首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Künzel G  Korzun L  Meister A 《Genetics》2000,154(1):397-412
We have developed a new technique for the physical mapping of barley chromosomes using microdissected translocation chromosomes for PCR with sequence-tagged site primers derived from >300 genetically mapped RFLP probes. The positions of 240 translocation breakpoints were integrated as physical landmarks into linkage maps of the seven barley chromosomes. This strategy proved to be highly efficient in relating physical to genetic distances. A very heterogeneous distribution of recombination rates was found along individual chromosomes. Recombination is mainly confined to a few relatively small areas spaced by large segments in which recombination is severely suppressed. The regions of highest recombination frequency (相似文献   

2.
The frequency, distribution and structure of P elements on the second and third chromosomes of Texas 1, a wild-type inbred strain of Drosophila melanogaster, were investigated by in situ hybridization. These autosomes were isolated individually and used as P-element donors to study the frequency and distribution of male recombination events generated on recipient chromosomes which were originally devoid of P sequences. The P-element array of chromosome 2 was shown to generate higher male recombination frequencies on chromosome 3 than vice versa, despite having fewer P factors and fewer P elements in general. This is likely to be due to the presence and distribution of specific P-deletion derivatives, which vary in their ability to repress P mobility. The male recombination generated on recipient chromosomes is associated with the insertion of donated P sequences, but only in a small minority of cases could a novel P-element site be detected at, or near, the recombination breakpoint. The majority of such breakpoints appear to be associated either with unsuccessful P insertion, or with the action of P transposase attracted by P elements newly inserted elsewhere on the recipient chromosome. Recent evidence also suggests that a small proportion of the breakpoints may be associated with the action of P transposase alone. Male recombination breakpoints appear to be distributed effectively at random along the recipient autosomes, and their frequency of occurrence was shown to correlate with the physical length of DNA available between markers, as revealed by the polytene map distance.  相似文献   

3.
The t(4;8)(p16;p23) is the second most common constitutional chromosomal translocation and is caused by an ectopic meiotic recombination between the olfactory receptor gene clusters (ORGC), located on chromosome 4p and 8p. Given that ORGCs are scattered across the genome and make-up about 0.1% of the human genome we reasoned that translocations between 4p16 and other chromosomes might be mediated by ectopic recombination between different ORGC. In 13 patients, we mapped the breakpoints of either a balanced or unbalanced translocation between chromosome 4p16 and different chromosomes. For all four t(4;8) cases, the breakpoints fall within the 4p and 8pter ORGC, confirming that non-allelic homologous recombination (NAHR) between the ORGC is the main mechanism of the t(4;8) formation. For the nine other translocations, the breakpoints on chromosome 4 mapped to different loci, one of them within the ORGC and in two flanking the ORGC. In these three cases, the translocation breakpoint at the reciprocal chromosome did not contain ORGC sequences. We conclude that only the t(4;8) is mediated by NAHR between ORGC.  相似文献   

4.
This paper is concerned with a novel statistical–genetic approach for the construction of linkage maps in populations obtained from reciprocal translocation heterozygotes of barley (Hordeum vulgare L.). Using standard linkage analysis, translocations usually lead to ‘pseudo-linkage’: the mixing up of markers from the chromosomes involved in the translocation into a single linkage group. Close to the translocation breakpoints recombination is severely suppressed and, as a consequence, ordering markers in those regions is not feasible. The novel strategy presented in this paper is based on (1) disentangling the “pseudo-linkage” using principal coordinate analysis, (2) separating individuals into translocated types and normal types and (3) separating markers into those close to and those more distant from the translocation breakpoints. The methods make use of a consensus map of the species involved. The final product consists of integrated linkage maps of the distal parts of the chromosomes involved in the translocation.  相似文献   

5.
We combined the techniques of fluorescence in situ hybridization (FISH) and chromosomal microdissection in one experiment (FISH-MD). This novel method permits rapid identification of the composition, origin, and breakpoints of rearranged chromosomes. Rearranged chromosomes are first identified by multicolor-FISH, then the fluorophore-labeled derivative chromosomes are directly isolated by microdissection and reverse painted to identify the breakpoints.  相似文献   

