首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The purpose of this study was to examine the effect of aldosterone receptor blockade on the immunopathogenesis and progression of nephritis in the (NZB × NZW) F1 murine lupus model.

Methods

Female NZB/W F1 mice (11 weeks old) were treated daily with 25 or 50 mg/kg oral spironolactone or vehicle. Proteinuria, renal function, and serum autoantibody levels were monitored. Renal histopathology, immune complex deposition, and immunohistochemistry were analyzed at various time points. Targeted microarray analysis was performed on renal tissue, with subsequent real-time PCR analysis of several differentially expressed genes.

Results

Treatment with spironolactone was well tolerated by the mice throughout the course of their disease progression, with no significant differences in azotemia or serum potassium levels between vehicle-treated and spironolactone-treated animals. By 36 weeks of age, fewer spironolactone-treated mice developed nephrotic range proteinuria as compared with the control mice (control 70.8%, 25 mg/kg spironolactone 51.3%, and 50 mg/kg spironolactone 48.6%). Compared with control mice, mice treated with 25 mg/kg spironolactone had significantly lower serum anti-single-stranded DNA levels (2,042 μg/ml versus 1,036 μg/ml; P = 0.03) and anti-double-stranded DNA levels (3,433 μg/ml versus 614 μg/ml; P = 0.05). Spironolactone-treated mice exhibited decreased histopathologic evidence of inflammation and tissue damage, as compared with control mice. Additionally, spironolactone treatment resulted in decreased expression in the kidney of several inflammatory and proapoptotic genes, including those encoding interferon-γ, B lymphocyte stimulator (BlyS), tumor necrosis factor related apoptosis inducing ligand (TRAIL), tumor necrosis factor related weak inducer of apoptosis (TWEAK), and Fas ligand.

Conclusion

Aldosterone receptor blockade is safe and well tolerated in progressive murine lupus nephritis, and it results in decreased levels of clinical proteinuria, lower serum levels of autoantibodies, and decreased kidney damage. It appears to modulate inflammatory changes during the progression of glomerulonephritis and may also have a previously undescribed role in attenuating apoptosis  相似文献   

2.
Leukocyte infiltration is a characteristic feature of human and experimental lupus nephritis and is closely correlated with loss of renal function. The chemokine receptor CCR5 is expressed on monocyte and T cell subsets and is thought to play an important role in recruiting these cells into inflamed organs. To investigate the functional role of CCR5 in lupus nephritis, CCR5-deficient mice were backcrossed onto the lupus-prone MRL-Fas(lpr) (MRL/lpr) genetic background. Unexpectedly, CCR5(-/-) MRL/lpr mice developed an aggravated course of lupus nephritis in terms of glomerular tissue injury and albuminuria. Deterioration of the nephritis was associated with an overall increase in mononuclear cell infiltration into the kidney, whereas renal leukocyte subtype balance, systemic T cell response, and autoantibody formation were unaffected by CCR5 deficiency. Renal and systemic protein levels of the CCR5 ligand CCL3, which can also attract leukocytes via its alternate receptor CCR1, were significantly increased in nephritic CCR5(-/-) MRL/lpr mice. Further studies revealed that the systemic increase in the CCR5/CCR1 ligand is also observed in nonimmune CCR5(-/-) C57BL/6 mice and that this increase was due to a reduced clearance, rather than an overproduction, of CCL3. Taken together, our data support the hypothesis that CCR5-dependent consumption of its own ligands may act as a negative feedback loop to restrain local chemokine levels within inflamed tissues, thereby limiting inflammatory cell influx.  相似文献   

