首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zkou?eli jsme vliv některých inhibitor? glykolýzy a dýchání na odbourávání volných glycid? a na mno?ství zplodin kva?ení ve vegeta?ních vrcholech p?enice,Triticum aestivum L., kultivar Chlumecká 12. Analýzy jsme prováděli ve 3 etapách organogeneze v 2. (vegetativní období), 3. (období fotoperiodické indukee) a 4. (po?átek zakládání květních orgán?) etapě organogenese. Izolované vegeta?ní vrcholy byly inkubovány ur?itou dobu v roztocích inhibitor? ve fosfátcitrátovém ústoji. Volné glycidy jsme stanovili metodou nátla?kové chromatografie a zplodiny kva?ení modifikovanou jodoformovou reakcí. DNP a azid zpomalily v pou?itých koncentracích odbourávání glycid? ve v?ech zkou?ených etapách organogeneze. Kyselina monojodoctová, NaFa Na-malonát měly tentý? ú?inek jen ve 3. a 4. etapě. V 2. etapě se odbourávání glycid? ú?inkem těchto inhibitor? urychlilo. Vlivem DNP se zmen?ilo mno?ství zplodin kva?ení ve v?ech etapách organogeneze. Mno?ství těchto látek nebylo ovlivněno malonátem a toté? platí pro kyselinu monojodoctovou a NaF ve 3. a 4. etapě organogeneze a pro azid ve 2. etapě. Azid ve 3. a 4. etapě někdy vedl ke zvý?ení mno?ství zplodin kva?ení, kyselina monojodoctová a Na-fluorid zp?sobily jejich pokles ve 2. etapě. Výsledky diskutujeme z hlediska mo?ného vysvětlení p?sobení jednotlivých inhibitor?. Vět?ina inhibitor? měla jiný ú?inek ve 2. etapě organogeneze ne? v dal?ích etapách. To se shoduje s d?ívěj?ím zji?těním, ?e u vegeta?ních vrchol? je v pr?běhu 3. etapy organogeneze nahrazeno kva?ení aerobními oxydázovými systémy.  相似文献   

2.
Postranní vzrostné vrcholy pta?ince [Stellaria media (L)Vill.] vytvá?ející se v ú?labí nejvy??ího páru list?, vznikají v nestejné době. Zatímco postranní vzrostný vrchol má zalo?ena ji? primordia list? prvního patra, u protilehlého vzrostného vrcholu se teprve vytvá?í jeho apikální ?ást. Tento ?asový rozdíl je jednou z p?í?in dal?í nerovnoměrnosti v r?stu a vývoji postranních větví. Tato nerovnoměrnost v době zakládání primordií postranních vzrostných vrchol? se zákonitě opakuje i p?i zakládání větví dal?ích ?ád?. ?asový rozdíl v době zakládání těchto postranních vzrostných vrechol? ?iní p?ibli?ně 2–3 dny.  相似文献   

3.
Pomocí volumetrického mikrorespirometru (podleZurzyckého) jsme sledovali intensitu dýchání vzrostných vrchol? ozimé p?enice ve t?ech etapách organogeneze, zachycujících p?echod z vegetativního do generativního stavu. Nízká intensita dýchání ve v?ech pou?itých kritériích (na jeden vrcholek, na jednotku su?iny i bílkovinného dusíku) byla nalezena ve 2. a 3. (vegetativní) etapě, vy??í ve 4. (generativní) etapě. Zji?těné rozdíly jsou pravděpodobně spojeny s anatomickými změnami vzrostných vrehol? během diferenciace. Jde zejména o vzr?stající podíl prodlu?ující se centrální d?eňové ?ásti a o diferenciaci laterálních pupen? spojenou s nástupem 4. etapy. P?edpokládáme, ?e tyto změny jsou spojeny s květní indukei pouze nep?ímo a ?e spí?e odrá?ejí celkovou p?estavbu apikálního meristému v pr?běhu ontogenese.  相似文献   

