首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The functional role of burst firing (i.e. the firing of packets of action potentials followed by quiescence) in sensory processing is still under debate. Should bursts be considered as unitary events that signal the presence of a particular feature in the sensory environment or is information about stimulus attributes contained within their temporal structure? We compared the coding of stimulus attributes by bursts in vivo and in vitro of electrosensory pyramidal neurons in weakly electric fish by computing correlations between burst and stimulus attributes. Our results show that, while these correlations were strong in magnitude and significant in vitro, they were actually much weaker in magnitude if at all significant in vivo. We used a mathematical model of pyramidal neuron activity in vivo and showed that such a model could reproduce the correlations seen in vitro, thereby suggesting that differences in burst coding were not due to differences in bursting seen in vivo and in vitro. We next tested whether variability in the baseline (i.e. without stimulation) activity of ELL pyramidal neurons could account for these differences. To do so, we injected noise into our model whose intensity was calibrated to mimic baseline activity variability as quantified by the coefficient of variation. We found that this noise caused significant decreases in the magnitude of correlations between burst and stimulus attributes and could account for differences between in vitro and in vivo conditions. We then tested this prediction experimentally by directly injecting noise in vitro through the recording electrode. Our results show that this caused a lowering in magnitude of the correlations between burst and stimulus attributes in vitro and gave rise to values that were quantitatively similar to those seen under in vivo conditions. While it is expected that noise in the form of baseline activity variability will lower correlations between burst and stimulus attributes, our results show that such variability can account for differences seen in vivo. Thus, the high variability seen under in vivo conditions has profound consequences on the coding of information by bursts in ELL pyramidal neurons. In particular, our results support the viewpoint that bursts serve as a detector of particular stimulus features but do not carry detailed information about such features in their structure.  相似文献   

2.

Key message

The paper demonstrates the prospects and applications of dendrochronology for understanding climate change effects on riparian forests in the savanna landscape. 

Abstract

Riparian trees in savannas have a potential for dendro-climatic studies, but have been neglected hitherto. We examined ring-width series of Afzelia africana (evergreen) and Anogeissus leiocarpus (deciduous) to study the influence of climatic factors on the growth of riparian trees in the humid (HS) and dry (DS) savanna zones of the Volta basin in Ghana. A total of 31 stem discs belonging to A. africana and A. leiocarpus were selected from HS and DS to establish species-specific local chronologies of tree growth. Each individual of A. africana and A. leiocarpus from the two savanna sites showed distinct growth rings. Cross-dating of individual tree-ring patterns was successful using standard dendrochronological techniques. The mean annual growth rates of A. africana in the HS (1.38 ± 0.09) and DS (1.34 ± 0.08) were not statistically different. Furthermore, mean annual growth rate of A. leiocarpus in the DS (3.75 ± 0.27) was higher than in the HS (2.83 ± 0.16) suggesting that species in drier environment can have higher growth rates when sufficient soil moisture is available. The growth rates of both species at the same sites were different, which might indicate different water use strategies. High correlations of individual tree-ring series of A. africana and A. leiocarpus trees at HS and DS suggest a strong climatic forcing controlled by the seasonal movement of the inter-tropical convergence zone. The annual growth of A. africana and A. leiocarpus at both the HS and DS was significantly correlated with local temperature and precipitation. The negative correlations of the growth of the two tree species to global sea surface temperatures were however, indications that the growth of riparian forests can be impacted during El Niño-Southern Oscillation years. The result of our study shows that riparian trees in the humid and dry savanna zones of West Africa can be successfully used for dendrochronological studies.
  相似文献   

3.
Strawberry is one of the most economically important fruit crops in the world. Cytokinins (CKs) play a critical role in plant growth and development, as well as the stress response, and the level of CKs in plants is regulated by synthesis and degradation pathways. The key synthetic enzymes of CKs are isopentenyl transferases (IPTs) and LONELY GUYS (LOGs). We surveyed the strawberry genome and identified seven FvIPT genes and nine FvLOG genes. We analyzed gene structures, conserved domains, and their phylogenetic relationships with rice and Arabidopsis. The isoelectric points and glycosylation sites of the proteins were predicted. We also analyzed tissue- or organ-specific expression patterns of the FvIPT and FvLOG genes. The FvIPT and FvLOG genes showed different expression profiles in different organs. Most FvIPT and FvLOG genes were down-regulated in response to osmotic stress, high-temperature treatment, and exogenous abscisic acid (ABA) application, suggesting possible roles of these genes in the plants’ resistance to abiotic stresses. In addition, we found that the results of bioinformatics analyses to identify cis-regulatory elements may not be consistent with experimental expression data; thus, computer-predicted putative cis-elements need to be confirmed by experiments. Our systematic analyses of the FvIPT and FvLOG families provide a foundation for characterizing the function of these genes in the regulation of growth, development, and stress tolerance in Fragaria vesca, as well as a reference for improving stress tolerance by manipulating CK content.  相似文献   

