自引:0,他引:4  
  相似文献   

13.
14.
15.
Reversible inhibition of protein synthesis in HeLa   总被引:2,自引:0,他引:2  
Protein synthesis in suspended HeLa S3 cells is inhibited by more than 50% immediately after addition of 100 μg pronase/ml or 500 μg trypsin/ml. Polyribosome profiles are not altered by exposure of cells to 1 or 2 mg trypsin/ml suggesting that the inhibition affects peptide chain elongation. Protein synthesis resumes after removal of proteases by sedimentation and resuspension of the cells.  相似文献   

16.
17.
18.
The products of mitochondrial protein synthesis have been investigated in Tetrahymena after labelling with [35S]methionine in the presence of cycloheximide. The labelled proteins were analyzed by sodium dodecyl sulfate slab polyacrylamide gel electrophoresis. We have identified 13 electrophoretically discrete bands as well as 4 other bands with a more variable occurrence. These proteins ranged in apparent molecular weight from 8100 to 57,500. The cycloheximide-resistant incorporation could be blocked with chloramphenicol. The mitochondrial proteins appeared to be in a disaggregated state and were stable to agents such as trichloroacetic acid (hot or cold) and chloroform-methanol. The pattern of proteins was similar following labelling times ranging from 30 min to 3 h.  相似文献   

19.
20.
The growth of HeLa cells in Hepes-buffered medium was significantly more sensitive to the inhibitory effects of erythromycin than in medium buffered by the more conventional bicarbonate-CO2 system. Since growth inhibition by erythromycin became more pronounced as the pH of the medium was increased the difference in erythromycin sensitivity between the Hepes-buffered medium vs. the bicarbonate-CO2-buffered medium is most likely due to pH effects. The relative growth sensitivity to erythromycin of ERY2301, an erythromycin-resistant mutant of HeLa, was also affected by elevated pH of the growth medium. However, ERY2301 cells were able to proliferate to a greater extent in the presence of erythromycin than HeLa cells grown under the same conditions. The selective growth advantage of ERY2301 (in the presence of erythromycin) is best seen in medium of pH 7.4, or in the Hepes-buffered medium. In vitro protein synthesis by intact mitochondria isolated from HeLa cells was relatively insensitive to erythromycin inhibition at pH 7.4 and 7.6, but at high pH values was inhibited approx. 50%. Although the erythromycin sensitivity of ERY2301 mitochondrial protein synthesis was also affected by increasing the pH, the incorporation of [3H]leucine was more resistant to erythromycin than that observed for HeLa mitochondria over the pH range tested. Increasing the concentration of erythromycin at a given pH did not result in a further increase in the inhibition of either HeLa or ERY2301 mitochondrial protein synthesis. When the mitochondrial membranes were disrupted by Triton X-100, erythromycin inhibition of HeLa mitochondrial protein synthesis was pH dependent and, at the lower pH values tested, greater inhibition was observed as the erythromycin concentration was increased. ERY2301 mitochondrial protein synthesis under the same conditions displayed a high level of erythromycin-resistant activity independent of both pH and erythromycin concentration. It is suggested that, as has been proposed for bacterial systems, only the non-protonated molecule of erythromycin is effective in inhibiting mitochondrial protein synthesis. The ability of erythromycin to permeate the mitochondrial membranes and the plasma membres may also be facilitated by a higher pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号