首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human hepatoma (HCC) has been reported to be strongly resistant to Fas-mediated apoptosis. However, the underlying mechanisms are poorly understood. In this study the function of oxysterol-binding protein-related protein 8 (ORP8) in human hepatoma cells apoptosis was assessed. We found that ORP8 is down-regulated, whereas miR-143, which controls ORP8 expression, is up-regulated in clinical HCC tissues as compared with liver tissue from healthy subjects. ORP8 overexpression triggered apoptosis in primary HCC cells and cell lines, which coincided with a relocation of cytoplasmic Fas to the cell plasma membrane and FasL up-regulation. Co-culture of HepG2 cells or primary HCC cells with Jurkat T-cells or T-cells, respectively, provided further evidence that ORP8 increases HCC cell sensitivity to Fas-mediated apoptosis. ORP8-induced Fas translocation is p53-dependent, and FasL was induced upon ORP8 overexpression via the endoplasmic reticulum stress response. Moreover, ORP8 overexpression and miR-143 inhibition markedly inhibited tumor growth in a HepG2 cell xenograft model. These results indicate that ORP8 induces HCC cell apoptosis through the Fas/FasL pathway. The role of ORP8 in Fas translocation to the plasma membrane and its down-regulation by miR-143 offer a putative mechanistic explanation for HCC resistance to apoptosis. ORP8 may be a potential target for HCC therapy.  相似文献   

2.
Nucleostemin (NS) is a GTP-binding protein that is predominantly expressed in embryonic and adult stem cells but not in terminally differentiated cells. NS plays an essential role in maintaining the continuous proliferation of stem cells and some types of cancer cells. However, the role of NS in hepatocellular carcinoma (HCC) remains unclear. Therefore, this study aimed to clarify the role of NS in HCC. First, we demonstrated high expression of NS in most HCC cell lines and liver cancer tissues. NS knockdown induced a severe decline in cell viability of MHCC97H cells as detected by MTT and cell proliferation assays. Next, we used ultraviolet (UV) and serum starvation-induced apoptosis models to investigate whether NS suppression or up-regulation affects HCC cell apoptosis. After UV treatment or serum starvation, apoptosis was strongly enhanced in MHCC97H and Bel7402 cells transfected with small interfering RNA against NS, whereas NS overexpression inhibited UV- and serum-induced apoptosis of HCC cells. Furthermore, after UV irradiation, inhibition of NS increased the expression of pro-apoptosis protein caspase 3 and decreased the expression of anti-apoptosis protein Bcl-2. A caspase 3 inhibitor could obviously prevent NS knockdown-induced apoptosis. In conclusion, our study demonstrated overexpression of NS in most HCC tissues compared with their matched surrounding tissues, and silencing NS promoted UV- and serum starvation-induced apoptosis of MHCC97H and Bel7402 cells. Therefore, the NS gene might be a potential therapeutic target of HCC.  相似文献   

3.
Increasing evidence suggests that the renin-angiotensin system (RAS) plays an important role in tumorigenesis. The interaction between Angiotensin II (AngII) and angiotensin type 1 receptor (AT1R) may have a pivotal role in hepatocellular carcinoma (HCC) and therefore, AT1R blocker and angiotensin I-converting enzyme (ACE) inhibitors may have therapeutic potential in the treatment of hepatic cancer. Although the involvement of AT1R has been well explored, the role of the angiotensin II Type 2 receptor (AT2R) in HCC progression remains poorly understood. Thus, the aim of this study was to explore the effects of AT2R overexpression on HCC cells in vitro and in mouse models of human HCC. An AT2R recombinant adenoviral vector (Ad-G-AT2R-EGFP) was transduced into HCC cell lines and orthotopic tumor grafts. The results indicate that the high dose of Ad-G-AT2R-EGFP–induced overexpression of AT2R in transduced HCC cell lines produced apoptosis. AT2R overexpression in SMMC7721 cells inhibited cell proliferation with a significant reduction of S-phase cells and an enrichment of G1-phase cells through changing expression of CDK4 and cyclinD1. The data also indicate that overexpression of AT2R led to apoptosis via cell death signaling pathway that is dependent on activation of p38 MAPK, pJNK, caspase-8 and caspase-3 and inactivation of pp42/44 MAPK (Erk1/2). Finally, we demonstrated that moderately increasing AT2R expression could increase the growth of HCC tumors and the proliferation of HCC cells in vivo. Our findings suggest that AT2R overexpression regulates proliferation of hepatocellular carcinoma cells in vitro and in vivo, and the precise mechanisms of this phenomenon are yet to be fully determined.  相似文献   