3.
The GDVII strain of Theiler's murine encephalomyelitis virus (TMEV) causes an acute fatal polioencephalomyelitis in mice. Infection of susceptible mice with the DA strain of TMEV results in an acute polioencephalomyelitis followed by chronic immune-mediated demyelination with virus persistence in the central nervous system (CNS); DA virus infection is used as an animal model for multiple sclerosis. CD1d-restricted natural killer T (NKT) cells can contribute to viral clearance and regulation of autoimmune responses. To investigate the role of CD1d in TMEV infection, we first infected CD1d-deficient mice (CD1−/−) and wild-type BALB/c mice with GDVII virus. Wild-type mice were more resistant to virus than CD1−/− mice (50% lethal dose titers: wild-type mice, 10 PFU; CD1−/− mice, 1.6 PFU). Wild-type mice had fewer viral antigen-positive cells with greater inflammation in the CNS than CD1−/− mice. Second, an analysis of DA virus infection in CD1−/− mice was conducted. Although both wild-type and CD1−/− mice had similar clinical signs during the first 2 weeks after infection, CD1−/− mice had an increase in neurological deficits over those observed in wild-type mice at 3 to 5 weeks after infection. Although wild-type mice had no demyelination, 20 and 60% of CD1−/− mice developed demyelination at 3 and 5 weeks after infection, respectively. TMEV-specific lymphoproliferative responses, interleukin-4 (IL-4) production, and IL-4/gamma interferon ratios were higher in CD1−/− mice than in wild-type mice. Thus, CD1d-restricted NKT cells may play a protective role in TMEV-induced neurological disease by alteration of the cytokine profile and virus-specific immune responses.  相似文献   

4.
To address the role of CD1d in mucosal immune regulation in bacterial infection, we infected CD1d KO mice with Listeria monocytogenes (Lm). A higher systemic bacterial burden associated with inflammatory lymphocytic infiltrations within the intestine was found in CD1d KO compared with wild type (WT) mice. Lm induced strong IFN-gamma mRNA expression in the liver of WT and the intestine of CD1d KO mice, thus demonstrating the dual, opposing immune activities of IFN-gamma in Lm infection that is dependent on CD1d and/or NKT cells. Analysis of hepatic T cell population demonstrated a reduction of NK1.1(+)TCRbeta+ cells in both mice, followed by recovery only in WT mice. Last, the proportion of alpha4beta1 integrin on lung lymphocytes from CD1d KO was dramatically increased compared with WT mice. Thus, the absence of CD1d resulted in increased susceptibility towards Listeria infection, induced changes in NKT cells, and increased trafficking of alpha4beta1 molecule to inflamed lung.  相似文献   

5.
6.
Chronic graft-versus-host disease (GVHD) induced in (C57BL/6 × DBA/2) F1 (BDF1) mice by the injection of DBA/2 mouse spleen cells represents histopathological changes associated with systemic lupus erythematosus (SLE), primary biliary cirrhosis (PBC) and Sjogren's syndrome (SS), as indicated by glomerulonephritis, lymphocyte infiltration into the periportal area of the liver and salivary glands. We determined the therapeutic effect of hepatocyte growth factor (HGF) gene transfection on lupus using this chronic GVHD model. Chronic GVHD mice were injected in the gluteal muscle with either HVJ liposomes containing 8 μg of the human HGF expression vector (HGF-HVJ liposomes) or mock vector (untreated control). Gene transfer was repeated at 2-week intervals during 12 weeks. HGF gene transfection effectively prevented the proteinuria and histopathological changes associated with glomerulonephritis. While liver and salivary gland sections from untreated GVHD mice showed prominent PBC- and SS-like changes, HGF gene transfection reduced these histopathological changes. HGF gene transfection greatly reduced the number of splenic B cells, host B cell major histocompatibility complex class II expression, and serum levels of IgG and anti-DNA antibodies. IL-4 mRNA expression in the spleen, liver, and kidneys was significantly decreased by HGF gene transfection. CD28 expression on DBA/2 CD4+ T cells was decreased by the addition of recombinant HGF in vitro. Furthermore, IL-4 production by DBA/2 CD4+ T cells stimulated by irradiated BDF1 dendritic cells was significantly inhibited by the addition of recombinant HGF in vitro. These results suggest that HGF gene transfection inhibited T helper 2 immune responses and reduced lupus nephritis, autoimmune sialoadenitis, and cholangitis in chronic GVHD mice. HGF may represent a novel strategy for the treatment of SLE, SS and PBC.  相似文献   