6.
The physical distribution of translocation breakpoints was analyzed in homoeologous recombinants involving chromosomes 1A, 1B, 1D of wheat and 1R of rye, and the long arms of chromosome 7S of Aegilops speltoides and 7A of wheat. Recombination between homoeologues was induced by removal of the Ph1 gene. In all instances, translocation breakpoints were concentrated in the distal ends of the chromosome arms and were absent in the proximal halves of the arms. The relationship between the relative distance from the centromere and the relative homoeologous recombination frequency was best explained by the function f(x)=0.0091e0.0592x. The pattern of recombination in homoeologous chromosomes was essentially the same as in homologues except that there were practically no double exchanges. Among 313 recombinant chromosomes, only one resulted from a double crossing-over. The distribution of translocation breakpoints in translocated arms indicated that positive chiasma interference operated in homoeologous recombination. This implies that the reduction of the length of alien chromosome segments present in translocations with wheat chromosomes may be more difficult than the production of the original recombinants.  相似文献   

7.
Twenty-two independently occurring spontaneous reciprocal translocations were isolated from monoploid X diploid crosses in maize and their breakpoints were determined. As 12 of the translocations involved the same two chromosomes and had breakpoints at approximately the same positions (6L. 2–3, 7L. 2–3) and two other translocations appeared to be identical with breakpoints at 2L. 9, 6L. 4, 14 of the 22 translocations probably arose by crossing over within duplicate segments of nonhomologous chromosomes. Thus, at least part of the bivalents seen at diakinesis and chromatid bridges seen at anaphase I in monoploid plants appear to be generated by recombination between redundant chromosome segments. The other eight translocations each occurred once. Because our evidence indicates that recombination between nonhomologous illegitimately synapsed chromosome segments does not occur in maize, these were probably also produced by recombination between redundant segments. If one assumes that their breakpoints also mark regions of interchromosomal redundancy, other conclusions can be reached: A) corn does not contain detectable homoeologous chromosomes, thus it is precently a true diploid, and B) as exchanges giving rise to translocations did not occur in the centromeres or proximal heterochromatin, these regions either do not possess redundancy or are rarely involved in chiasma formation. Furthermore, the duplicated segments in the genome giving rise to translocations in haploid microsporocytes probably have the same serial order with respect to the centromere.This work was partially supported by U.S. Atomic Energy Commission Contract AT(11-1)-2121.  相似文献   

8.
Molecular characterization of breakpoints of chromosomal rearrangements is a successful strategy for the identification of candidate disease genes. Mapping translocation breakpoints and rearranged chromosomal boundaries is labor intensive and/or time consuming. Here, we present a novel and rapid procedure to map such chromosomal breakpoints by hybridizing amplified microdissection derived DNA of aberrant chromosomes to arrays containing genomic clones. We illustrate the potential of the technique by molecularly delineating the breakpoints in five small supernumerary marker chromosomes (sSMC) and mapping the breakpoints of five different chromosomal translocations.  相似文献   

9.
Members of the flowering plant family Cucurbitaceae harbor the largest known mitochondrial genomes. Here, we report the 1685-kb mitochondrial genome of cucumber (Cucumis sativus). We help solve a 30-year mystery about the origins of its large size by showing that it mainly reflects the proliferation of dispersed repeats, expansions of existing introns, and the acquisition of sequences from diverse sources, including the cucumber nuclear and chloroplast genomes, viruses, and bacteria. The cucumber genome has a novel structure for plant mitochondria, mapping as three entirely or largely autonomous circular chromosomes (lengths 1556, 84, and 45 kb) that vary in relative abundance over a twofold range. These properties suggest that the three chromosomes replicate independently of one another. The two smaller chromosomes are devoid of known functional genes but nonetheless contain diagnostic mitochondrial features. Paired-end sequencing conflicts reveal differences in recombination dynamics among chromosomes, for which an explanatory model is developed, as well as a large pool of low-frequency genome conformations, many of which may result from asymmetric recombination across intermediate-sized and sometimes highly divergent repeats. These findings highlight the promise of genome sequencing for elucidating the recombinational dynamics of plant mitochondrial genomes.  相似文献   

