首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The association between the cardiac transmembrane proteins phospholamban and sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) regulates the active transport of Ca2+ into the sarcoplasmic reticulum (SR) lumen and controls the contraction and relaxation of the heart. Heart failure (HF) and cardiac hypertrophy have been linked to defects in Ca2+ uptake by the cardiac SR and stimulation of calcium transport by modulation of the PLB-SERCA interaction is a potential therapy. This work is part of an effort to identify compounds that destabilise the PLB-SERCA interaction in well-defined membrane environments. It is shown that heparin-derived oligosaccharides (HDOs) interact with the cytoplasmic domain of PLB and consequently stimulate SERCA activity. These results indicate that the cytoplasmic domain of PLB is functionally important and could be a valid target for compounds with drug-like properties.  相似文献   

2.
Although activation of the renin-angiotensin system (RAS) is known to produce ventricular remodeling and congestive heart failure (CHF), its role in inducing changes in the sarcoplasmic reticulum (SR) protein and gene expression in CHF is not fully understood. In this study, CHF was induced in rats by ligation of the left coronary artery for 3 weeks and then the animals were treated orally with or without an angiotensin converting enzyme inhibitor, enalapril (10 mg/kg/day) or an angiotensin II receptor antagonist, losartan (20 mg/kg/day) for 4 weeks. Sham-operated animals were used as control. The animals were hemodynamically assessed and protein content as well as gene expression of SR Ca2+-release channel (ryanodine receptor, RYR), Ca2+-pump ATPase (SERCA2), phospholamban (PLB) and calsequestrin (CQS) were determined in the left ventricle (LV). The infarcted animals showed cardiac hypertrophy, lung congestion, depression in LV +dP/dt and –dP/dt, as well as increase in LV end diastolic pressure. Both protein content and mRNA levels for RYR, SERCA2 and PLB were decreased without any changes in CQS in the failing heart. These alterations in LV function as well as SR protein and gene expression in CHF were partially prevented by treatment with enalapril or losartan. The results suggest that partial improvement in LV function by enalapril and losartan treatments may be due to partial prevention of changes in SR protein and gene expression in CHF and that these effects may be due to blockade of the RAS.  相似文献   

3.
P-type ATPases are a large family of enzymes that actively transport ions across biological membranes by interconverting between high (E1) and low (E2) ion-affinity states; these transmembrane transporters carry out critical processes in nearly all forms of life. In striated muscle, the archetype P-type ATPase, SERCA (sarco(endo)plasmic reticulum Ca2+-ATPase), pumps contractile-dependent Ca2+ ions into the lumen of sarcoplasmic reticulum, which initiates myocyte relaxation and refills the sarcoplasmic reticulum in preparation for the next contraction. In cardiac muscle, SERCA is regulated by phospholamban (PLB), a small inhibitory phosphoprotein that decreases the Ca2+ affinity of SERCA and attenuates contractile strength. cAMP-dependent phosphorylation of PLB reverses Ca2+-ATPase inhibition with powerful contractile effects. Here we present the long sought crystal structure of the PLB-SERCA complex at 2.8-Å resolution. The structure was solved in the absence of Ca2+ in a novel detergent system employing alkyl mannosides. The structure shows PLB bound to a previously undescribed conformation of SERCA in which the Ca2+ binding sites are collapsed and devoid of divalent cations (E2-PLB). This new structure represents one of the key unsolved conformational states of SERCA and provides a structural explanation for how dephosphorylated PLB decreases Ca2+ affinity and depresses cardiac contractility.  相似文献   

4.
Dilated cardiomyopathy and end-stage heart failure result in multiple defects in cardiac excitation-contraction coupling. Via complementation of a genetically based mouse model of dilated cardiomyopathy, we now provide evidence that progressive chamber dilation and heart failure are dependent on a Ca2+ cycling defect in the cardiac sarcoplasmic reticulum. The ablation of a muscle-specific sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) inhibitor, phospholamban, rescued the spectrum of phenotypes that resemble human heart failure. Inhibition of phospholamban-SERCA2a interaction via in vivo expression of a phospholamban point mutant dominantly activated the contractility of ventricular muscle cells. Thus, interfering with phospholamban-SERCA2a interaction may provide a novel therapeutic approach for preventing the progression of dilated cardiomyopathy.  相似文献   