4.
We recently provided evidence that the ribonucleotide reductase R1 subunits of herpes simplex virus types 1 and 2 (HSV-1 and -2) protect cells against tumor necrosis factor alpha- and Fas ligand-induced apoptosis by interacting with caspase 8. Double-stranded RNA (dsRNA) is a viral intermediate known to initiate innate antiviral responses. Poly(I · C), a synthetic analogue of viral dsRNA, rapidly triggers caspase 8 activation and apoptosis in HeLa cells. Here, we report that HeLa cells after HSV-1 and HSV-2 infection were quickly protected from apoptosis caused by either extracellular poly(I · C) combined with cycloheximide or transfected poly(I · C). Cells infected with the HSV-1 R1 deletion mutant ICP6Δ were killed by poly(I · C), indicating that HSV-1 R1 plays a key role in antiapoptotic responses to poly(I · C). Individually expressed HSV R1s counteracted caspase 8 activation by poly(I · C). In addition to their binding to caspase 8, HSV R1s also interacted constitutively with receptor-interacting protein 1 (RIP1) when expressed either individually or with other viral proteins during HSV infection. R1(1-834)-green fluorescent protein (GFP), an HSV-2 R1 deletion mutant protein devoid of antiapoptotic activity, did not interact with caspase 8 and RIP1, suggesting that these interactions are required for protection against poly(I · C). HSV-2 R1 inhibited the interaction between the Toll/interleukin-1 receptor domain-containing adaptor-inducing beta interferon (IFN-β) (TRIF) and RIP1, an interaction that is essential for apoptosis triggered by extracellular poly(I · C) plus cycloheximide or TRIF overexpression. TRIF silencing reduced poly(I · C)-triggered caspase 8 activation in mock- and ICP6Δ-infected cells, confirming that TRIF is involved in poly(I · C)-induced apoptosis. Thus, by interacting with caspase 8 and RIP1, HSV R1s impair the apoptotic host defense mechanism prompted by dsRNA.  相似文献   

5.
Erythropoietin (EPO) can rescue erythroid cells from apoptosis during erythroid development, leading to red cell production. However, the detailed mechanism of how EPO protects erythroid cells from apoptosis is still open to question. To address this problem, we used a human EPO-dependent leukemia cell line UT-7/EPO and normal erythroid progenitor cells. After deprivation of EPO, UT-7/EPO cells underwent apoptosis, accompanied by down-regulation of the Bcl-xL protein. In addition, the cleaved products of caspase-3, p11 and p21, and a few cleaved forms of inhibitor of caspase-activated DNase (ICAD) were detected in these cells. When the cells were pre-treated with the pancaspase inhibitor Z-VAD-FMK, the ratio of apoptotic cells was significantly reduced, suggesting that EPO protects the UT-7/EPO cells from apoptosis via inhibition of caspase activities. When an MEK 1/2 inhibitor U0126 inhibited activities of extracellular signal-regulated kinases (ERKs), the expression of Bcl-xL protein was down-regulated and subsequently apoptosis was induced. Interestingly, Z-VAD-FMK blocked U0126-induced down-regulation of Bcl-xL protein and apoptosis, strongly suggesting that Bcl-xL expression is regulated by caspases which lies downstream of ERK activation pathway in EPO signaling. Importantly, these findings were also observed in normal erythroid progenitor cells. In conclusion, the activation of ERKs by EPO up-regulates Bcl-xL expression via inhibition of caspase activities, resulting in the protection of erythroid cells from apoptosis.  相似文献   