4.
Metodikou fotoperiodických pokus? a analys vzrostných vrchol? jsme zjistili závislost typu výsledné morfologické abnormity na vývojovém stupni vzrostného vrcholu p?ed fotoperiodickým zásahem. Abnormálně velký po?et klásk? vznikal po zásahu u rostlin se zcela vegetativním vzrostným vrcholem. K větvení klasu do?lo nejvíce po zásahu v době prodlu?ování vzrostného vrcholu. Abnormální vývin podp?rných listen? odpovídal zásahu mezi zakládáním klásk? a zakládáním kvítk? v kláscích. ?ím d?ívěj?i byl tento zásah, tím ú plněji byly podp?rné listeny vyvinuty. První dvě odchylky p?edstavují nadpo?etný r?st osních ?lánk? v květenství, vývin podp?rného listenu je známkou posunutí korelace mezi r?stem listenu a generativním vývojem jeho ú?labního klásku. U poslední odchylky, ?ídkého klasu, která vzniká po zásahu v době zakládání ty?inek, ji? nedochází k takovému naru?ení vztahu mezi r?stem a vývojem. P?i fotoperiodickém zásahu dochází k indukci abnormální morfogenese, která pak m??e probíhat i po ukon?ení zásahu.  相似文献   

5.
Ve fotoperiodických pokusech s jarní p?enicí Niva jsme sledovali pr?běh fotoperiodické citlivosti a umístění období fotoperiodieké reakce v ontogenesi rostlin. Nepoda?ilo se nám u této dlouhodenní rostliny najít takové období, během něho? by zkrácený den v?bec neměl vliv na rychlost vývoje. Některé údaje v?ak nazna?ují, ?e m??eme vymezit období zvý?ené fotoperiodieké citlivosti, které by odpovídalo období fotoperiodieké reakce u krátkodenních rostlin. Výsledky nasvěd?ují rovně? tomu, ?e toto období nekon?í náhle, nýbr? postupně p?echází v následující období, kdy délka dne p?sobí na rychlost vývoje ji? jen prost?ednietvím fotosynthesy. Tento vliv je dob?e; patrný p?i pou?ití takových indikátor? jako je vývoj vzrostného vrcholu a metání. Existenci p?echodného období na konci období zvý?ené fotoperiodieké citlivosti a jeho souvislosti s fází vzrostného vrcholu od zakládání klísk? do zakládání ty?inek je t?eba ově?it dlouhodobím pokusem v p?ísně regulovatelních podmínkách. Z metodik sledování pr?běhu fotoperiodieké citlivosti se u na?eho pokusného materiálu nejlépe osvěd?ilo metání, které poskytlo k?ivky s ur?itými, více nebo méně z?etelnými zloniy, a také sledování abnormit (p?i klasickém uspo?ádání pokusu), které indikují naru?ení vztahu mezi r?stem a vývojem. Orienta?ní údaje poskytlo rovně? mě?ení délky rostlin u klasického uspo?ádáni pokusu. Nejméně spolehlivé byly v na?ich pokusech analysy vývojového stavu vzrostného vrcholu.  相似文献   

6.
K pokus?m jsme pou?ili ?erstvých oddenk? pýru plazivého (Agropyrum repens L.) a jarní p?enice Nivy. Kultiva?ní pokusy jsme prováděli v Mitscherlichových nádobách v písku a v kompostové zemině na zahradě. Délka spole?ného r?stu pýru a p?enice trvala vesměs kolem 30 dní. Byl stanoven r?st pýru, r?st nadzemních ?ástí p?enice, intensita dýchání, obsah vody a obsah cukr? v nadzemních ?ástech p?enice. Výsledky pokus? ukázaly, ?e ?ím intensivněji nar?stal pýr v kultiva?ních nádobách, tím více se sni?oval r?st p?enice a rovně? tak poklesl obsah vody v jejich nadzemních ?ástech a zna?ně se změnil i obsah glycid?. Intensita dýchání se p?i men?ím mno?ství pýru v nádobách vět?inou poněkud zvedala, p?i největ?ím mno?ství pýru ji? poněkud poklesala. Ve srovnání s r?stem byla v?ak velmi málo ovlivněna. Z toho je patrno, ?e produktivnost dýchacích proces? p?enice vlivem pýru byla zna?ně sní?ena. K hlub?ímu objasnění těchto změn bude t?eba dal?í jejich studium.  相似文献   

