首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of retinoic acid (RA) on anteroposterior (AP) positional memory of regenerating axolotl limbs were tested after removing the anterior or posterior half from the zeugopodium (lower arm or leg). RA (150 micrograms/g body wt) was injected into groups of animals bearing the following types of limbs: (1) anterior and posterior half zeugopodia grafted to the eyesocket and amputated distally 7 days later; (2) unamputated anterior and posterior half zeugopodia in situ; (3) double anterior and double posterior half zeugopodia amputated distally 7 days after their construction; (4) sham-operated zeugopodia amputated distally 7 days after operation. Controls consisted of these four groups injected with the retinoid solvent, dimethyl sulfoxide, or not injected. Control half zeugopodia grafted to the eyesocket regenerated no more than one or two digits. Control unamputated half zeugopodia in situ underwent partial or complete regeneration of the missing half from the proximal and midline wound surfaces exposed during construction of the half zeugopodia. Control double anterior and posterior zeugopodia both regenerated symmetrical, hypomorphic regenerates with 1-3 digits in the double anteriors and 1-6 digits in the double posteriors. Sham-operated controls regenerated normally. Regenerating anterior and posterior halves responded differently to RA. RA-treated anterior half zeugopodia in the eyesocket, and anterior half stumps adjacent to the unamputated posterior half zeugopodia in situ both produced regenerates that duplicated stump structures in the proximodistal axis and formed a complete and normal AP pattern. RA-treated double anterior zeugopodia regenerated proximodistal-duplicated pairs of mirror-imaged limbs, each with a complete and normal AP pattern. In contrast, half posterior zeugopodia in the eyesocket, the posterior half stumps of unamputated half anterior zeugopodia in situ, and double posterior zeugopodia all failed to regenerate. These results suggest that RA modifies positional memory in only one direction in the AP axis, posterior.  相似文献   

2.
We investigated the effect of retinoic acid (RA) on pattern regulation in the dorsoventral (DV) axis of regenerating axolotl limbs. Half and double half dorsal and ventral zeugopodia (lower arms or legs) were amputated through their distal ends, and 4 days later the animals were injected intraperitoneally with 50 (large animals) or 100 (small animals) micrograms RA/g body wt. Half and double half dorsal and ventral zeugopodia of uninjected axolotls, and sham-operated zeugopodia of untreated and RA-treated limbs served as controls. Skeletal patterns and the DV muscle patterns of control and experimental regenerates were then analyzed. Sham-operated zeugopodia of uninjected animals regenerated normally. Sham-operated, RA-treated zeugopodia regenerated normally with proximodistal duplications. Sixty percent of uninjected control dorsal half zeugopodia, 80% of control ventral half zeugopodia, and 100% of control double dorsal and double ventral zeugopodia regenerated distally, but the regenerates did not reconstitute the muscle pattern of the missing half. Thirty-eight percent of RA-treated ventral half zeugopodia and 78% of RA-treated double ventral zeugopodia failed to regenerate distally. Of those cases that did regenerate distally, none regenerated the muscle pattern of the missing half. By contrast, 100% of RA-treated dorsal half zeugopodia regenerated distally and all completed the normal DV muscle pattern. Forty-one percent of RA-treated double dorsal zeugopodia failed to regenerate, but of the remainder that did regenerate, 50% completed the normal DV muscle pattern. These represented eight cases, six of which regenerated single limbs, and two of which regenerated twin limbs, each with a normal DV muscle pattern. We interpret these data to mean that RA ventralizes the positional memory of blastema cells in the DV axis.  相似文献   

3.
Cells of the amphibian limb regeneration blastema inherit memories of their level of origin (positional memory) along the limb axes. These memories serve as boundaries of what is to be regenerated, thus preventing regeneration of any but the missing structures. Because of its importance in determining the boundaries of regenerate pattern, it is essential to understand the cellular and molecular basis of positional memory. One approach to this problem is to look for position-related differences in a cell or molecular property along a limb axis and then show, using an agent that modifies regenerate pattern, that the cell or molecular property and the pattern are coordinately modified. We have done this using retinoic acid (RA) as a pattern-modifying agent and an in vivo assay that detects position-related differences in a cell recognition-affinity property along the proximodistal (PD) axis of the regenerating axolotl limb. RA proximalizes positional memory in the PD axis, posteriorizes it in the anteroposterior axis, and ventralizes it in the dorsoventral axis. The level-specific PD cell recognition-affinity property is proximalized by RA, indicating that this property and positional memory are causally related. The effects of RA on positional memory may be mediated through a cellular RA-binding protein (CRABP), since the concentration of unbound (apo) CRABP molecules is highest during early stages of regeneration when the proximalizing effects of RA are greatest.  相似文献   