6.
7.
Yuan F  Zhou W  Zhang J  Zhang Z  Zou C  Huang L  Zhang Y  Dai Z 《Cryobiology》2008,57(1):60-65
Cryotherapy has been shown to be an important therapeutic alternative to surgery in the treatment of hepatocellular carcinoma (HCC). Here, the influence of cryo-chemotherapy on HCC was examined in vitro using the human HCC cell line Bel-7402, a drug-resistant HCC cell line originating from Bel-7402 cells (Bel-7402/R), as well as two control cell lines, the HCC cell line SMMC-7721 and a colorectal tumor cell line HIC-251. Cells were treated with either exposure to different freezing temperatures (ranging from −15 to −80 °C for 20 min), exposure to sub-lethal concentrations of anticancer chemotherapy drugs or a combination of cryotherapy and chemotherapy. Cell viability and apoptosis under each condition were investigated. We found that the combined treatment resulted in increases in both cell death and apoptosis compared to either treatment alone. The increased level of apoptosis observed in Bel-7402 cells after cryo-chemotherapy was inhibited in the presence of caspase inhibitors. Furthermore, Bax expression was increased 2- to 3-fold in cells exposed to the combination treatment compared with cells treated by freezing or drugs alone. In contrast, Bcl-2 levels remained constant. Although Bel-7402/R cells originated from the Bel-7402 cell line, they were more sensitive to the freezing procedure than the parental cell line. The level of Bax expression in Bel-7402/R cells was also higher than that observed in the parental cell line. In addition, we found that Bel-7402/R cells had lower levels of survivin mRNA than the parental Bel-7402 cells, in both untreated and treated cells. In conclusion, our data show that in HCC cells, apoptosis induced by cryotherapy can be synergistically enhanced using anticancer drugs.  相似文献   

8.
The HMGA2 (high-mobility group AT-hook) protein has previously been shown as an oncoprotein, whereas ectopic expression of HMGA2 is found to induce growth arrest in primary cells. The precise mechanisms underlying this phenomenon remain to be unravelled. In the present study, we determined that HMGA2 was able to induce apoptosis in WI38 primary human cells. We show that WI38 cells expressing high level of HMGA2 were arrested at G2/M phase and exhibited apoptotic nuclear phenotypes. Meanwhile, the cleaved caspase 3 (cysteine aspartic acid-specific protease 3) was detected 8 days after HMGA2 overexpression. Flow cytometric analysis confirmed that the ratio of cells undergoing apoptosis increased dramatically. Concurrently, other major apoptotic markers were also detected, including the up-regulation of p53, Bax and cleaved caspase 9, down-regulation of Bcl-2; as well as release of cytochrome c from the mitochondria. We further demonstrate that the shRNA (small-hairpin RNA)-mediated Apaf1 (apoptotic protease activating factor 1) silencing partially rescued the HMGA2-induced apoptosis, which was accompanied by the decrease of cleaved caspase-3 level and a decline of cell death ratio. Our results also reveal that γH2A was accumulated in nuclei during the HMGA2-induced apoptosis along with the up-regulation of cleaved caspase 2, suggesting that the HMGA2-induced apoptosis was dependent on the pathway of DNA damage. Overall, the present study unravelled a novel function of HMGA2 in induction of apoptosis in human primary cell lines, and provided clues for clarification of the mechanistic action of HMGA2 in addition to its function as an oncoprotein.  相似文献   

