首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although chemotherapy is an important treatment for advanced prostate cancer, its efficacy is relatively limited. Ultrasound-induced cavitation plays an important role in drug delivery and gene transfection. However, whether cavitation can improve the efficacy of chemotherapy for prostate cancer remains unclear. In this study, we treated RM-1 mouse prostate carcinoma cells with a combination of ultrasound-mediated microbubble cavitation and paclitaxel. Our results showed that combination therapy led to a more pronounced inhibition of cell viability and increased cell apoptosis. The enhanced efficacy of chemotherapy was attributed to the increased cell permeability induced by cavitation. Importantly, compared with chemotherapy alone (nab-paclitaxel), chemotherapy combined with ultrasound-mediated microbubble cavitation significantly inhibited tumor growth and prolonged the survival of tumor-bearing mice in an orthotopic mouse model of RM-1 prostate carcinoma, indicating the synergistic effects of combined therapy on tumor reduction. Furthermore, we analyzed tumor-infiltrating lymphocytes and found that during chemotherapy, the proportions of CTLA4+ cells and PD-1+/CTLA4+ cells in CD8+ T cells slightly increased after cavitation treatment.  相似文献   

2.
J. Wischhusen  F. Padilla 《IRBM》2019,40(1):10-15

Background

Ultrasound-targeted microbubble destruction (UTMD) is a type of ultrasound therapy, in which low frequency moderate power ultrasound is combined with microbubbles to trigger cavitation. Cavitation is the process of oscillation of gas bubbles causing biophysical effects such as pushing and pulling or shock waves that permeabilize biological barriers. In vivo, cavitation results in tissue permeabilization and is used to enable local delivery of nanomedicine. While cavitation can occur in biological liquids when high pressure ultrasound is applied, the use of microbubbles as cavitation nuclei in UTMD largely facilitates the induction of cavitation. UTMD is intensively studied for drug delivery into tumor tissue, but also for the activation of anti-tumor immune responses. The first clinical studies of UTMD-mediated chemotherapy delivery confirmed safety and efficacy of this approach.

Aim

The present review summarizes ultrasound settings, cavitation approaches, biophysical mechanisms of drug delivery, drug carriers, and pre-clinical and clinical applications of UTMD for drug delivery into tumors.  相似文献   

3.
Ultrasound induced cavitation has been explored as a method of dissolving intravascular and microvascular thrombi in acute myocardial infarction. The purpose of this study was to determine the type of cavitation required for success, and whether longer pulse duration therapeutic impulses (sustaining the duration of cavitation) could restore both microvascular and epicardial flow with this technique. Accordingly, in 36 hyperlipidemic atherosclerotic pigs, thrombotic occlusions were induced in the mid-left anterior descending artery. Pigs were then randomized to either a) ½ dose tissue plasminogen activator (0.5 mg/kg) alone; or same dose plasminogen activator and an intravenous microbubble infusion with either b) guided high mechanical index short pulse (2.0 MI; 5 usec) therapeutic ultrasound impulses; or c) guided 1.0 mechanical index long pulse (20 usec) impulses. Passive cavitation detectors indicated the high mechanical index impulses (both long and short pulse duration) induced inertial cavitation within the microvasculature. Epicardial recanalization rates following randomized treatments were highest in pigs treated with the long pulse duration therapeutic impulses (83% versus 59% for short pulse, and 49% for tissue plasminogen activator alone; p<0.05). Even without epicardial recanalization, however, early microvascular recovery occurred with both short and long pulse therapeutic impulses (p<0.005 compared to tissue plasminogen activator alone), and wall thickening improved within the risk area only in pigs treated with ultrasound and microbubbles. We conclude that although short pulse duration guided therapeutic impulses from a diagnostic transducer transiently improve microvascular flow, long pulse duration therapeutic impulses produce sustained epicardial and microvascular re-flow in acute myocardial infarction.  相似文献   