10.
K. S. McKim  A. M. Howell    A. M. Rose 《Genetics》1988,120(4):987-1001
In the nematode Caenorhabditis elegans, recombination suppression in translocation heterozygotes is severe and extensive. We have examined the meiotic properties of two translocations involving chromosome I, szT1(I;X) and hT1(I;V). No recombination was observed in either of these translocation heterozygotes along the left (let-362-unc-13) 17 map units of chromosome I. Using half-translocations as free duplications, we mapped the breakpoints of szT1 and hT1. The boundaries of crossover suppression coincided with the physical breakpoints. We propose that DNA sequences at the right end of chromosome I facilitate pairing and recombination. We use the data from translocations of other chromosomes to map the location of pairing sites on four other chromosomes. hT1 and szT1 differed markedly in their effect on recombination adjacent to the crossover suppressed region. hT1 had no effect on recombination in the adjacent interval. In contrast, the 0.8 map unit interval immediately adjacent to the szT1(I;X) breakpoint on chromosome I increased to 2.5 map units in translocation heterozygotes. This increase occurs in a chromosomal interval which can be expanded by treatment with radiation. These results are consistent with the suggestion that the szT1(I) breakpoint is in a region of DNA in which meiotic recombination is suppressed relative to the genomic average. We propose that DNA sequences disrupted by the szT1 translocation are responsible for determining the frequency of meiotic recombination in the vicinity of the breakpoint.  相似文献   

11.
High Density Molecular Linkage Maps of the Tomato and Potato Genomes   总被引:57,自引:0,他引:57  
High density molecular linkage maps, comprised of more than 1000 markers with an average spacing between markers of approximately 1.2 cM (ca. 900 kb), have been constructed for the tomato and potato genomes. As the two maps are based on a common set of probes, it was possible to determine, with a high degree of precision, the breakpoints corresponding to 5 chromosomal inversions that differentiate the tomato and potato genomes. All of the inversions appear to have resulted from single breakpoints at or near the centromeres of the affected chromosomes, the result being the inversion of entire chromosome arms. While the crossing over rate among chromosomes appears to be uniformly distributed with respect to chromosome size, there is tremendous heterogeneity of crossing over within chromosomes. Regions of the map corresponding to centromeres and centromeric heterochromatin, and in some instances telomeres, experience up to 10-fold less recombination than other areas of the genome. Overall, 28% of the mapped loci reside in areas of putatively suppressed recombination. This includes loci corresponding to both random, single copy genomic clones and transcribed genes (detected with cDNA probes). The extreme heterogeneity of crossing over within chromosomes has both practical and evolutionary implications. Currently tomato and potato are among the most thoroughly mapped eukaryotic species and the availability of high density molecular linkage maps should facilitate chromosome walking, quantitative trait mapping, marker-assisted breeding and evolutionary studies in these two important and well studied crop species.  相似文献   

12.
13.
植物细胞遗传图及其应用   总被引:1,自引:0,他引:1  
熊怀阳  赵丽娟  李立家 《遗传》2005,27(4):659-664
细胞遗传图(cytogenetic map)综合了来自遗传图(genetic map)和细胞学图(cytological map)两方面的信息,它既能反映基因或DNA标记之间在染色体上的真实距离,又能显示它们与染色体的细胞学结构间确切的位置关系。构建植物细胞遗传图的宗旨是将遗传图上的诸多标记与其在染色体的具体位置联系起来。目前主要有两种方法用于细胞遗传图的构建。较广泛使用的一种方法是借助染色体断点来确定遗传标记在染色体上的位置,另一种方法是利用荧光原位杂交(FISH)直接把DNA序列定位到染色体上。此外,利用RN-cM图也可以把遗传标记定位于粗线期染色体。从细胞遗传图可以看出,染色体两臂的远端有较高的基因密度和重组频率。细胞遗传图在比较近缘植物基因组的同线性、揭示植物的进化关系、研究基因定位克隆等方面都有重要意义.  相似文献   