9.
Bone morphogenetic protein-2 (BMP-2) is an important regulator of osteoblast differentiation. However, the regulation of osteoblast apoptosis by BMP signaling remains poorly understood. Here we examined the role of type I BMP receptor (BMP-RI) in osteoblast apoptosis promoted by BMP-2. Despite undetectable BMP-RIB expression in OHS4 cells, BMP-2 or BMP-2 overexpression increased osteoblast differentiation similarly as in SaOS2 cells which express BMP-RIB, as shown by alkaline phosphatase and CBFA1/RUNX2 expression. In contrast to SaOS2 cells, however, BMP-2 or BMP-2 overexpression did not increase caspase-9 and caspases-3, -6, and -7 activity and DNA fragmentation in OHS4 cells. Consistently, BMP-2 increased protein kinase C (PKC) activity, and PKC inhibition suppressed BMP-2-induced caspase activity in SaOS2 but not in OHS4 cells that lack BMP-RIB. A dominant negative BMP-RIB inhibited BMP-2-induced caspase activity, whereas wild-type BMP-RIB promoted caspase activity induced by BMP-2 in SaOS2 and MC3T3-E1 cells. Wild-type BMP-RIB rescued the apoptotic response to BMP-2, and a constitutively active BMP-RIB restored the apoptotic signal in OHS4 cells, supporting an essential role for BMP-RIB in osteoblast apoptosis. We also assessed whether BMP-2-induced apoptosis occurred independently of osteoblast differentiation. General inhibition of caspases did not abolish BMP-2-induced alkaline phosphatase and CBFA1/RUNX2 expression in SaOS2 cells. Furthermore, broad caspases inhibition increased matrix mineralization but did not reverse the BMP-2 effect on mineralization in MC3T3-E1 cells. These results indicate that BMP-2-induced apoptosis was mediated by BMP-RIB in osteoblasts and occurred independently of BMP-2-induced osteoblast differentiation, which provides additional insights into the dual mechanism of BMP-2 action on osteoblast fate.  相似文献   

10.
Glioma is the most common cancer in human brain system and seriously threatens human health. miRNA-320 has been demonstrated to be closely correlated with the development of glioma. However, its effect and molecular mechanism underlying radioresistance have not been fully elucidated in glioma. Here, RT-qPCR assay was used to assess the expressions of miR-320 and forkhead box protein M1 (FoxM1) mRNA in glioma tumor tissues and cells. The effects of miR-320, FoxM1 and sirtuin type 1 (Sirt1) on radiosensitivity in glioma cells were evaluated by clone formation assay, apoptosis assay, histone H2AX phosphorylation level (γH2AX) detection and caspase 3 activity analysis, respectively. The direct interaction between miR-320 and FoxM1 was detected by luciferase assay. The protein levels of FoxM1, Sirt1 and γH2AX were measured by western blot assay. We found that miR-320 expression was down-regulated and FoxM1 expression was up-regulated in radioresistant glioma tissues and IR-treated glioma cells. miR-320 overexpression dramatically enhanced radiosensitivity, promoted apoptosis, and improved γH2AX expression and caspase 3 activity in glioma cells. Luciferase reporter assay and western blot assay further validated that miR-320 suppressed FoxM1 expression by directly targeting 3’ UTR region of FoxM1. Moreover, miR-320 inhibited Sirt1 expression via targeting FoxM1 in glioma cells. Furthermore, overexpression of FoxM1 and Sirt1 strikingly attenuated miR-320-induced increase of radiosensitivity, apoptosis and γH2AX expression in glioma cells. In conclusion, miR-320 enhanced radiosensitivity of glioma cells through down-regulation of Sirt1 by directly targeting FoxM1.  相似文献   