7.
To investigate the physiologic significance of enhanced renal thromboxane production in murine lupus nephritis, we measured renal hemodynamics and eicosanoid production in MRL-lpr/lpr mice from 8 to 20 weeks of age. Over this age range, MRL-lpr/lpr mice develop an autoimmune disease with nephritis similar to human systemic lupus erythematosus (SLE). In these studies, glomerular filtration rate (GFR) and PAH clearance (CPAH) decreased progressively with age in MRL-lpr/lpr mice, but not in controls. This impairment of renal hemodynamics was associated with increased renal thromboxane production, as well as increased excretion of both thromboxane B2 (TxB2) and 2,3-dinor TxB2 in urine. There was an inverse correlation between renal thromboxane production in MRL-lpr/lpr mice and both GFR and CPAH. Furthermore, there were positive correlations between thromboxane production by the kidney and both the severity of renal histopathology and serum anti-DNA antibody levels measured in individual animals. Enhanced urinary excretion of TxB2 and the development of renal dysfunction also coincided temporally with the appearance of increased levels of interleukin 1 beta (IL-1 beta) mRNA in renal cortex. Acute administration of the specific thromboxane receptor antagonist GR32191 to MRL-lpr/lpr mice restored GFR to normal in early stages of the autoimmune disease. However, in animals with more advanced nephritis, the effect of acute thromboxane receptor blockade on renal hemodynamics was less marked. We conclude that thromboxane A2 is an important mediator of reversible renal hemodynamic impairment in murine lupus, especially in the early phase of disease.  相似文献   

8.
Melatonin is a ubiquitous indole amine that plays a fundamental role in the regulation of the biological rhythm. Disrupted circadian rhythm alters the expression of clock genes and deregulates oncogenes, which finally promote tumor development and progression. An evidence supporting this notion is the higher risk of developing malignancies among night shift workers. Circadian secretion of the pineal hormone also synchronizes the immune system via a reciprocal association that exists between the immune system and melatonin. Immune cells are capable of melatonin biosynthesis in addition to the expression of its receptors. Melatonin induces big changes in different immune cell proportions, enhances their viability and improves immune cell metabolism in the tumor microenvironment. These effects might be directly mediated by melatonin receptors or indirectly through alterations in hormonal and cytokine release. Moreover, melatonin induces apoptosis in tumor cells via the intrinsic and extrinsic pathways of apoptosis, while it protectsthe immune cells. In general, melatonin has a profound impact on immune cell trafficking, cytokine production and apoptosis induction in malignant cells. On such a basis, using melatonin and resynchronization of sleep cycle may have potential implications in immune function enhancement against malignancies, which will be the focus of the present paper.  相似文献   

9.
10.
11.
目的:检测活动性狼疮肾炎(LN)患者外周血单个核细胞(PBMC)钙调神经磷酸酶(calcineurin,CaN)活性及其与PBMC CD40L表达的关系.方法:体外培养活动性LN患者PBMC,应用发色底物法检测胞浆CaN活性,流式细胞仪检测细胞CD40L的表达.结果:①在单纯培养情况下,正常对照组和LN组PBMC均出现一定量CaN活化,活动性LN组显著高于正常对照组(46.08±5.58 nrmmol/mg pro vs 8.81±3.61nmol/mg pro,P<0.01);在PMA Ionomycin刺激下,各组CaN活性均升高,活动性LN组CaN活性明显高于正常对照组(69.34±12.59 nmol/mg provs 37.12±11.57 hmol/mg pro,P<0.01);②LN患者PBMC在单纯培养和PMA Ionomycin刺激时CD40L蛋白和mRNA表达均显著高于相应的对照组(P<0.01);③在单纯培养和PMA Ionomycin刺激时,FK506对LNPBMC表达CD40L蛋白和mRNA均有显著抑制作用(P<0.01).结论:LN患者PBMC存在CaN过度活化;LN患者PBMC高效表达CD40L与其CaN过度活化密切相关,通过阻断CaN活化可调控CD40-CD40L共刺激信号途径的活化.  相似文献   

12.
Cutting edge: a role for CD1 in the pathogenesis of lupus in NZB/NZW mice   总被引:10,自引:0,他引:10  
Since anti-CD1 TCR transgenic T cells can activate syngeneic B cells via CD1 to secrete IgM and IgG and induce lupus in BALB/c mice, we studied the role of CD1 in the pathogenesis of lupus in NZB/NZW mice. Approximately 20% of B cells from the spleens of NZB/NZW mice expressed high levels of CD1 (CD1high B cells). The latter subset spontaneously produced large amounts of IgM anti-dsDNA Abs in vitro that was up to 25-fold higher than that of residual CD1int/low B cells. T cells in the NZB/NZW spleen proliferated vigorously to the CD1-transfected A20 B cell line, but not to the parent line. Treatment of NZB/NZW mice with anti-CD1 mAbs ameliorated the development of lupus. These results suggest that the CD1high B cells and their progeny are a major source of autoantibody production, and activation of B cells via CD1 may play an important role in the pathogenesis of lupus.  相似文献   