5.
To investigate the role of Ca2+/calmodulin-dependent kinase II in cardiac sarcoplasmic reticulum function, transgenic mice were designed and generated to target the expression of a Ca2+/calmodulin-dependent kinase II inhibitory peptide in cardiac longitudinal sarcoplasmic reticulum using a truncated phospholamban transmembrane domain. The expressed inhibitory peptide was highly concentrated in cardiac sarcoplasmic reticulum. This resulted in a 59.7 and 73.6% decrease in phospholamban phosphorylation at threonine 17 under basal and beta-adrenergic stimulated conditions without changing phospholamban phosphorylation at serine 16. Sarcoplasmic reticulum Ca2+ uptake assays showed that the Vmax was decreased by approximately 30% although the apparent affinity for Ca2+ was unchanged in heterozygous hearts. The in vivo measurement of cardiac function showed no significant reductions in positive and negative dP/dt, but a moderate 18% decrease in dP/dt40, indicative of isovolumic contractility, and a 26.1% increase in the time constant of relaxation (tau) under basal conditions. The changes in these parameters indicate a moderate cardiac dysfunction in transgenic mice. Although the 3 and 4-month-old transgenic mice displayed no overt signs of cardiac disease, when stressed by gestation and parturition, the 7-month-old female mice develop dilated heart failure, suggesting the important role of Ca2+/calmodulin-dependent kinase II pathway in the development of cardiac disease.  相似文献   

6.
7.
Diabetic cardiomyopathy is characterized by reduced cardiac contractility independent of vascular disease. A contributor to contractile dysfunction in the diabetic heart is impaired sarcoplasmic reticulum function with reduced sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a) pump activity, leading to disturbed intracellular calcium handling. It is currently unclear whether increasing SERCA2a activity in hearts with existing diabetic cardiomyopathy could still improve calcium flux and contractile performance. To test this hypothesis, we generated a cardiac-specific tetracycline-inducible double transgenic mouse, which allows for doxycycline (DOX)-based inducible SERCA2a expression in which DOX exposure turns on SERCA2a expression. Isolated cardiomyocytes and Langendorff perfused hearts from streptozotocin-induced diabetic mice were studied. Our results show that total SERCA2a protein levels were decreased in the diabetic mice by 60% compared with control. SERCA2a increased above control values in the diabetic mice after DOX. Dysfunctional contractility in the diabetic cardiomyocyte was restored to normal by induction of SERCA2a expression. Calcium transients from diabetic cardiomyocytes showed a delayed rate of diastolic calcium decay of 66%, which was reverted toward normal after SERCA2a expression induced by DOX. Global cardiac function assessed in the diabetic perfused heart showed diminished left ventricular pressure, rate of contraction, and relaxation. These parameters were returned to control values by SERCA2a expression. In conclusion, we have used mice allowing for inducible expression of SERCA2a and could demonstrate that increased expression of SERCA2a leads to improved cardiac function in mice with an already established diabetic cardiomyopathy in absence of detrimental effects.  相似文献   

8.
Approximately, 70% of the Ca2+ ion transport into the sarcoplasmic reticulum is catalyzed by the sarcoplasmic reticulum Ca2+-ATPase (SERCA), whose activity is endogenously regulated by phospholamban (PLN). PLN comprises a TM inhibitory region and a cytoplasmic regulatory region that harbors a consensus sequence for cAMP-dependent protein kinase (PKA). The inhibitory region binds the ATPase, reducing its apparent Ca2+ binding affinity. β-adrenergic stimulation activates PKA, which phosphorylates PLN at Ser 16, reversing its inhibitory function. Mutations and post-translational modifications of PLN may lead to dilated cardiomyopathy (DCM) and heart failure. PLN's cytoplasmic region interconverts between a membrane-associated T state and a membrane-detached R state. The importance of these structural transitions on SERCA regulation is emerging, but the effects of natural occurring mutations and their relevance to the progression of heart disease are unclear. Here we use solid-state NMR spectroscopy to investigate the structural dynamics of two lethal PLN mutations, R9C and R25C, which lead to DCM. We found that the R25C mutant enhances the dynamics of PLN and shifts the conformational equilibrium toward the R state confirmation, whereas the R9C mutant drives the amphipathic cytoplasmic domain toward the membrane-associate state, enriching the T state population. The changes in membrane interactions caused by these mutations may explain the aberrant regulation of SERCA.  相似文献   