11.
Hepatocellular carcinoma (HCC) is a common primary liver malignancy lacking effective molecularly-targeted therapies. HBO1 (lysine acetyltransferase 7/KAT7) is a member of MYST histone acetyltransferase family. Its expression and potential function in HCC are studied. We show that HBO1 mRNA and protein expression is elevated in human HCC tissues and HCC cells. HBO1 expression is however low in cancer-surrounding normal liver tissues and hepatocytes. In HepG2 and primary human HCC cells, shRNA-induced HBO1 silencing or CRISPR/Cas9-induced HBO1 knockout potently inhibited cell viability, proliferation, migration, and invasion, while provoking mitochondrial depolarization and apoptosis induction. Conversely, ectopic overexpression of HBO1 by a lentiviral construct augmented HCC cell proliferation, migration and invasion. In vivo, xenografts-bearing HBO1-KO HCC cells grew significantly slower than xenografts with control HCC cells in severe combined immunodeficient mice. These results suggest HBO1 overexpression is important for HCC cell progression.Subject terms: Targeted therapies, Oncogenes  相似文献   

12.
TIP30 (Tat-interacting protein 30), a newly found proapoptotic factor, appears to be involved in multiple functions including metabolic suppression, apoptosis induction, and diminishing angiogenic properties. In the present study, we reported that mitochondrial events were required for apoptosis induced by TIP30 in hepatocellular carcinoma cells (HCC cells). Translocation of Bax was essential for TIP30-induced apoptosis, whereas overexpression of the anti-apoptotic protein Bcl-xL delayed both second mitochondria-derived activator of caspases (Smac/DIABLO) release and onset of apoptosis. Furthermore, TIP30-induced apoptosis was dependent on caspase activity because the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp (OMe)-fluoromethyl ketone (z-VAD-fmk) blocked DNA fragmentation. Release of Smac/DIABLO from the mitochondria through the TIP30-P53-Bax cascade was required to remove the inhibitory effect of XIAP (X-linked Inhibitor of Apoptosis) and allowed apoptosis to proceed. Our results showed for the first time that Bax-dependent release of Smac/DIABLO, cytochrome c and AIF from the mitochondria mediated the contribution of the mitochondrial pathway to TIP30-mediated apoptosis. Our data suggested that adenovirus-mediated overexpression of TIP30 was capable of inducing therapeutic programmed cell death in vitro by activating the mitochondrial pathway of apoptosis. On the basis of these studies, elucidating the mechanism by which TIP30 induces cell death might establish it as an anticancer approach.  相似文献   

13.
NPC (nasopharyngeal carcinoma) is a common malignancy in southern China without defined aetiology. Recent studies have shown that TGFBR3 (transforming growth factor type III receptor, also known as betaglycan), exhibits anticancer activities. This study was to investigate the effects of TGFBR3 on NPC growth and the mechanisms for its actions. Effects of TGFBR3 overexpression on cell viability and apoptosis were measured by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide], AO/EB (acridine orange/ethidium bromide) staining and electron microscopy in human NPC CNE-2Z cells. The expression of apoptosis-related proteins, p-Bad, Bad, XIAP (X-linked inhibitor of apoptosis), AIF (apoptosis-inducing factor), Bax and Bcl-2, was determined by Western blot or immunofluorescence analysis. Caspase 3 activity was measured by caspase 3 activity kit and [Ca2+]i (intracellular Ca2+ concentration) was detected by confocal microscopy. Transfection of TGFBR3 containing plasmid DNA at concentrations of 0.5 and 1 μg/ml reduced viability and induced apoptosis in CNE-2Z in concentration- and time-dependent manners. Forced expression of TGFBR3 up-regulated pro-apoptotic Bad and Bax protein, and down-regulated anti-apoptotic p-Bad, Bcl-2 and XIAP protein. Furthermore, transient overexpression of TGFBR3 also enhanced caspase 3 activity, increased [Ca2+]i and facilitated AIF redistribution from the mitochondria to the nucleus in CNE-2Z cells, which is independent of the caspase 3 pathway. These events were associated with TGFBR3-regulated multiple targets involved in CNE-2Z proliferation. Therefore transient overexpression of TGFBR3 may be a novel strategy for NPC prevention and therapy.  相似文献   