13.
Systemic lupus erythematosus is characterized by production of autoantibodies and glomerulonephritis. The murine chronic graft-vs-host (cGVH) model of systemic lupus erythematosus is induced by allorecognition of foreign MHC class II determinants. Previous studies have shown that cGVH could not be induced in CD4 knockout (CD4KO) mice. We have further explored the role of host CD4 T cells in this model. Our studies now show that B cells in CD4KO mice have intrinsic defects that prevent them from responding to allohelp. In addition, B cells in CD4KO mice showed phenotypic differences compared with congeneic C57BL/6 B cells, indicating some degree of in vivo activation and increased numbers of cells bearing a marginal zone B cell phenotype. The transfer of syngeneic CD4 T cells at the time of initiation of cGVH did not correct these B cell abnormalities; however, if CD4 T cells were transferred during the development and maturation of B cells, then the B cells from CD4KO mice acquire the ability to respond in cGVH. These studies clearly indicate that B cells need to coexist with CD4 T cells early in their development to develop full susceptibility to alloactivation signals.  相似文献   

14.
Lactoferrin (Lf) is a mammalian exclusive protein widely distributed in milk and exocrine secretions exhibiting multifunctional properties. Many of the proven or proposed functions of Lf, apart from its iron binding activity, depend on its capacity to bind to other macromolecules. Lf can bind and sequester lipopolysaccharide (LPS), thus preventing pro-inflammatory pathway activation, sepsis and tissue damage. However, the interplay between Lf and LPS is complex, and may result in different outcomes, including both suppression of the inflammatory response and immune activation. These findings are critically relevant in the development of Lf-based therapeutic interventions in humans. Understanding the molecular basis and functional consequences of Lf-LPS interaction will provide insights for determining its role in health and disease.  相似文献   

15.
Antibodies against RNA polymerase I were detected in plasma and kidney eluates of NZB/W mice. Plasma concentrations of the antibodies were the highest in mice with incipient nephritis and the lowest in mice with progressive nephritis. Mice with attenuated nephritis due to immunosuppressive therapy had intermediate plasma concentrations of the antibodies. The specific concentrations (ng/microgram IgG) of anti-RNA polymerase I antibodies in kidney eluates were significantly (10- to 70-fold) greater than the corresponding plasma concentrations. These results indicated that the decreased plasma concentration of the antibodies in mice with more advanced disease was at least partially due to selective concentration of anti-RNA polymerase I antibodies in the kidneys. The degree of this selective concentration was directly proportional (R2 = 0.9962) to the severity of renal disease, as reflected by the concentration (microgram/g tissue) of IgG eluted from the kidneys. The concentration (microgram/g tissue) of anti-RNA polymerase I eluted from the kidneys also was increased in mice with more severe renal disease. Further, the extent of this increase was greater than that of total IgG, again suggesting that anti-RNA polymerase I antibodies had been selectively concentrated in the kidneys. These findings are strongly suggestive of an important role for the RNA polymerase I/anti-RNA polymerase I antibody system in the pathogenesis of murine lupus nephritis.  相似文献   

16.
The CD1 family of antigen-presenting molecules consists of five members, CD1a to e. Of these molecules CD1d has been the subject of much interest over the past 10 years following the discovery that this molecule presents antigens to a group of T cells known as invariant natural killer T cells (iNKT). iNKT cells carry an invariant T cell receptor which contains homologous gene segments in mouse and man. iNKT cells are positively selected in the thymus in the same manner as major histocompatibility complex restricted T cells, except iNKT cells require CD1d to be presented by thymocytes rather than epithelial cells. Once in peripheral organs, iNKT cells appear to play multiple roles in host defence against pathogens and cancer. If the numbers of iNKT cells are not correctly regulated it can result in autoimmune disorders, such as diabetes. The ligands for iNKT cells have been the subject of much research but identifying physiologically relevant candidate ligands for positive selection or activation has proved technically very challenging. This is largely due to the fact that the ligands for iNKT cells are lipids. The lipid ligands for thymic selection and some of those involved in peripheral activation are self-derived. Glycosphingolipids are suggested to be the class of lipid for iNKT cell thymic development. For peripheral activation it appears multiple classes of self-derived lipids may play a role, in addition to pathogen-derived lipids. This review will cover essential background to iNKT cell and CD1d biology with emphasis on the candidate iNKT cell ligands proposed to date.  相似文献   