7.
D?ívěj?í práci, v ní? jsme hodnotili pr?běh vývoje podle fenologie a podle vzniku abnormit, jsme nyní doplnili mě?ením délky list?. Pr?běh vývoje jsme ovlivňovali fotoperiodiekou inhibicí v r?zné fázi vývoje vzrostného vrcholu. Ovlivnění pr?běhu vývoje se projevilo změnou délky pochvy a ?epele listu. ?epel byla ovlivněna více ne? pochva. V ?adě variant s r?zným za?átkem fotoperiodické inhibice do?lo k prodlou?ení nebo ke zkrácení pochvy a ?epele horních t?í list? proti p?íslu?ným list?m kontroly. Ke zkrácení do?lo u list?, které se vyvinuly nad obvyklý po?et z p?vodních základ? brakteí. Bylo to u variant s velmi ranou inhibicí. Varianty s pozděj?í inhibicí mají jednak abnormálně redukované listy so zakrnělými ú?labními klásky, jednak prodlou?ené listy, které svojí délkou p?ipomínají ontogeneticky mlad?í, ni??í listy. Ukázalo se, ?e i u tak obtí?ného materiálu jako je p?enice m??e být morfologie list? spolehlivým záznamem pr?běhu vývoje.  相似文献   

8.
P?i prohlí?ení svého bohatého materiálu mixoploidních ko?enových vrchol? nalezl jsem ko?eny, které, jak se zdálo, se zbavovaly polyploidních sektor? tím, ?e se roz?těpily v ?ást diploidní a polyploidní. Od?těpení polyploidních provazc? jsou sice dosti ?astá, ale v p?ípadech zde popsaných vytvá?í diploidní sektor nový ko?enový vrchol, polyploidní zastaví pozvolna sv?j r?st, kde?to nově rozli?ený vrchol roste dále. Také to je ur?itý zp?sob samo?i?tění a diploidisace mixoploidního vrcholu. P?edpokladem ov?em je ?e se vrchol skládal p?vodně asi z poloviny nebo více z buněk diploidních, ve druhé ?ásti polyploidních. Potom dojde ve vrcholovém meristému diploidní ?ásti k diferenciaci samostatného diploidního vrcholu, kde?to polyploidní vrcholová ?ást pozvolna nebo náhle dělení svých buněk zastaví, po nějakou dobu se prodlu?uje a kone?ně je roztrhána a odum?e. Mohl jsem některé p?ípravy k samo?těpení v poměrně raných stadiích pozorovat.  相似文献   

9.
Byla studována transpirace listových ?epelí zavla?ovaných a nezavla?ovaných rostlin jarní p?enice v závislosti k obsahu a k r?stovým změnám pokusných rostlin v pr?běhu jejich vývoje. Pou?ité závlahy stimulovaly r?st a nepatrně zpomalily vývoj pokusných rostlin. Zvy?ovaly v rostlinném těle p?edev?ím obsah vody a méně ji? su?inu. Kvantitativní a kvalitativní vlastnosti obsahu vody v rostlině ovlivňovaly nejen transpiraci, nýbr? i vznik nových a odumírání starých orgán? a tkání, p?edev?ím ?epelí listových. Transpirace u zavla?ovaných rostlin byla výrazné vy??í ne? u rostlin nezavla?ovaných. Pr?měrné hodnoty transpirace u jednotlivých ?epelí listových byly z?etolně odli?né a pro ka?dou ?epel listovou charakteristické. Z hlediska statického bylo mo?no některé vztahy a heterogenitu jednotlivých ?epelí listových na tém?e stéblu vyjád?it a v podstatě i vysvětlit “Zalenského zákonem”. Týkalo se to zejména pr?měrných hodnot r?stových charakteristik a studovaných rys? vodního provozu. Naproti tomu z hlediska dynamického bylo mo?no jednotlivé ?epele listové rozdělit podle změn transpirace do dvou skupin. Do prvé skupiny pat?í ?epel prvého a? t?etího listu, do druhé skupiny pak ?epel ?tvrtého a? ?estého listu a klas. Regula?ní schopnosti jednotlivých ?epelí listových v hospoda?ení s vodou vynikají v období odno?ování, sloupkování a mlé?né zralosti. V těchto vývojových fázích byla vysvětlena také nápadná sní?ení transpirace rostlin, která jsou zp?sobena v prvé ?adě vnit?ními a nikoliv jen vněj?ími faktory.  相似文献   