14.
Hepatocellular carcinoma (HCC) is one of the main causes of death in cancer. Some naphthalimide derivatives exert high anti-proliferative effects on HCC. In this study, it is confirmed that 3-nitro-naphthalimide and nitrogen mustard conjugate (NNM-25), a novel compound conjugated by NNM-25, displayed more potent therapeutic action on HCC, both in vivo and in vitro, than amonafide, a naphthalimide drug in clinical trials. More importantly, preliminary toxicological evaluation also supported that NNM-25 exhibited less systemic toxicity than amonafide at the therapeutic dose. The antitumor mechanism of conjugates of naphthalimides with nitrogen mustard remains poorly understood up to now. Here, we first reported that apoptosis might be the terminal fate of cancer cells treated with NNM-25. Inhibition of p53 by siRNA resulted in a significant decrease of NNM-25-induced apoptosis, which corroborated that p53 played a vital role in the cell apoptosis triggered by NNM-25. NNM-25 inhibited the PARP-1 activity, AKT phosphorylation, up-regulated the protein expression of p53, Bad, and mTOR as well as down-regulating the protein expression of Bcl-2 and decreasing mitochondrial membrane potential. It also facilitated cytochrome c release from mitochondria to cytoplasm, activated caspase 8, caspase 9, and caspase 3 in HepG2 cells in vitro, as also authenticated in H22 tumor-bearing mice in vivo. Collectively, the conjugation of naphthalimides with nitrogen mustard provides favorable biological activity and thus is a valuable strategy for future drug design in HCC therapy.  相似文献   

15.
16.
Two cysteine protease families, caspase and calpain, are known to participate in cell death. We investigated whether a stress-specific protease activation pathway exists, and to what extent Bcl-2 plays a role in preventing drug-induced protease activity and cell death in a dopaminergic neuronal cell line, MN9D. Staurosporine (STS) induced caspase-dependent apoptosis while a dopaminergic neurotoxin, MPP(+) largely induced caspase-independent necrotic cell death as determined by morphological and biochemical criteria including cytochrome c release and fluorogenic caspase cleavage assay. At the late stage of both STS- and MPP(+)-induced cell death, Bax was cleaved into an 18-kDa fragment. This 18-kDa fragment appeared only in the mitochondria-enriched heavy membrane fraction of STS-treated cells, whereas it was detected exclusively in the cytosolic fraction of MPP(+)-treated cells. This proteolytic cleavage of Bax appeared to be mediated by calpain as determined by incubation with [(35)S]methionine-labelled Bax. Thus, cotreatment of cells with calpain inhibitor blocked both MPP(+)- and STS-induced Bax cleavage. Intriguingly, overexpression of baculovirus-derived inhibiting protein of caspase, p35 or cotreatment of cells with caspase inhibitor blocked STS- but not MPP(+)-induced Bax cleavage. This appears to indicate that calpain activation may be either dependent or independent of caspase activation within the same cells. However, cotreatment with calpain inhibitor rescued cells from MPP(+)-induced but not from STS-induced neuronal cell death. In these paradigms of dopaminergic cell death, overexpression of Bcl-2 prevented both STS- and MPP(+)-induced cell death and its associated cleavage of Bax. Thus, our results suggest that Bcl-2 may play a protective role by primarily blocking drug-induced caspase or calpain activity in dopaminergic neuronal cells.  相似文献   

17.
Zhang F  Di Y  Li J  Shi Y  Zhang L  Wang C  He X  Liu Y  Wan D  Huo K  Gu J 《Biochimica et biophysica acta》2006,1759(11-12):514-525
A human Aph2 gene (hAph2) was identified and cloned from a human placenta cDNA library. Bioinformatics analysis revealed hAPH2 protein shares 96% identity with mouse APH2 and contains a zf-DHHC domain (148-210aa), which is always involved in protein-protein or protein-DNA interaction. Differential expression patterns of hAph2 mRNA were observed in normal human tissues. Yeast two-hybrid screening found another hAPH2-interacting protein JAB1. The zf-DHHC domain of hAPH2 and the C-terminal of JAB1 were confirmed to be critical for the interaction. Fused with GFP and expressed in COS-7, NIH/3T3 and SMMC-7721 cell lines, hAPH2 showed predominant distribution in the cytoplasm and co-localized with JAB1 around the nucleus. Furthermore, overexpression of hAPH2 could increase apoptosis of COS-7 cells and negatively regulate JAB1-induced activation of AP-1 in a concentration dependent manner. The expression level of c-jun was also down-regulated by overexpression of hAPH2 in COS-7 cells. These data showed some basic characterization and function of hAph2 (hAPH2), dependent or independent with JAB1.  相似文献   