14.
Managing meiotic recombination in plant breeding   总被引:1,自引:0,他引:1  
Crossover recombination is a crucial process in plant breeding because it allows plant breeders to create novel allele combnations on chromosomes that can be used for breeding superior F1 hybrids. Gaining control over this process, in terms of increasing crossover incidence, altering crossover positions on chromosomes or silencing crossover formation, is essential for plant breeders to effectively engineer the allelic composition of chromosomes. We review the various means of crossover control that have been described or proposed. By doing so, we sketch a field of science that uses both knowledge from classic literature and the newest discoveries to manage the occurrence of crossovers for a variety of breeding purposes.  相似文献   

15.
W Shi  IT Freitas  C Zhu  W Zheng  WW Hall  DG Higgins 《PloS one》2012,7(7):e41997
Recombination in Hepatitis C virus (HCV) is considered to be rare. In this study, we performed a phylogenetic analysis of 1278 full-length HCV genome sequences to identify potential recombination events. Nine inter-genotype recombinants were identified, all of which have been previously reported. This confirms the rarity of inter-genotype HCV recombinants. The analysis also identified five inter-subtype recombinants, four of which are documented for the first time (EU246930, EU246931, EU246932, and EU246937). Specifically, the latter represent four different novel recombination types (6a/6o, 6e/6o, 6e/6h, and 6n/6o), and this was well supported by seven independent methods embedded in RDP. The breakpoints of the four novel HCV recombinants are located within the NS5B coding region and were different from all previously reported breakpoints. While the locations of the breakpoints identified by RDP were not identical, they are very close. Our study suggests that while recombination in HCV is rare, this warrants further investigation.  相似文献   

16.
Classical models suggest that recombination rates on sex chromosomes evolve in a stepwise manner to localize sexually antagonistic variants in the sex in which they are beneficial, thereby lowering rates of recombination between X and Y chromosomes. However, it is also possible that sex chromosome formation occurs in regions with preexisting recombination suppression. To evaluate these possibilities, we constructed linkage maps and a chromosome-scale genome assembly for the dioecious plant Rumex hastatulus. This species has a polymorphic karyotype with a young neo-sex chromosome, resulting from a Robertsonian fusion between the X chromosome and an autosome, in part of its geographic range. We identified the shared and neo-sex chromosomes using comparative genetic maps of the two cytotypes. We found that sex-linked regions of both the ancestral and the neo-sex chromosomes are embedded in large regions of low recombination. Furthermore, our comparison of the recombination landscape of the neo-sex chromosome to its autosomal homolog indicates that low recombination rates mainly preceded sex linkage. These patterns are not unique to the sex chromosomes; all chromosomes were characterized by massive regions of suppressed recombination spanning most of each chromosome. This represents an extreme case of the periphery-biased recombination seen in other systems with large chromosomes. Across all chromosomes, gene and repetitive sequence density correlated with recombination rate, with patterns of variation differing by repetitive element type. Our findings suggest that ancestrally low rates of recombination may facilitate the formation and subsequent evolution of heteromorphic sex chromosomes.  相似文献   

17.
Sex chromosomes in dioecious and polygamous plants evolved as a mechanism for ensuring outcrossing to increase genetic variation in the offspring. Sex specificity has evolved in 75% of plant families by male sterile or female sterile mutations, but well-defined heteromorphic sex chromosomes are known in only four plant families. A pivotal event in sex chromosome evolution, suppression of recombination at the sex determination locus and its neighboring regions, might be lacking in most dioecious species. However, once recombination is suppressed around the sex determination region, an incipient Y chromosome starts to differentiate by accumulating deleterious mutations, transposable element insertions, chromosomal rearrangements, and selection for male-specific alleles. Some plant species have recently evolved homomorphic sex chromosomes near the inception of this evolutionary process, while a few other species have sufficiently diverged heteromorphic sex chromosomes. Comparative analysis of carefully selected plant species together with some fish species promises new insights into the origins of sex chromosomes and the selective forces driving their evolution.  相似文献   