4.
We evaluated the effect of zinc treatment on the blood–brain barrier (BBB) permeability and the levels of zinc (Zn), natrium (Na), magnesium (Mg), and copper (Cu) in the brain tissue during epileptic seizures. The Wistar albino rats were divided into four groups, each as follows: (1) control group, (2) pentylenetetrazole (PTZ) group: rats treated with PTZ to induce seizures, (3) Zn group: rats treated with ZnCl2 added to drinking water for 2 months, and (4) Zn?+?PTZ group. The brains were divided into left, right hemispheres, and cerebellum?+?brain stem regions. Evans blue was used as BBB tracer. Element concentrations were analyzed by inductively coupled plasma optical emission spectroscopy. The BBB permeability has been found to be increased in all experimental groups (p?<?0.05). Zn concentrations in all brain regions in Zn-supplemented groups (p?<?0.05) showed an increase. BBB permeability and Zn level in cerebellum?+?brain stem region were significantly high compared to cerebral hemispheres (p?<?0.05). In all experimental groups, Cu concentration decreased, whereas Na concentrations showed an increase (p?<?0.05). Mg content in all the brain regions decreased in the Zn group and Zn?+?PTZ groups compared to other groups (p?<?0.001). We also found that all elements’ levels showed hemispheric differences in all groups. During convulsions, Zn treatment did not show any protective effect on BBB permeability. Chronic Zn treatment decreased Mg and Cu concentration and increased Na levels in the brain tissue. Our results indicated that Zn treatment showed proconvulsant activity and increased BBB permeability, possibly changing prooxidant/antioxidant balance and neuronal excitability during seizures.  相似文献   

5.
Previous report showed that leukemia cells’ differentiation could be induced by retinoic acid (RA), and prostate cancer cells’ proliferation could be inhibited by Vitamin D or its analog. This study aimed to examine whether RA and vitamin D analog EB1089 have synergistic effect on hepatocellular cancer cells’ apoptosis. The hepatocellular cancer cell lines’ viability was determined by MTT method after treating by RA and EB1089 alone or in combination, cell cycle of SSMC-7721 cell analyzed by FACS, mitochondrial membrane potential of SSMC-7721 under different treatments were detected using MitoTracker Red CMXRos. TUNEL analysis was also used for cell apoptosis detection. Real time-PCR and Western Blot assay were used to detect the expression of Bcl-2 and Bax. Moreover, hepatocellular cancer model was developed by subcutaneously (S.C.) challenging H22 cells to nude mice. In the combination group (10 μmol/L RA, 10 nmol/L EB1089), the viability of hepatocellular cancer cells decreased significantly compared with drugs used alone (P < 0.05). From the TUNEL analysis, SSMC-7721 cells have a higher apoptotic ratio in the combined drug group than in the groups for which the drugs were used separately. In a hepatocellular cancer model, the tumor weight of H22 tumor bearing mice was more reduced in the combined drug treated group when compared to the groups for which the drugs were used alone (P < 0.05), in addition, significantly prolonged survival was observed. Combination of RA and EB1089 exert synergistic growth inhibition and apoptosis induction on hepatocellular cancers cells.  相似文献   

6.

Background

Cell shape and tissue architecture are controlled by changes to junctional proteins and the cytoskeleton. How tissues control the dynamics of adhesion and cytoskeletal tension is unclear. We have studied epithelial tissue architecture using 3D culture models and found that adult primary prostate epithelial cells grow into hollow acinus-like spheroids. Importantly, when co-cultured with stroma the epithelia show increased lateral cell adhesions. To investigate this mechanism further we aimed to: identify a cell line model to allow repeatable and robust experiments; determine whether or not epithelial adhesion molecules were affected by stromal culture; and determine which stromal signalling molecules may influence cell adhesion in 3D epithelial cell cultures.

Methodology/Principal Findings

The prostate cell line, BPH-1, showed increased lateral cell adhesion in response to stroma, when grown as 3D spheroids. Electron microscopy showed that 9.4% of lateral membranes were within 20 nm of each other and that this increased to 54% in the presence of stroma, after 7 days in culture. Stromal signalling did not influence E-cadherin or desmosome RNA or protein expression, but increased E-cadherin/actin co-localisation on the basolateral membranes, and decreased paracellular permeability. Microarray analysis identified several growth factors and pathways that were differentially expressed in stroma in response to 3D epithelial culture. The upregulated growth factors TGFβ2, CXCL12 and FGF10 were selected for further analysis because of previous associations with morphology. Small molecule inhibition of TGFβ2 signalling but not of CXCL12 and FGF10 signalling led to a decrease in actin and E-cadherin co-localisation and increased paracellular permeability.