9.
The sarcoplasmic reticulum (SR) plays a critical role in mediating cardiac contractility and its function is abnormal in the diabetic heart. However, the mechanisms underlying SR dysfunction in the diabetic heart are not clear. Because protein phosphorylation regulates SR function, this study examined the phosphorylation state of phospholamban, a key SR protein that regulates SR calcium (Ca2+) uptake in the heart. Diabetes was induced in male Sprague-Dawley rats by an injection of streptozotocin (STZ; 65 mg kg–1 i.v.), and the animals were humanely killed after 6 weeks and cardiac SR function was examined. Depressed cardiac performance was associated with reduced SR Ca2+-uptake activity in diabetic animals. The reduction in SR Ca2+-uptake was consistent with a significant decrease in the level of SR Ca2+-pump ATPase (SERCA2a) protein. The level of phospholamban (PLB) protein was also decreased, however, the ratio of PLB to SERCA2a was increased in the diabetic heart. Depressed SR Ca2+-uptake was also due to a reduction in the phosphorylation of PLB by the Ca2+-calmodulin-dependent protein kinase (CaMK) and cAMP-dependent protein kinase (PKA). Although the activities of the SR-associated Ca2+-calmodulin-dependent protein kinase (CaMK), cAMP-dependent protein kinase (PKA) were increased in the diabetic heart, depressed phosphorylation of PLB could partly be attributed to an increase in the SR-associated protein phosphatase activities. These results suggest that there is increased inhibition of SERCA2a by PLB and this appears to be a major defect underlying SR dysfunction in the diabetic heart. (Mol Cell Biochem 261: 245–249, 2004)  相似文献   

10.
Congestive heart failure presents a significant medical problem and accumulating evidence indicates that slow relaxation during diastole maybe at least in part be medlated by decreased expression of the gene coding for the Ca2+ ATPase of the sarcoplasmic reticulum (SR). In order to determine if increased expression of the SR Ca2+ ATPase gene leads to alterations in calcium transients and in contractile behavior we constructed transgenic mice overexpressing the SERCA2 gene. Measuring dP/dtmax and dpPdtmin with a 2 French Milar catheter we found a significant Increase in systolic contraction and diastolic relaxation in transgene positive versus transgene negative mice. In addition we constructed adenoviruses overexpressing the gene coding for the Ca2+ ATPase of the sarcoplasmic reticulum. Infacting cardiac myocytes with the adenovirus expressing this transgene led to an accelerated calcium transient. Determining cell shortening and relengthening with a edge detection method indicated that increased expression of the SERCA2 transgene mediated by adenovirus Infection accelerated contractile parameters. In summary increased expression of the SERCA2 transgene leads to an enhancement of cardiac contrectile parameters under in vivo conditions in transgenic mice and in myocytes in cell culture using an adenovirus based approach to increase expression of the SERCAX gene.  相似文献   

11.
Canine cardiac sarcoplasmic reticulum is phosphorylated by cyclic AMP-dependent and by Ca2+-calmodulin-dependent protein kinases on a 22 kDa protein, called phospholamban. Both types of phosphorylation have been shown to stimulate the initial rates of Ca2+ transport. To establish the interrelationship of the cAMP-dependent and Ca2+-calmodulin-dependent phosphorylation on Ca2+ transport, cardiac sarcoplasmic reticulum vesicles were preincubated under optimum conditions for: (a) cAMP-dependent phosphorylation, (b) Ca2+-calmodulin-dependent phosphorylation, and (c) combined cAMP-dependent and Ca2+-calmodulin-dependent phosphorylation. Control vesicles were treated under identical conditions, but in the absence of ATP, to avoid phosphorylation. Control and phosphorylated sarcoplasmic reticulum vesicles were subsequently centrifuged and assayed for Ca2+ transport in the presence of 2.5 mM Tris-oxalate. Our results indicate that cAMP-dependent and Ca2+-calmodulin-dependent phosphorylation can each stimulate calcium transport in an independent manner and when both are operating, they appear to have an additive effect. Stimulation of Ca2+ transport was associated with a statistically significant increase in the apparent affinity for calcium by each type of phosphorylation. The degree of stimulation of the calcium affinity was relatively proportional to the degree of phospholamban phosphorylation. These findings suggest the presence of a dual control system which may operate in independent and combined manners for regulating cardiac sarcoplasmic reticulum function.  相似文献   