18.
Deletion of chromosome 9p21 is a crucial event for the development of several cancers including acute lymphoblastic leukemia (ALL). Double strand breaks (DSBs) triggering 9p21 deletions in ALL have been reported to occur at a few defined sites by illegitimate action of the V(D)J recombination activating protein complex. We have cloned 23 breakpoint junctions for a total of 46 breakpoints in 17 childhood ALL (9 B- and 8 T-lineages) showing different size deletions at one or both homologous chromosomes 9 to investigate which particular sequences make the region susceptible to interstitial deletion. We found that half of 9p21 deletion breakpoints were mediated by ectopic V(D)J recombination mechanisms whereas the remaining half were associated to repeated sequences, including some with potential for non-B DNA structure formation. Other mechanisms, such as microhomology-mediated repair, that are common in other cancers, play only a very minor role in ALL. Nucleotide insertions at breakpoint junctions and microinversions flanking the breakpoints have been detected at 20/23 and 2/23 breakpoint junctions, respectively, both in the presence of recombination signal sequence (RSS)-like sequences and of other unspecific sequences. The majority of breakpoints were unique except for two cases, both T-ALL, showing identical deletions. Four of the 46 breakpoints coincide with those reported in other cases, thus confirming the presence of recurrent deletion hotspots. Among the six cases with heterozygous 9p deletions, we found that the remaining CDKN2A and CDKN2B alleles were hypermethylated at CpG islands.  相似文献   

19.
A novel exploratory method for visual recombination detection   总被引:1,自引:0,他引:1  
A versatile visual approach for detecting recombination and identifying recombination breakpoints within a sequence alignment is presented. The method is based on two novel diagrams - the highway plot and the occupancy plot - that graphically portray phylogenetic inhomogeneity along an alignment, and can be viewed as a synthesis of two widely used but unrelated methods: bootscanning and quartet-mapping. To illustrate the method, simulated data and HIV-1 and influenza A datasets are investigated.  相似文献   

20.
Reciprocal chromosome translocations are common de novo rearrangements that occur randomly throughout the human genome. To learn about causative mechanisms, we have cloned and sequenced the breakpoints of a cytologically balanced constitutional reciprocal translocation, t(X;4)(p21.2;q31.22), present in a girl with Duchenne muscular dystrophy (DMD). Physical mapping of the derivative chromosomes, after their separation in somatic cell hybrids, reveals that the translocation disrupts the DMD gene in Xp21 within the 18-kb intron 16. Restriction mapping and sequencing of clones that span both translocation breakpoints as well as the corresponding normal regions indicate the loss of approximately 5 kb in the formation of the derivative X chromosome, with 4-6 bp deleted from chromosome 4. RFLP and Southern analyses indicate that the de novo translocation is a paternal origin and that the father's X chromosome contains the DNA that is deleted in the derivative X. Most likely, deletion and translation arose simultaneously from a complex rearrangement event that involves three chromosomal breakpoints. Short regions of sequence homology were present at the three sites. A 5-bp sequence, GGAAT, found exactly at the translocation breakpoints on both normal chromosomes X and 4, has been preserved only on the der(4) chromosome. It is likely that the X-derived sequence GGAATCA has been lost in the formation of the der(X) chromosome, as it matches an inverted GAATCA sequence present on the opposite strand exactly at the other end of the deleted 5-kb fragment. These findings suggest a possible mechanism which may have juxtaposed the three sites and mediated sequence-specific breakage and recombination between nonhomologous chromosomes in male meiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号