18.
Glutathione peroxidase-1 protects from CD95-induced apoptosis   总被引:9,自引:0,他引:9  
Through the induction of apoptosis, CD95 plays a crucial role in the immune response and the elimination of cancer cells. Ligation of CD95 receptor activates a complex signaling network that appears to implicate the generation of reactive oxygen species (ROS). This study investigated the place of ROS production in CD95-mediated apoptosis and the role of the antioxidant enzyme glutathione peroxidase-1 (GPx1). Anti-CD95 antibodies triggered an early generation of ROS in human breast cancer T47D cells that was blocked by overexpression of GPx1 and inhibition of initiator caspase activation. Enforced expression of GPx1 also resulted in inhibition of CD95-induced effector caspase activation, DNA fragmentation, and apoptotic cell death. Resistance to CD95-mediated apoptosis was not due to an increased expression of anti-apoptotic molecules and could be reversed by glutathione-depleting agents. In addition, whereas the anti-apoptotic protein Bcl-xL prevented CD95-induced apoptosis in MCF-7 cells, it did not inhibit the early ROS production. Moreover, Bcl-xL but not GPx1 overexpression could suppress the staurosporine-induced late generation of ROS and subsequent cell death. Altogether, these findings suggest that GPx1 functions upstream of the mitochondrial events to inhibit the early ROS production and apoptosis induced by CD95 ligation. Finally, transgenic mice overexpressing GPx1 were partially protected from the lethal effect of anti-CD95, underlying the importance of peroxide formation (and GPx1) in CD95-triggered apoptosis.  相似文献   

19.
20.
Malignant gliomas are the most common primary brain tumor and have a poor clinical prognosis. 1, 3-Bis (2-chloroethyl)-1-nitrosourea (BCNU) is an alkylating agent that is commonly used in glioma therapy. However, BCNU chemotherapy often fails due to drug resistance. To gain better understanding of molecular mechanisms underlying the drug resistance of glioma, a BCNU-resistant variant (C6R) of C6 rat glioma cells was selected and characterized. The established C6R cells were resistant to BCNU-induced cell death and cell cycle arrest as confirmed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide reduction assay and flow cytometric analysis of DNA content. C6R cells showed an increased expression of common drug resistance-related genes such as O6-methylguanine-DNA methyltransferase and multiple drug resistance 1. In contrast, C6R cells showed a decreased expression of glial fibrillary acidic protein, therefore, displaying shorter cellular processes compared with parental C6 cells. More importantly, in conjunction with the morphological changes, the expression of lipocalin-2 (lcn2), a 25-kDa secreted proapoptotic protein, was markedly reduced in the BCNU-resistant C6R cells. However, there was no significant change in the expression of lcn2 receptors. Addition of recombinant LCN2 protein or introduction of lcn2 cDNA significantly increased the sensitivity of C6 cells and human glioma cells to BCNU or other anticancer drugs, while knockdown of lcn2 expression by antisense cDNA transfection decreased the sensitivity. When lcn2 was re-expressed in C6R cells, the BCNU sensitivity was restored. Lcn2 enhanced BCNU-induced Akt dephosphorylation providing a molecular basis of apoptosis sensitization. These results suggest that LCN2 protein may be involved in glioma drug resistance and may provide a new approach to sensitizing glioblastoma to chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号