4.
Summary Retinoic acid and the synthetic retinoid, arotinoid, were compared for their efficacy in inducing proximodistal (PD) pattern duplication in regenerating axolotl limbs, after amputation through either the distal zeugopodium (lower arm or leg) or distal stylopodium (upper arm or leg). At each level of amputation, the morphology of the duplications produced was the same for both retinoids, and the mean level of proximalization was dose-dependent. Blastema formation was delayed by both retinoids and the delay was associated with regression of the limb stump. Blastemas which produced PD duplication to the stylopodial or girdle level grew out from the stump in a posterior direction. In several zeugopodial regenerates, a partially duplicated, PD-reversed zeugopodium regenerated between the stump cartilages and a completely duplicated zeugopodium distally. Arotinoid was 50 times more effective than retinoic acid in evoking duplication. The dose of arotinoid required to duplicate a stylopodium in a stylopodial regenerate was several times higher than the dose required to duplicate a zeugopodium in a zeugopodial regenerate, suggesting differences either in the sensitivity of zeugopodial and stylopodial cells to retinoid, or in the numbers of positional value specifying these segments.  相似文献   

5.
Xenopus laevis can regenerate an amputated limb completely at early limb bud stages, but the metamorphosed froglet gradually loses this capacity and can regenerate only a spike-like structure. We show that the spike formation in a Xenopus froglet is nerve dependent as is limb regeneration in urodeles, since denervation concomitant with amputation is sufficient to inhibit the initiation of blastema formation and fgf8 expression in the epidermis. Furthermore, in order to determine the cause of the reduction in regenerative capacity, we examined the expression patterns of several key genes for limb patterning during the spike-like structure formation, and we compared them with those in developing and regenerating limb buds that produce a complete limb structure. We cloned Xenopus HoxA13, a marker of the prospective autopodium region, and the expression pattern suggested that the spike-like structure in froglets is accompanied by elongation and patterning along the proximodistal (PD) axis. On the other hand, shh expression was not detected in the froglet blastema, which expresses fgf8 and msx1. Thus, although the wound epidermis probably induces outgrowth of the froglet blastema, the polarizing activity that organizes the anteroposterior (AP) axis formation is likely to be absent there. Our results demonstrate that the lost region in froglet limbs is regenerated along the PD axis and that the failure of organization of the AP pattern gives rise to a spike-like incomplete structure in the froglet, suggesting a relationship between regenerative capacity and AP patterning. These findings lead us to conclude that the spike formation in postometamorphic Xenopus limbs is epimorphic regeneration.  相似文献   

6.
The current model of planarian anterior regeneration evokes the establishment of low levels of Wnt signalling at anterior wounds, promoting anterior polarity and subsequent elaboration of anterior fate through the action of the TALE class homeodomain PREP. The classical observation that decapitations positioned anteriorly will regenerate heads more rapidly than posteriorly positioned decapitations was among the first to lead to the proposal of gradients along an anteroposterior (AP) axis in a developmental context. An explicit understanding of this phenomenon is not included in the current model of anterior regeneration. This raises the question what the underlying molecular and cellular basis of this temporal gradient is, whether it can be explained by current models and whether understanding the gradient will shed light on regenerative events. Differences in anterior regeneration rate are established very early after amputation and this gradient is dependent on the activity of Hedgehog (Hh) signalling. Animals induced to produce two tails by either Smed-APC-1(RNAi) or Smed-ptc(RNAi) lose anterior fate but form previously described ectopic anterior brain structures. Later these animals form peri-pharyngeal brain structures, which in Smed-ptc(RNAi) grow out of the body establishing a new A/P axis. Combining double amputation and hydroxyurea treatment with RNAi experiments indicates that early ectopic brain structures are formed by uncommitted stem cells that have progressed through S-phase of the cell cycle at the time of amputation. Our results elaborate on the current simplistic model of both AP axis and brain regeneration. We find evidence of a gradient of hedgehog signalling that promotes posterior fate and temporarily inhibits anterior regeneration. Our data supports a model for anterior brain regeneration with distinct early and later phases of regeneration. Together these insights start to delineate the interplay between discrete existing, new, and then later homeostatic signals in AP axis regeneration.  相似文献   