12.
Heart failure is one of the leading causes of sudden death in developed countries. While current therapies are mostly aimed at mitigating associated symptoms, novel therapies targeting the subcellular mechanisms underlying heart failure are emerging. Failing hearts are characterized by reduced contractile properties caused by impaired Ca2+ cycling between the sarcoplasm and sarcoplasmic reticulum (SR). Sarcoplasmic/endoplasmic reticulum Ca2+ATPase 2a (SERCA2a) mediates Ca2+ reuptake into the SR in cardiomyocytes. Of note, the expression level and/or activity of SERCA2a, translating to the quantity of SR Ca2+ uptake, are significantly reduced in failing hearts. Normalization of the SERCA2a expression level by gene delivery has been shown to restore hampered cardiac functions and ameliorate associated symptoms in pre-clinical as well as clinical studies. SERCA2a activity can be regulated at multiple levels of a signaling cascade comprised of phospholamban, protein phosphatase 1, inhibitor-1, and PKCα. SERCA2 activity is also regulated by post-translational modifications including SUMOylation and acetylation. In this review, we will highlight the molecular mechanisms underlying the regulation of SERCA2a activity and the potential therapeutic modalities for the treatment of heart failure. [BMB Reports 2013; 46(5): 237-243]  相似文献   

13.
We have studied the differential effects of phospholamban (PLB) phosphorylation states on the activity of the sarcoplasmic reticulum Ca-ATPase (SERCA). It has been shown that unphosphorylated PLB (U-PLB) inhibits SERCA and that phosphorylation of PLB at Ser-16 or Thr-17 relieves this inhibition in cardiac sarcoplasmic reticulum. However, the levels of the four phosphorylation states of PLB (U-PLB, P16-PLB, P17-PLB, and doubly phosphorylated 2P-PLB) have not been measured quantitatively in cardiac tissue, and their functional effects on SERCA have not been determined directly. We have solved both problems through the chemical synthesis of all four PLB species. We first used the synthetic PLB as standards for a quantitative immunoblot assay, to determine the concentrations of all four PLB phosphorylation states in pig cardiac tissue, with and without left ventricular hypertrophy (LVH) induced by aortic banding. In both LVH and sham hearts, all phosphorylation states were significantly populated, but LVH hearts showed a significant decrease in U-PLB, with a corresponding increase in the ratio of total phosphorylated PLB to U-PLB. To determine directly the functional effects of each PLB species, we co-reconstituted each of the synthetic peptides in phospholipid membranes with SERCA and measured calcium-dependent ATPase activity. SERCA inhibition was maximally relieved by P16-PLB (the most highly populated PLB state in cardiac tissue homogenates), followed by 2P-PLB, then P17-PLB. These results show that each PLB phosphorylation state uniquely alters Ca2+ homeostasis, with important implications for cardiac health, disease, and therapy.  相似文献   

14.
Canine cardiac sarcoplasmic reticulum is phosphorylated by an endogenous calcium · calmodulin-dependent protein kinase and phosphorylation occurs mainly on a 27 kDa proteolipid, called phospholamban. To determine whether this phosphorylation has any effect on Ca2+ release, sarcoplasmic reticulum vesicles were phosphorylated by the calcium · calmodulin-dependent protein kinase, while non-phosphorylated vesicles were preincubated under identical conditions but in the absence of ATP to avoid phosphorylation. Both non-phosphorylated and phosphorylated vesicles were centrifuged to remove calmodulin, and subsequently used for Ca2+ release studies. Calcium loading was carried out either by the active calcium pump or by incubation with high (5 mM) calcium for longer periods. Phosphorylation of sarcoplasmic reticulum by calcium · calmodulin-dependent protein kinase had no appreciable effect on the initial rates of Ca2+ released from cardiac sarcoplasmic reticulum vesicles loaded under passive conditions and on the apparent 45Ca2+40Ca2+ exchange from cardiac sarcoplasmic reticulum vesicles loaded under active conditions. Thus, it appears that calcium · calmodulin-dependent protein kinase mediated phosphorylation of cardiac sarcoplasmic reticulum is not involved in the regulation of Ca2+ release and 45Ca2+40Ca2+ exchange.  相似文献   