Conclusions/Significance

In 3D culture models, paracrine stromal signals increase epithelial cell adhesion via adhesion/cytoskeleton interactions and TGFβ2-dependent mechanisms may play a key role. These findings indicate a role for stroma in maintaining adult epithelial tissue morphology and integrity.  相似文献   

7.
The present study aimed to investigate the protective effects of rAAV9-CyclinA2 combined with fibrin glue (FG) in vivo in rats after myocardial infarction (MI). Ninety male Sprague–Dawley rats were randomized into 6 groups (15 in each group): sham, MI, rAAV9-green fluorescent protein (GFP)?+?MI, rAAV9-CyclinA2?+?MI, FG?+?MI, and rAAV9-CyclinA2?+?FG?+?MI. Packed virus (5?×?1011vg/ml) in 150 µl of normal saline or FG was injected into the infarcted myocardium at five locations in rAAV9-GFP?+?MI, rAAV9-CyclinA2?+?MI, and rAAV9-CyclinA2?+?FG?+?MI groups. The sham, MI, and FG?+?MI groups were injected with an equal volume of normal saline or FG at the same sites. Five weeks after injection, echocardiography was performed to evaluate the left ventricular function. The expressions of CyclinA2, proliferating cell nuclear antigen (PCNA), and phospho-histone-H3 (H3P), vascular density, and infarct area were assessed by Western blot, immunohistochemistry, immunofluorescence, and Masson staining. As a result, the combination of rAAV9-CyclinA2 and FG increased ejection fraction and fractional shortening compared with FG or rAAV9-CyclinA2 alone. The expression level of CyclinA2 was significantly higher in the rAAV9-CyclinA2?+?FG?+?MI group compared with the rAAV9-CyclinA2?+?MI and FG?+?MI groups (70.1?±?1.86% vs. 14.74?±?2.02%, P?<?0.01; or vs. 50.13?±?3.80%; P?<?0.01). A higher expression level of PCNA and H3P was found in the rAAV9-CyclinA2?+?FG?+?MI group compared with other groups. Comparing with other experiment groups, collagen deposition and the infarct size significantly decreased in rAAV9-CyclinA2?+?Fibrin?+?MI group. The vascular density was much higher in the rAAV9-CyclinA2?+?FG?+?MI group compared with the rAAV9-CyclinA2?+?MI group. We concluded that fibrin glue combined with rAAV9-CyclinA2 was found to be effective in cardiac remodeling and improving myocardial protection.  相似文献   

8.
The formation of the proamniotic cavity is the first indication of programmed cell death associated to a morphogenetic process in mammals. Although some growth factors have been implicated in proamniotic cavitation, very little is known about the intracellular mechanisms that control the cell death process itself. Reactive oxygen species (ROS) are potent activators of cell death, thus, in the present work we evaluated the role of ROS during the cavitation of embryoid bodies (EBs), a common model to study proamniotic cavitation. During cavitation, ROS concentration increases in the inner cells of EBs, and this ROS accumulation appears to be associated with the mitochondrial respiratory activity. In agreement with a role of ROS in cavitation, EBs derived from ES cells that overproduce catalase, an enzyme that specifically degrades hydrogen peroxide, do not cavitate, and caspase activation and cell death is markedly decreased. Notably, cell death, but not the rise in ROS, during EB cavitation is caspase-dependent. The apoptosis-inducing factor (Aif) is released from the mitochondria during cavitation, but EBs derived from Aif−/y ES cells cavitate and ROS levels in the inner cells remain high. We conclude that hydrogen peroxide is a cell death activating signal essential for EB cavitation, suggesting that cell death during proamniotic cavitation is mediated by ROS.  相似文献   

9.
Ultrasound imaging of the prostate is commonly used to assess the size of the gland and for needle placement during systematic biopsy. Ultrasound evaluation of prostate cancer is limited by difficulty in distinguishing benign from malignant tissue. Although Doppler techniques may provide some improvement in the detection of prostate cancer, targeted biopsy based on conventional ultrasound with Doppler is not sufficient to replace systematic biopsy. Contrast-enhanced ultrasound imaging techniques that employ microbubble contrast agents represent an innovative approach to imaging of the neovascularity associated with prostate cancer. This review describes the application of contrast-enhanced ultrasound to improve detection and assessment of prostate cancer.  相似文献   