7.
8.
Xenopus laevis can regenerate an amputated limb completely at early limb bud stages, but the metamorphosed froglet gradually loses this capacity and can regenerate only a spike-like structure. We show that the spike formation in a Xenopus froglet is nerve dependent as is limb regeneration in urodeles, since denervation concomitant with amputation is sufficient to inhibit the initiation of blastema formation and fgf8 expression in the epidermis. Furthermore, in order to determine the cause of the reduction in regenerative capacity, we examined the expression patterns of several key genes for limb patterning during the spike-like structure formation, and we compared them with those in developing and regenerating limb buds that produce a complete limb structure. We cloned Xenopus HoxA13, a marker of the prospective autopodium region, and the expression pattern suggested that the spike-like structure in froglets is accompanied by elongation and patterning along the proximodistal (PD) axis. On the other hand, shh expression was not detected in the froglet blastema, which expresses fgf8 and msx1. Thus, although the wound epidermis probably induces outgrowth of the froglet blastema, the polarizing activity that organizes the anteroposterior (AP) axis formation is likely to be absent there. Our results demonstrate that the lost region in froglet limbs is regenerated along the PD axis and that the failure of organization of the AP pattern gives rise to a spike-like incomplete structure in the froglet, suggesting a relationship between regenerative capacity and AP patterning. These findings lead us to conclude that the spike formation in postometamorphic Xenopus limbs is epimorphic regeneration.  相似文献   

9.
T Nohno  S Noji  E Koyama  K Ohyama  F Myokai  A Kuroiwa  T Saito  S Taniguchi 《Cell》1991,64(6):1197-1205
We have isolated and identified four chicken homeobox genes in the upstream region of the Chox-4 complex. The Chox-4g and -4f genes, at the 5' extremity of the complex, were expressed locally in the vicinity of the zone of polarizing activity (ZPA) at early stages of limb development, substantiating the involvement of the genes in anteroposterior axis determination. To confirm their function, we implanted a bead containing retinoic acid, or the ZPA itself, in the anterior margin of the limb bud, leading to formation of mirror-image duplicated digits, and observed the resultant change in gene expression. Expression of the Chox-4g and -4f genes was induced in the new digit-forming region. Those results suggest that positional information assigned by a ZPA morphogen is imprinted on cellular memory by expression of the Chox-4 genes to maintain positional signaling along the anteroposterior axis in the limb field.  相似文献   

10.
To examine the effects of retinoic acid and dimethyl sulfoxide on regenerative ability of anuran amphibians, the left forelimbs of 60 postmetamorphic froglets of Rana catesbeiana (bullfrogs) were amputated through the distal zeugopodium. Fifteen of the froglets had their left forelimb stumps immersed in dimethyl sulfoxide (DMSO) for 3 minutes, once immediately after amputation and once on each of 5 subsequent days. Another 15 frogs had their left forelimb stumps immersed in a 0.01 M solution of retinoic acid dissolved in DMSO for the same period of time. The remaining 30 control froglets did not regenerate structures distal to the amputation surface, while all limbs in both treated groups produced regenerates by 120 days postamputation. Regenerates of limbs treated with both DMSO alone and DMSO combined with retinoic acid, although hypomorphic, were composed of multiple cartilage elements, which in many cases (46.7%) were organized as patterns partially resembling the skeletal arrangement of a normal forelimb. All of these regenerates exhibited bundles of striated muscle. In addition, nearly half (46.7%) of the regenerates in the DMSO + retinoic acid group possessed two separate regenerate outgrowths. The results demonstrate that young bullfrogs (Rana catesbeiana) possess a latent epimorphic regenerative capability, which can be stimulated by topical application to the wound surface of DMSO alone or DMSO combined with retinoic acid.  相似文献   