17.
18.
Systemic lupus erythematosus is a prototypic autoimmune disease characterized by autoantibody production and immune complex formation/deposition in target organs such as the kidney. Resultant local inflammation then leads to organ damage. Nephritis, a major cause of morbidity and mortality in patients with lupus, occurs in approximately 50% of lupus patients. In the present review, we provide an overview of the current research and knowledge concerning mechanisms of renal injury in both lupus-prone mouse models and human lupus patients.  相似文献   

19.
A major cause of proteinuria in lupus nephritis (LN) is podocyte injury, and determining potential therapeutic targets to prevent podocyte injury is important from a clinical perspective in the treatment of LN. CD36 is involved in podocyte injury in several glomerulopathies and was reported to be a vital candidate gene in LN. Here, we determined the role of CD36 in the podocyte injury of LN and the underlying mechanisms. We observed that CD36 and NLRP3 (NLR family pyrin domain containing 3) were upregulated in the podocytes of lupus nephritis patients and MRL/lpr mice with renal impairment. In vitro, CD36, NLRP3 inflammasome, and autophagy were elevated accompanied with increased podocyte injury stimulated by IgG extracted from lupus nephritis patients compared that from healthy donors. Knocking out CD36 with the CRISPR/cas9 system decreased the NLRP3 inflammasome levels, increased the autophagy levels and alleviated podocyte injury. By enhancing autophagy, NLRP3 inflammasome was decreased and podocyte injury was alleviated. These results demonstrated that, in lupus nephritis, CD36 promoted podocyte injury by activating NLRP3 inflammasome and inhibiting autophagy by enhancing which could decrease NLRP3 inflammasome and alleviate podocyte injury.Subject terms: Mechanisms of disease, Inflammasome, Lupus nephritis, Autophagy  相似文献   

20.
This study investigated the overall clinical impact of anti-α-actinin antibodies in patients with pre-selected autoimmune diseases and in a random group of anti-nuclear antibody (ANA)-positive individuals. The relation of anti-α-actinin antibodies with lupus nephritis and anti-double-stranded DNA (anti-dsDNA) antibodies represented a particular focus for the study. Using a cross-sectional design, the presence of antibodies to α-actinin was studied in selected groups, classified according to the relevant American College of Rheumatology classification criteria for systemic lupus erythematosus (SLE) (n = 99), rheumatoid arthritis (RA) (n = 68), Wegener's granulomatosis (WG) (n = 85), and fibromyalgia (FM) (n = 29), and in a random group of ANA-positive individuals (n = 142). Renal disease was defined as (increased) proteinuria with haematuria or presence of cellular casts. Sera from SLE, RA, and Sj?gren's syndrome (SS) patients had significantly higher levels of anti-α-actinin antibodies than the other patient groups. Using the geometric mean (± 2 standard deviations) in FM patients as the upper cutoff, 20% of SLE patients, 12% of RA patients, 4% of SS patients, and none of the WG patients were positive for anti-α-actinin antibodies. Within the SLE cohort, anti-α-actinin antibody levels were higher in patients with renal flares (p = 0.02) and correlated independently with anti-dsDNA antibody levels by enzyme-linked immunosorbent assay (p < 0.007) but not with other disease features. In the random ANA group, 14 individuals had anti-α-actinin antibodies. Of these, 36% had SLE, while 64% suffered from other, mostly autoimmune, disorders. Antibodies binding to α-actinin were detected in 20% of SLE patients but were not specific for SLE. They correlate with anti-dsDNA antibody levels, implying in vitro cross-reactivity of anti-dsDNA antibodies, which may explain the observed association with renal disease in SLE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号