10.
《FEBS letters》2014,588(8):1446-1457
Connexin 43 (Cx43) hemichannels may form open channels in the plasma membrane when exposed to specific stimuli, e.g. reduced extracellular concentration of divalent cations, and allow passage of fluorescent molecules and presumably a range of smaller physiologically relevant molecules. However, the permeability profile of Cx43 hemichannels remains unresolved. Exposure of Cx43-expressing Xenopus laevis oocytes to divalent cation free solution induced a gadolinium-sensitive uptake of the fluorescent dye ethidium. In spite thereof, a range of biological molecules smaller than ethidium, such as glutamate, lactate, and glucose, did not permeate the pore whereas ATP did. In contrast, permeability of glutamate, glucose and ATP was observed in oocytes expressing Cx30. Exposure to divalent cation free solutions induced a robust membrane conductance in Cx30-expressing oocytes but none in Cx43-expressing oocytes. C-terminally truncated Cx43 (M257) displayed increased dye uptake and, unlike wild type Cx43 channels, conducted current. Neither Cx30 nor Cx43 acted as water channels in their hemichannel configuration. Our results demonstrate that connexin hemichannels have isoform-specific permeability profiles and that dye uptake cannot be equaled to permeability of smaller physiologically relevant molecules in given settings.  相似文献   

11.
The cell surfaces of two Chlamydia trachomatis serovars were explored by immune electron microscopy with monoclonal antibodies that recognize a number of chlamydial outer-membrane components. Species, subspecies and serovar-reactive epitopes on the major outer-membrane protein (MOMP) of a lymphogranuloma venereum biovar strain, L2/434/Bu, and a trachoma biovar strain, F/UW-6/Cx, were exposed on the surfaces of both elementary bodies (EBs) and reticulate bodies (RBs). Three epitopes on MOMP were inaccessible on EBs and RBs of both strains. These included a genus-reactive, species-reactive, and a subspecies-reactive epitope. In contrast, genus-specific epitopes on lipopolysaccharide (LPS) were not detected on the EB surface, but were clearly expressed on RBs of both L2/434/Bu and F/UW-6/Cx chlamydiae. Antibodies specific for the 60 kDa and 12 kDa 'cysteine-rich' outer-membrane proteins did not react with surface epitopes on either EBs or RBs. These data provide evidence that MOMP is a major surface antigen of both morphological forms, whereas some portions of the LPS molecule are exposed on the RB surface but become inaccessible to antibody after conversion to the infectious EB form.  相似文献   

12.
The mechanism(s) responsible for sudden cytolysis observed when cells are exposed to ultrasound could be mechanical and/or free radical in nature. Free radical reactions are initiated in the core and in the interfacial regions of collapsing acoustic cavitation bubbles. Because cyclic sugars are known to inhibit free radical chain reactions, we investigated the effects of n-alkyl-β-d-glucopyranosides of varying hydrophobicity on ultrasound (1.057 MHz)-induced cytolysis of HL-60 cells in vitro. n-Alkyl glucopyranosides with hexyl- (5 mM), heptyl- (3 mM), or octyl- (2 mM) n-alkyl chains protected 100% of the cell population from ultrasound-induced cytolysis under a range of conditions that resulted in 35 to 100% cytolysis in the absence of glucopyranosides. The protected cell populations also possessed long-term reproductive viability. However, the hydrophilic methyl-β-d-glucopyranoside could not protect cells, even up to a concentration of 30 mM. Furthermore, none of the glucopyranosides could prevent cytolysis of cells from a mechanically induced shear stress. Spin trapping and electron spin resonance experiments confirmed the presence of inertial cavitation in cell suspensions both in the presence and in the absence of the surfactants. It is concluded that surface-active glucopyranosides efficiently quench cytotoxic radicals and/or their precursors at the gas/solution interface of collapsing cavitation bubbles.  相似文献   