11.
12.
The developing limb is one of the first systems where it was proposed that a signalling gradient is involved in pattern formation. This gradient for specifying positional information across the antero-posterior axis is based on Sonic hedgehog signalling from the polarizing region. Recent evidence suggests that Sonic hedgehog signalling also specifies positional information across the antero-posterior axis by a timing mechanism acting in parallel with graded signalling. The progress zone model for specifying proximo-distal pattern, involving timing to provide cells with positional information, continues to be challenged, and there is further evidence that graded signalling by retinoic acid specifies the proximal part of the limb. Other recent papers present the first evidence that gradients of signalling by Wnt5a and FGFs govern cell behaviour involved in outgrowth and morphogenesis of the developing limb.  相似文献   

13.
14.
The effects of varying doses of retinoic acid on forelimb regeneration in larval Ambystoma mexicanum amputated through the wrist joint and in adult Notophthalmus viridescens amputated through the basal carpals were compared. In both species, the major effect of retinoic acid was to cause the proximodistal duplication, in the regenerate, of stump segments proximal to the amputation plane. Transverse axial duplications (anteroposterior and dorsoventral) occurred in a smaller percentage of cases; these consisted of cartilage spurs in axolotls, and extra digits in newts. The frequency and magnitude of the proximodistal and (in the newt) transverse duplications were dose dependent, and the regenerating limbs were maximally sensitive to the retinoid during the period of dedifferentiation and accumulation of blastema cells. The effect of retinoic acid is exerted on cells local to the amputation surface, as shown by the fact that retinoic acid caused the proximodistal duplication of stump segments in regenerates derived from amputated distal lower arm segments grafted to the eyesocket.  相似文献   

15.
Cellular behavior along the anteroposterior axis of the regenerating axolotl forelimb was studied by use of triploid (3N) tissue grafted into diploid (2N) hosts and three-dimensional computer reconstructions. Asymmetrical upper forelimbs were surgically constructed with one half (anterior or posterior) 3N and the other half 2N. Limbs were amputated immediately after grafting or were permitted to heal for 5 or 30 days prior to amputation. When regenerates had attained the stage of digital outgrowth, the limbs were harvested and sectioned in the transverse axis for histological analysis. When all limbs bearing anterior grafts were considered as a group, 77% of the 3N mesodermal cells were observed in the anterior side of the regenerates and 23% were located in the posterior side of the regenerates. When all limbs bearing posterior grafts were considered as a group, 76% of the 3N mesodermal cells were found in the posterior side of the regenerate and 24% had crossed into the anterior side. Healing times of 0, 5, or 30 days prior to amputation had no effect on the experimental outcome. Three-dimensional computer reconstructions revealed that most 3N cells of mesodermal origin underwent short-distance migration from anterior to posterior or from posterior to anterior and intermixed with diploid mesodermal cells near the midpoint of the regenerated anteroposterior axis. Some 3N cells were observed at greater distances from the graft-host interface. By contrast, labeled epidermal cells from both anterior and posterior grafts exhibited long-distance migration across all surfaces of regenerated limbs. Details of a computer-assisted reconstructive method for studying the three-dimensional distribution of labeled cells in tissues are presented.  相似文献   

16.
The effect of alteration of limb pattern upon motor axon guidance has been investigated in chick embryos. Following grafting of the zone of polarizing activity (ZPA) into the anterior margin of the early limb bud, limbs develop with forearms duplicated about the anteroposterior axis. The position of motoneurones innervating the duplicated posterior forearm extensor EMU was mapped by retrograde transport of horse radish peroxidase (HRP). The motor pool labelled from injection into the anteriorly duplicated EMU muscle is consistently similar to that supplying the posterior EMU muscle on the unoperated side of the embryo. In those cases where the axons are well filled, their trajectories from the injection site are observed to change position within the radial nerve to specifically innervate the duplicated muscle. The axons modify their trajectories proximal to the level of limb duplication in a region where there is no change in the pattern of overt differentiation of the limb cells. This suggests that axons may use a cell's positional value to navigate and provides significant support for the theory of positional information.  相似文献   