10.
Plodono?e měly v?dy vy??í obsah celkového dusíku a v?dy vy??í pomérný i absolutní obsah rozpustného organického dusýku ne? nové prir?stky plodonos? na stromech s plody i bez plodu a nez novy plodovy obrost na stromech s plody. Tento vyssí obsah celkového i rozpustného dusiku je piedevsim vlastností orgánu a nema nie spolecného se zakládáním květnieh pupenu. Nové pfirustky plodonos? na stromech s plody neměly nikdy pr?kazně vyssí obsah rozpustného dusiku nez nové prir?stky plodonos? a nové prir?stky plodového obrostu na stromech bez plodu. U vsech sledovanych odrud jabloně byl zjistěn stejny kvalitativni obrazee volnych aminokyselin a amid? a v odpovídajících osních cástech take obdobny pomér volnych aminokyselin a amid?. Největsi mnozství volnych amino-kyselin a amidu - obzvláste asparaginu a argininu-bylo zjistěno v plodonosích. V plodonosíeh byl arginin akumulován ve velké mífe mnohem dííve nez v novych prir?stcich plodonos? a nez v novych pfir?stcich plodového obrostu. K akumulaci argininu a asparaginu v plodonosích docházelo i pri nedostateeném zásobení dusíkem, v novych pfir?stcich plodonos? byl vsak jejich obsah pii nedostatku dusiku velmi nizky. V plodonosích s plody byl také dosti zvyseny obsah glutaminu a v nekterych pfípadech i threoninu. Glutamová kyselina, glutamin a někdy také threonin byly zastoupeny о песо vice v mladsích osách nez v osách starsích, jiz zdievnatělych. Z vysledkú uvedenych v teto práci lze uzavrít, ze mezi obsahem a poměrem rozpustného a nerozpustného dusiku v plodovém obrostu jabloní na jedné strane a zakládáním květnieh pupenu na druhé strane není zádny zrejmy vztah. Mezi obsahem volnych aminokyselin a amid? v sledovanych osních cástech jabloně a zakládáním květnieh pupenu nebyl rovněz zjistěn zádny zrejmy vztah.  相似文献   

11.
V práci byl sledován vliv p?edplodin lnu, ?ita, máku a ho??ice na následné plodiny tého? nebo jiného druhu p?i bezprost?edním vysévání po sobě a p?i vysévání v r?zně dlouhých ?asových intervalech s odstupňovanou délkou odpo?ívání zeminy. Pokusy byly prováděny v nádobách naplněných kompostovou zeminou, které byly umístěny na pokusné zahradě. Byl hodnocen r?st p?edplodiny a následné plodiny stanovením su?iny nadzemních ?ástí a ko?en?. Během r?stu následných rostlin byly odebírány vzorky zemin, v nich? byl stanoven obsah fyziologicky p?istupného dusíku, fostoru a draslíku. V?echny ?ty?i pou?ité p?edplodiny p?sobily pr?kazné změny v r?stu následných rostlin. Len a mák pěstované jako p?edplodiny p?sobily na následné rostliny lnu a cukrovky prost?ednictvím p?dních autopatických ?i allelopatických faktor?. Ú?inek ?ita jako p?edplodiny na ?ito a ho??ice na je?men byl méně výrazný. Z výsledk? se nedá v posledních dvou p?ípadech p?ímo usuzovat na p?ítomnost autopatických nebo allelopatických faktor?. P?i bezprost?ední kultivaci následných rostlin v zemině po p?edplodině bez odpo?ívání byla zji?těna jen inhibice r?stu. Pokusy s odstupňovanou délkou odpo?ívání zeminy dávají mo?nost zachytit celou ?kálu r?stových změn následných rostlin od inhibice ke stimulaci. Ú?inek p?edplodiny na následnou plodinu se zna?ně měnil s délkou odpo?ívání zeminy po p?edplodině. Změny r?stu následných rostlin nekorelovaly—kromě pokusu s ?item a ?áste?ně s ho??icí—se změnami v obsahu sledovaných ?ivin, ani s mno?stvím narostlé p?edplodiny.  相似文献   