15.
Although dilated cardiomyopathy (DCM) is known to result in cardiac contractile dysfunction, the underlying mechanisms are unclear. The sarcoplasmic reticulum (SR) is the main regulator of intracellular Ca2+ required for cardiac contraction and relaxation. We therefore hypothesized that abnormalities in both SR function and regulation will contribute to cardiac contractile dysfunction of the J2N-k cardiomyopathic hamster, an appropriate model of DCM. Echocardiographic assessment indicated contractile dysfunction, because the ejection fraction, fractional shortening, cardiac output, and heart rate were all significantly reduced in J2N-k hamsters compared with controls. Depressed cardiac function was associated with decreased cardiac SR Ca2+ uptake in the cardiomyopathic hamsters. Reduced SR Ca2+ uptake could be further linked to a decrease in the expression of the SR Ca2+-ATPase and cAMP-dependent protein kinase (PKA)-mediated phospholamban (PLB) phosphorylation at serine-16. Depressed PLB phosphorylation was paralleled with a reduction in the activity of SR-associated PKA, as well as an elevation in protein phosphatase activity in J2N-k hamster. The results of this study suggest that an alteration in SR function and its regulation contribute to cardiac contractile dysfunction in the J2N-k cardiomyopathic hamster. sarcoplasmic reticulum; cardiomyopathy; cAMP-dependent protein kinase; Ca2+/calmodulin-dependent protein kinase; sarco(endo)plasmic reticulum ATPase; phospholamban  相似文献   

16.
Heart failure with preserved ejection fraction (HFpEF) is a common clinical syndrome associated with high morbidity and mortality. Therapeutic options are limited due to a lack of knowledge of the pathology and its evolution. We investigated the cellular phenotype and Ca2+ handling in hearts recapitulating HFpEF criteria. HFpEF was induced in a portion of male Wistar rats four weeks after abdominal aortic banding. These animals had nearly normal ejection fraction and presented elevated blood pressure, lung congestion, concentric hypertrophy, increased LV mass, wall stiffness, impaired active relaxation and passive filling of the left ventricle, enlarged left atrium, and cardiomyocyte hypertrophy. Left ventricular cell contraction was stronger and the Ca2+ transient larger. Ca2+ cycling was modified with a RyR2 mediated Ca2+ leak from the sarcoplasmic reticulum and impaired Ca2+ extrusion through the Sodium/Calcium exchanger (NCX), which promoted an increase in diastolic Ca2+. The Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA2a) and NCX protein levels were unchanged. The phospholamban (PLN) to SERCA2a ratio was augmented in favor of an inhibitory effect on the SERCA2a activity. Conversely, PLN phosphorylation at the calmodulin-dependent kinase II (CaMKII)-specific site (PLN-Thr17), which promotes SERCA2A activity, was increased as well, suggesting an adaptive compensation of Ca2+ cycling. Altogether our findings show that cardiac remodeling in hearts with a HFpEF status differs from that known for heart failure with reduced ejection fraction. These data also underscore the interdependence between systolic and diastolic “adaptations” of Ca2+ cycling with complex compensative interactions between Ca2+ handling partner and regulatory proteins.  相似文献   

17.
18.
The Ca2+-ATPase of cardiac muscle cells transports Ca2+ ions against a concentration gradient into the sarcoplasmic reticulum and is regulated by phospholamban, a 52-residue integral membrane protein. It is known that phospholamban inhibits the Ca2+ pump during muscle contraction and that inhibition is removed by phosphorylation of the protein during muscle relaxation. Phospholamban forms a pentameric complex with a central pore. The solid-state magic angle spinning (MAS) NMR measurements presented here address the structure of the phospholamban pentamer in the region of Gln22-Gln29. Rotational echo double resonance (REDOR) NMR measurements show that the side chain amide groups of Gln29 are in close proximity, consistent with a hydrogen-bonded network within the central pore. 13C MAS NMR measurements are also presented on phospholamban that is 1-13C-labeled at Leu52, the last residue of the protein. pH titration of the C-terminal carboxyl group suggests that it forms a ring of negative charge on the lumenal side of the sarcoplasmic reticulum membrane. The structural constraints on the phospholamban pentamer described in this study are discussed in the context of a multifaceted mechanism for Ca2+ regulation that may involve phospholamban as both an inhibitor of the Ca2+ ATPase and as an ion channel.  相似文献   