13.
Chronic exposure to Arsenic pollution in ground water is one of the largest environmental health disasters in the world. The toxicity of trivalent Arsenicals primarily happens due to its interaction with sulfhydryl groups in proteins. Arsenic binding to the protein can change the conformation of the protein and alter its interactions with other proteins leading to tissue damage. Therefore, much importance has been given to the studies of Arsenic bound proteins, for the purpose of understanding the origins of toxicity and to explore therapeutics. Here we study the dynamic effect of Arsenic on Connexin 43 (Cx43), a protein that forms the gap junctions, whose alteration deeply perturbs the cell-to-cell communication vital for maintaining tissue homeostasis. In silico molecular modelling and in vitro studies comparing Arsenic treated and untreated conditions show distinct results. Gap junction communication is severely disrupted by Arsenic due to reduced availability of unaltered Cx43 in the membrane bound form. In silico and Inductively Coupled Plasma Mass Spectrometry studies revealed the interaction of Arsenic to the Cx43 preferably occurs through surface exposed cysteines, thereby capping the thiol groups that form disulfide bonds in the tertiary structure. This leads to disruption of Cx43 oligomerization, and altered Cx43 is incompetent for transportation to the membrane surface, often forming aggregates primarily localizing in the endoplasmic reticulum. Loss of functional Cx43 on the cell surface have a deleterious effect on cellular homeostasis leading to selective vulnerability to cell death and tissue damage.  相似文献   

14.
The acoustic cavitation phenomenon constitutes a potential hazard in ultrasound diagnostics and therapy so that early and effective detection of cavitation is of great interest. However, cavitation might even bring a higher risk especially when an echocontrast agent based on microbubbles is used. The major goal of the present work was to develop a cavitation detection method based on increased level of cavitation noise in the range of low frequencies (about 1 Hz). This method was applied in vitro using a model of body fluid containing a model echocontrast agent, such as 5% solution of lyophilized egg albumin, which was sonicated by ultrasound disintegrator. Ultrasound signal evokes cavitation in microbubble suspension accompanied by a certain level of cavitation acoustic noise. The level of noise voltage increased in the frequency range of 0.1 to 2 Hz in the presence of cavitation. Hence, this method makes it possible to determine the value of cavitation threshold. In addition, we examined how the cavitation threshold is affected by temperature and viscosity. It was found that the cavitation threshold decreased with growing temperature while it increased with growing viscosity.  相似文献   

15.
16.
Gas-filled microbubbles attached to cell surfaces can interact with focused ultrasound to create microstreaming of nearby fluid. We directly observed the ultrasound/microbubble interaction and documented that under certain conditions fluorescent particles that were attached to the surface of live cells could be removed. Fluorescently labeled liposomes that were larger than 500 nm in diameter were attached to the surface of endothelial cells using cRGD targeting to αvβ3 integrin. Microbubbles were attached to the surface of the cells through electrostatic interactions. Images taken before and after the ultrasound exposure were compared to document the effects on the liposomes. When exposed to ultrasound with peak negative pressure of 0.8 MPa, single microbubbles and groups of isolated microbubbles were observed to remove targeted liposomes from the cell surface. Liposomes were removed from a region on the cell surface that averaged 33.1 μm in diameter. The maximum distance between a single microbubble and a detached liposome was 34.5 μm. Single microbubbles were shown to be able to remove liposomes from over half the surface of a cell. The distance over which liposomes were removed was significantly dependent on the resting diameter of the microbubble. Clusters of adjoining microbubbles were not seen to remove liposomes. These observations demonstrate that the fluid shear forces generated by the ultrasound/microbubble interaction can remove liposomes from the surfaces of cells over distances that are greater than the diameter of the microbubble.  相似文献   