12.
V popsaných pokusech byl vliv letního odlistování na zakládání květních pupen? do zna?né míry závislý na odr?dě a byl silněj?í u strom? vykazujíeích bujněj?í r?st.  相似文献   

13.
P?i vývoji listu p?enice se zmen?uje stupeň inhibice dýchání fluoridem, monojodacetátem a malonátem a poměr mezi radioaktivitami14CO2 uvolněného z glukosy-6-14C a glukosy-l-14C (C6/C1), co? svěd?í o zvět?ování podílu pentosovího cyklu v celkové respiraci. Tato změna v?ak neni zp?sobena absolutním zvět?ením aktivity pentosového eyklu u star?ích list?, nýbr? p?edev?ím poklesem aktivity glykolytického systému. Naproti tomu u list? oddělených od obilky se pri sní?ení vlhkosti atmosféry méní poměr mezi dýchacími cestami v d?sledku aktivace pentosového cyklu. Na základě disproporce mezi procentem glykolytického podílu respirace vypo?tenym ze sní?ení poměru C6/C1 p?i inhibici dýchání fluoridem a procentem inhibice dý chání fluoridem bylo diskutováno o mo?ných p?íoinách vysokých poměr? C6/C1 u mladých list?, u nich? byly v některých p?ípadech zji?těny hodnoty těchto poměr? dokonce vy??í ne? jedna.  相似文献   

14.
Nalézají-li se polyploidní buně?né provazce nebo sektory na periférii ko?enového vrcholu, mohou jejich iniciály zastavit své dal?í dělení a polyploidní tkáň m? ? ezrosolovatěním a rozpu?těním hrani?ních blan být od vrcholu odlou?ena. Je to pochod chorize, který je obdobný odlupování buně?ných vrstev postranní ko?enové ?epi?ky. V mixoploidních vrcholech jsou odlu?ovány polyploidní provazce nebo sektory, které jenom někdy obsahují té? několik vtrou?ených ?ad diploidních buněk. Tento odlu?ovací pochod m??e p?ispět podstatně diploidizaei mixoploidních ko?enových vrchol?. Méně ?asto m??e vrchol obsahující vět?inu polyploidních buněk, zvlá?tě kdy? zaujímají plerom, odlou?it periferní diploidní buně?né vrstvy, ?ím? se m??e stát ?isté polyploidním. I v p?írodě m??e takovým pochod?m docházet, nebo? vněj?í ?initelé snadno mohou v ko?enech vyvolat vznik polyploidních buněk. Polyploidní buňky p?sobí -nejspí?e hmotně - jako cizí elementy na zápoj v buňkách diploidních.  相似文献   

15.
U 100 a? 120denných rostlin krmné kapusty a ?epky byly sledovány rozdíly v dynamice vzniku a dal?ího vývoje momentálního vodního deficitu (VD) u r?zně starých list?. VD byl stanovován ter?íkovou metodou s extrapolaí dosycovací k?ivky do po?átku (?atský 1962b). U list?, oddělených od rostliny a vadnoucích bez p?ísunu vody, je VD nejvy??í u mladých a nejni??í u starých list?, tedy v podstatě odpovídá rozdíl?m v intensité transpirace. P?i od?íznutí celé rostliny vadnou listy r?zného stá?í v podstatě stejnou intensitou. V pozděj?ích fázích vadnutí byly v některých pokusech stanoveny mírně vy??í hodnoty VD starých list?. P?i pomalém vadnutí rostliny in situ, indukovaném sni?ováním p?dní vlhkosti, byla po?ínaje st?edními hodnotami VD, tj. pr?měrně od 8 a? 20 % stanovena velmi z?etelná preference mladých list? v zásobování vodou. P?i celkovém nedostatku vody v rostlině nejprve silně vadnou a později odumírají starí a dospělé listy; VD mladých list? se dlouho udr?uje na poměrně nízkých hodnotách. Tento pr?běh vadnutí rostliny in situ byl stanoven jak p?ímým mě?ením VD, tak i nep?ímo stanovením poklesu procentuálního obsahu vody v listech. Na zji?těné preferenci mladých list? v zásobování vodou se uplatňuje i translokace vody do mladých list? z vadnoucích list? star?ích.  相似文献   