19.
《Biophysical journal》2023,122(2):386-396
The type 2a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) plays a central role in the intracellular Ca2+ homeostasis of cardiac myocytes, pumping Ca2+ from the cytoplasm into the sarcoplasmic reticulum (SR) lumen to maintain relaxation (diastole) and prepare for contraction (systole). Diminished SERCA2a function has been reported in several pathological conditions, including heart failure. Therefore, development of new drugs that improve SERCA2a Ca2+ transport is of great clinical significance. In this study, we characterized the effect of a recently identified N-aryl-N-alkyl-thiophene-2-carboxamide (or compound 1) on SERCA2a Ca2+-ATPase and Ca2+ transport activities in cardiac SR vesicles, and on Ca2+ regulation in a HEK293 cell expression system and in mouse ventricular myocytes. We found that compound 1 enhances SERCA2a Ca2+-ATPase and Ca2+ transport in SR vesicles. Fluorescence lifetime measurements of fluorescence resonance energy transfer between SERCA2a and phospholamban indicated that compound 1 interacts with the SERCA-phospholamban complex. Measurement of endoplasmic reticulum Ca2+ dynamics in HEK293 cells expressing human SERCA2a showed that compound 1 increases endoplasmic reticulum Ca2+ load by enhancing SERCA2a-mediated Ca2+ transport. Analysis of cytosolic Ca2+ dynamics in mouse ventricular myocytes revealed that compound 1 increases the action potential-induced Ca2+ transients and SR Ca2+ load, with negligible effects on L-type Ca2+ channels and Na+/Ca2+ exchanger. However, during adrenergic receptor activation, compound 1 did not further increase Ca2+ transients and SR Ca2+ load, but it decreased the propensity toward Ca2+ waves. Suggestive of concurrent desirable effects of compound 1 on RyR2, [3H]-ryanodine binding to cardiac SR vesicles shows a small decrease in nM Ca2+ and a small increase in μM Ca2+. Accordingly, compound 1 slightly decreased Ca2+ sparks in permeabilized myocytes. Thus, this novel compound shows promising characteristics to improve intracellular Ca2+ dynamics in cardiomyocytes that exhibit reduced SERCA2a Ca2+ uptake, as found in failing hearts.  相似文献   

20.
The ATP-dependent ion pump sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) sequesters Ca2+ in the endoplasmic reticulum to establish a reservoir for cell signaling. Because of its central importance in physiology, the activity of this transporter is tightly controlled via direct interactions with tissue-specific regulatory micropeptides that tune SERCA function to match changing physiological conditions. In the heart, the micropeptide phospholamban (PLB) inhibits SERCA, while dwarf open reading frame (DWORF) stimulates SERCA. These competing interactions determine cardiac performance by modulating the amplitude of Ca2+ signals that drive the contraction/relaxation cycle. We hypothesized that the functions of these peptides may relate to their reciprocal preferences for SERCA binding; SERCA binds PLB more avidly at low cytoplasmic [Ca2+] but binds DWORF better when [Ca2+] is high. In the present study, we demonstrated this opposing Ca2+ sensitivity is due to preferential binding of DWORF and PLB to different intermediate states that SERCA samples during the Ca2+ transport cycle. We show PLB binds best to the SERCA E1-ATP state, which prevails at low [Ca2+]. In contrast, DWORF binds most avidly to E1P and E2P states that are more populated when Ca2+ is elevated. Moreover, FRET microscopy revealed dynamic shifts in SERCA–micropeptide binding equilibria during cellular Ca2+ elevations. A computational model showed that DWORF exaggerates changes in PLB–SERCA binding during the cardiac cycle. These results suggest a mechanistic basis for inhibitory versus stimulatory micropeptide function, as well as a new role for DWORF as a modulator of dynamic oscillations of PLB–SERCA regulatory interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号