17.
n-3 polyunsaturated fatty acids (n-3 PUFA) might regulate metabolism by lowering endocannabinoid levels. We examined time-dependent changes in adipose tissue levels of endocannabinoids as well as in parameters of glucose homeostasis induced by n-3 PUFA in dietary-obese mice, and compared these results with the effect of n-3 PUFA intervention in type 2 diabetic (T2DM) subjects. Male C57BL/6J mice were fed for 8, 16 or 24?weeks a high-fat diet alone (cHF) or supplemented with n-3 PUFA (cHF?+?F). Overweight/obese, T2DM patients on metformin therapy were given for 24?weeks corn oil (Placebo; 5?g/day) or n-3 PUFA concentrate as above (Omega-3; 5?g/day). Endocannabinoids were measured by liquid chromatography-tandem mass-spectrometry. Compared to cHF-fed controls, the cHF?+?F mice consistently reduced 2-arachidonoylglycerol (up to ~2-fold at week 24) and anandamide (~2-fold) in adipose tissue, while the levels of endocannabinoid-related anti-inflammatory molecules N-eicosapentaenoyl ethanolamine (EPEA) and N-docosahexaenoyl ethanolamine (DHEA) increased more than ~10-fold and ~8-fold, respectively. At week 24, the cHF?+?F mice improved glucose tolerance and fasting blood glucose, the latter being positively correlated with adipose 2-arachidonoylglycerol levels only in obese cHF-fed controls, like fasting insulin and HOMA-IR. In the patients, n-3 PUFA failed to reduce 2-arachidonoylglycerol and anandamide levels in adipose tissue and serum, but they increased both adipose tissue and serum levels of EPEA and DHEA. In conclusion, the inability of n-3 PUFA to reduce adipose tissue and serum levels of classical endocannabinoids might contribute to a lack of beneficial effects of these lipids on glucose homeostasis in T2DM patients.  相似文献   

18.
Pregnant CD-1 mice were injected with diethylstilboestrol (10 micrograms/kg body weight) in 0.1 ml maize oil, or maize oil alone, on Day 16 of gestation. Six experimental and 6 control female progeny were killed daily from birth until Day 7 and uterine tissues were examined by light microscopy. In-utero exposure to diethylstilboestrol resulted in hypertrophy of luminal epithelial cells and premature formation of uterine glands. The initial sign of uterine gland formation was invagination of the uterine surface epithelial cell layer into the underlying connective tissue stroma. A temporal difference occurred between control animals and those exposed to diethylstilboestrol: uterine gland formation first occurred in experimental progeny on Day 4, but not until Day 5 in control progeny. Uterine glands which extended deep into the connective tissue stroma to the myometrium were present in diethylstilboestrol-treated progeny by Day 7, but remained in the superficial endometrial connective tissue stroma in control animals. The results indicate that prenatal exposure of mice to diethylstilboestrol causes uterine epithelial cell hypertrophy at birth and the premature formation of uterine glands during the first week of neonatal uterine development.  相似文献   

19.
Abstract

We investigated the effects of 1.8?MHz Global System for Mobile Communications (GSM)-modulated microwave (MW) radiation on apoptotic level and cell viability of Burkitt’s lymphoma (Raji) cells with or without Gemcitabine, which exhibits cell phase specificity, primarily killing cells undergoing DNA synthesis (S-phase). Raji cells were exposed to 1.8?GHz GSM-modulated MW radiation at a specific absorption rate (SAR) of 0.350?W/kg in a CO2 incubator. The duration of the exposure was 24?h. The amount of apoptotic cells was analyzed using Annexin V-FITC and propidium iodide (PI) staining with flow cytometer. The apoptotic activity of MW exposed Raji cells was increased significantly. In addition, cell viability of exposed samples was significantly decreased. Combined exposure of MW and Gemcitabine increased the amount of apoptotic cells than MW radiation alone. Moreover, viability of MW?+?Gemcitabine exposed cells was lower than that of cells exposed only to MW. These results demonstrated that MW radiation exposure and Gemcitabine treatment have a synergistic effect on apoptotic activity of Raji cells.  相似文献   

20.
The present study was performed to elucidate the role of non-thermal effects (cavitation and direct effects) of ultrasound, in simultaneous combination with X-irradiation on the cytotoxicity of mouse L cells. Firstly, mouse L cells were exposed to X-rays and ultrasound (1 MHz continuous wave, spatial peak temporal average intensity; 3.7 W/cm2) simultaneously at 37 degrees C under O2 or Ar saturated conditions to examine the cavitational effect of ultrasound. Secondly, cells were exposed to X-rays and ultrasound at 37 degrees C under N2O saturated conditions, which suppresses the cavitation, to examine the direct effects of ultrasound. The cavitational effect under O2 and Ar saturated conditions induced an exponential decrease in cell survival, and resulted in an additive effect on cell killing with the combination of X-rays and ultrasound. The direct effect in the N2O conditions induced no cell killing and did not modify the cell killing induced by X-rays. These results suggested that the non-thermal effects of ultrasound did not interact synergistically with X-rays for cell killing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号