16.
V práci jsem zji?tovala, zda podmínky kultívace ?as ovlivńují ?espira?ní metabolismus. Rasy Chlorella pyrenoidosa (82), Scenedesmus obliquus (125) a Euglena gracilis (259) byly pěstovány ve t?epané a stojaté kultu?e. T?epáním kultur je podstatně ovlivněn respira?ní metabolismus ?as. T?épané kultury mají na rozdíl od stojatých sní?enou spot?ebu O2 a vět?inou odli?né RQ. Je mo?né, ?e zji?těné rozdíly jsou podmíněny zrychleným vývojem a stárnutím t?epaných kultur. Je tedy t?epání jako zp?sob kultivace významným faktorem, který je nutno respektovat p?i pěstování experimentálního materiálu. Namě?ené hodnoty respira?ního kvocientu okolo 1,3 svěd?í pro to, ?e anaerobní glykolytické pochody mohou probíhat i za dokonalého p?ístupu vzduchu do media. Kultura Scenedesmus obliquus (125) má pravděpodobně málo p?izp?sobivý metabolismus a na změny prost?edí nereaguje tak citlivě jako Euglena gracilis nebo Chlorella pyrenoidosa.  相似文献   

17.
Natriumfluorid, monojodacetát a malonát brzdí, pop?ípadě stimulují, dýchání ko?en? p?enice pěstované 2 a? 10 dní v roztoku humátu sodného (100 mg/l) silněji, ne? dýchání ko?en? rostlin pěstovaných ve vodě. Obdobně p?sobí natriumfluorid na dýchání list?. Poměr radioaktivit C14O2 uvolněného z glukosy zna?ené v poloze 1 nebo 6 (C6/C1) je pr?kazně zvý?en u ko?en?, nikoli v?ak u list?. Změna tohoto poměru je doprovázena zmen?ením celkové radioaktivity C14O2 uvolněného ko?eny rostlin ovlivněnými humátem z glukesy specificky i totálně zna?ené. Endogenní respirace (QO2) ko?en? je p?sobením humátu zesílena o 5–30 %, intensita respirace list? z?stává na stejné úrovni. R?st ko?en? do délky je v prost?edí s humátem intensivněj?í o 20–80 %, r?st list? o 5–15%. Uvedená zji?tění vedou k závěru, ?e v ko?enech rostlin pěstovaných v roztoku humátu vzr?stá podíl glykolysy v respira?ním metabolismu.  相似文献   