17.
An assay that detects position-related differences in affinity of axolotl regeneration blastema cells in vivo was used to test whether retinoic acid, which proximalizes regenerate pattern, simultaneously proximalizes blastema cell affinity. The assay involved autografting or homografting late bud forelimb blastomas derived from the wrist, elbow or midupper arm levels to the dorsal surface of the blastema-stump junction of an ipsilateral, medium-bud-stage hindlimb regenerating from the midthigh level. The grafted blastemas consistently displaced to their corresponding levels on the proximodistal axis of the host regenerate, indicating the existence of level-specific differences in blastema cell affinity. Retinoic acid proximalized the pattern of donor forelimb regenerates to the level of the girdle and abolished their displacement behaviour on untreated host hindlimbs. Conversely, untreated forelimb donor blastemas displaced distally to their corresponding levels on host ankle regenerates, that had been proximalized to the level of the girdle by retinoic acid. These results indicate that positional memory in regenerating limbs is directly related to blastema cell affinity, and that very similar or identical sets of level-specific affinity properties are shared by forelimb and hindlimb cells.  相似文献   

18.
The mechanisms by which cells obtain instructions to precisely re-create the missing parts of an organ remain an unresolved question in regenerative biology. Urodele limb regeneration is a powerful model in which to study these mechanisms. Following limb amputation, blastema cells interpret the proximal-most positional identity in the stump to reproduce missing parts faithfully. Classical experiments showed the ability of retinoic acid (RA) to proximalize blastema positional values. Meis homeobox genes are involved in RA-dependent specification of proximal cell identity during limb development. To understand the molecular basis for specifying proximal positional identities during regeneration, we isolated the axolotl Meis homeobox family. Axolotl Meis genes are RA-regulated during both regeneration and embryonic limb development. During limb regeneration, Meis overexpression relocates distal blastema cells to more proximal locations, whereas Meis knockdown inhibits RA proximalization of limb blastemas. Meis genes are thus crucial targets of RA proximalizing activity on blastema cells.  相似文献   

19.
The hormone retinoic acid (RA) has been implicated in the organization of the anteroposterior (AP) body axis. In this paper, we describe the effects of RA on the activity of the RA-inducible retinoic acid receptor-beta 2 (RAR beta 2) promoter. When transgenic embryos carrying a RAR beta 2-lacZ reporter gene were exposed to a single dose of RA between gestational days 8.5 to 10.5, lacZ expression was induced in the anterior central nervous system (CNS). Strikingly, the transgene was expressed in a segmented pattern reminiscent of that of Drosophila 'pair-rule' genes. RA treatment of midgastrulation embryos at day 7.5 disturbed the segmentation and produced severe craniofacial defects. We discuss the possibility that the entire anterior CNS is segmented and that this segmentation is reflected by the RAR beta 2-lacZ induction pattern.  相似文献   

20.
Summary Axolotl (Ambystoma mexicanum) forearms were divided, by an incision between the radius and ulna, to produce anterior and posterior halves. These were prevented from fusing together again by a graft of head skin and amputated through the wrist. This procedure enabled independent regeneration from both halves of the stump. Anterior half stumps produced a single digit while the posterior halves mainly regenerated three digits, the two halves together making a single hand. Treatment with retinoic acid, injected intraperitoneally four days after amputation, abolished regeneration from the posterior half stump and produced proximo-distally duplicated regenerates from the anterior half. The duplicated regenerates had in most cases a complete four digit hand and were therefore more than proximalised regenerates from the anterior side of the limb. Replacement of anterior limb skin with head skin had no effect on the response of the regenerating limb to retinoic acid. In species where application of retinoic acid induces anterior-posterior duplications, these are always derived from the anterior side of the limb. The results presented here show that the morphogenic effects of retinoic acid in inducing proximo-distal duplications are also due to its effects on the anterior tissues of the limb.Excellent technical assistance was provided by Carole Ross and Marjory Shiach and useful discussion were had with Paul Martin, David Wilson and Gavin Swanson  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号