18.
V práci byla sledována mo?nost allelopatického ovlivňování následných rostlin p?edplodinami p?i kultivaoi v odstupňovaných ?asových intervalech po sobě v té?e zemině u tě chto kombinací: mák — cukrovka, ho??ice — je?men, konopí — ?ito, cibule — ?epka. Pokusy byly prováděny v kvítiná?ích s kompostovou zeminou, umístěných během pokusu na zahradě a zapu? těných do p?dy. Byl sledován r?st p?edplodin a následných rostlin v po?áte?ních fá zích r?stu. P?ed vysetím následných rostlin byla stanovena u odebraných vzork? zemin intensita respirace, okam?itá vlhkost a obsah fyziologicky p?ístupného dusíku, fosforu a draslíku. Ve v?ech zkou?ených kombinacích byly následné rostliny ovlivněny kultivací p?edplodiny a následným ulo?ením zeminy. Změny r?stu následných rostlin ?áste? ně korelovaly s obsahem fyziologicky p?ístupného dusíku v zemině. Podle jejich charakteru v?ak bylo té? patrno, ?e se na nich podílely i allelopatické faktory. Zna?ně inhibi?ně p?sobil mák na cukrovku, mé ně inhibi?ně p?sobila ho??ice na je?men a cibule na ?epku. ??inek konopí na ?ito byl promě nný s dobou ulo?ení zeminy. Změny v obsahu fyziologicky p?ístupného dusíku, fosforu a draslíku v pokusné zemině neodpovídaly . mno?ství narostlé p?edplodiny, co? bylo podmíněno pou?itou kultiva?ní metodikou. Poměrně rychlé doplňování p?edplodinou vy?erpaných dusi?nan? v pokusné zemině s dobou jejího ulo?ení bylo pravděpodobně podmíněno nitrifikacními procesy. Podle stanovených změn intensity respirace pokusné zeminy se na allelopatickém ovlivnění mohla podílet i pudní mikroflora.  相似文献   

19.
V souvislosti s d?ívěj?imi údaji (Lu?tinec a Krektjle 1959, Lu?tinec, Krekule a PokornÁ 1960) o silném inhibi?ním ú?inku fluoridu na dychání rostlin pěstovaných v roztoku kyseliny giberelové byl pomocí specificky zna?ené glukosy a respira?ních inhibitor? zji?tován vztah krátko- i dlouhodobého p?sobení kyseliny giberelové k poměru mezi podíly glykolytického a pentosofosfátového odbourání v respiraci list? p?enice. V souhlase s výsledky Fanga a spol. (1960) byIo zji?těno, ?e kyselina giberelová v koncentracích 2 a? 80 mg/l neovlivńuje během několikahodinového p?sobení na roz?ezané listy p?enice poměr radioaktivit14CO2 uvolněného z glukosy-6-14C a -1-14C (C6/C1) ani nemění v koncentraci 10 mg/l stupeń inhibice dýchání fluoridem, monojodacetátem a malonátem a spot?ebu kyslíku. Výdej14CO2 z glukosy-l-14C a -6-14C kyselina giberelová sni?uje v lineární závislosti na pou?itých koncentracích. U rostlin pěstovaných v roztoku kyseliny giberelové (10–20 mg/l) se rychleji sni?uje poměr C6C1 i absolutní hodnoty radioaktivity během několika dní od vyklí?ení, ne? u rostlin pěstovaných ve vodě. To svěd?í o rychlej?ím zvět?ování podílu pentosového cyklu v respiraci pokusných rostlin. Fluorid brzdí p?i stejném nebo men?ím obsahu ve tkáni dýchání list? rostlin pěstovaných v roztoku kyseliny giberelové silněji ne? dýchání rostlin pěstovaných ve vodě, zatimco ûcinek monojodacetátu a malonátu je u stejně starých rostlin (4 dny) obou variant stejný. O mo?ných p?í?inách tohoto jevu bylo diskutováno.  相似文献   

20.
Sní?ení intenzity osvětlení po ur?itou mez vedlo u ozimých a poloozimých odr?d p? enice, jako? i u p?esívek k urychlení vývoje vegeta?ního vrcholu hlavní osy, kde?to vývoj jarní odr?dy byl tímto zásahem zpomalen. U rostlin, jejich? vývoj byl sní?ením intenzity světla urychlen, byla váha suché nadzemní hmoty ni??í a obsah glycid? ve vegeta?ním vrcholu hlavní osy vy??í ne? u kontrolních rostlin rostoucích na normálním dni. Rostliny dlouhobě jarovizované měly rychlej? í vývoj a ni??í váhu nadzemní hmoty ne? rostliny jarovizované po normální dobu. Urychlující vliv sní?ení intenzity světla na vývoj rostlin je vysvětlen změnou zp?sobu r?stu, který je spjat s větsim p?ítokem asimilát? do vegeta?ních vrchol?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号