4.
Xylan represents a major component of lignocellulosic biomass, and its utilization by Saccharomyces cerevisiae is crucial for the cost effective production of ethanol from plant biomass. A recombinant xylan-degrading and xylose-assimilating Saccharomyces cerevisiae strain was engineered by co-expression of the xylanase (xyn2) of Trichoderma reesei, the xylosidase (xlnD) of Aspergillus niger, the Scheffersomyces stipitis xylulose kinase (xyl3) together with the codon-optimized xylose isomerase (xylA) from Bacteroides thetaiotaomicron. Under aerobic conditions, the recombinant strain displayed a complete respiratory mode, resulting in higher yeast biomass production and consequently higher enzyme production during growth on xylose as carbohydrate source. Under oxygen limitation, the strain produced ethanol from xylose at a maximum theoretical yield of ~90 %. This study is one of only a few that demonstrates the construction of a S. cerevisiae strain capable of growth on xylan as sole carbohydrate source by means of recombinant enzymes.  相似文献   

5.
6.
The role of brassinosteroids (BRs) in hyponastic growth induced by submergence was investigated in Arabidopsis thaliana. Under flooding conditions, exogenously applied BRs increased hyponastic growth of rosette leaves. This hyponastic growth was reduced in a BR insensitive mutant (bri1-5), while it was increased in a BR dominant mutant (bes1-D). Further, expression of hypoxia marker genes, HRE1 and HRE2, was elevated in submerged bes1-D. These results indicate that BRs exert a positive action on hyponastic growth of submerged Arabidopsis leaves. Expression of ethylene biosynthetic genes, such as ACS6, ACS8 and ACO1, which are up-regulated by submergence, was also activated by application of BRs and in bes1-D. The enhanced hyponastic growth in submerged bes1-D was significantly reduced by application of cobalt ion, suggesting that BRs control hyponastic growth via ethylene, which seems to be synthesized by ACO6 and ACO8 followed by ACO1 in submerged leaves. A double mutant, bes1-Dxaco1-1, showed hyponastic growth activity similar to that seen in aco1-1, demonstrating that the BR signaling for regulation of hyponastic growth seems to be an upstream event in ethylene-induced hyponastic growth under submergence in Arabidopsis.  相似文献   

7.
Understanding intraspecific interactions among Persian oaks is essential to predict the responses of Zagros dry woodlands purely covered by these coppice trees to environmental changes (such as drought) that have direct effects on the sustainability of these woodlands. This investigation attempted to explore the scale-dependent competition among Persian oaks and highlight the impacts of competitive interactions on their biophysical properties (i.e. tree height, diameter at root collar and crown attributes) via point pattern analysis. Structurally different summary statistics were implemented to analyse the spatial pattern of Persian oaks in a pure 9-ha study plot. Nearest neighbour distribution function D(r) indicated that these coppice trees had no nearest neighbours up to the spatial scale of 2 m, and they all had a nearest neighbour at distances shorter than 12 m. Furthermore, pair correlation function g(r) showed the significant dispersion of Persian oaks up to the scale of 5 m, which may be the outcome of intraspecific competition for resources such as soil nutrients and water. As explored by mark variograms γ m (r), Persian oaks of the same size had significant spatial correlations that illustrated the competitive (not facilitative) interactions of these coppice trees in the study plot. Mark correlation function k mm (r) additionally revealed negative correlations of height and radial growth up to large spatial scales. Consequently, the outcome of this study highlighted the significant effects of competitive intraspecific interactions among Persian oak coppice trees on their spatial pattern and biophysical properties.  相似文献   

8.
Biotic interactions in a mixed culture of two microalgae species—Scenedesmus quadricauda (Turp.) Breb. and Monoraphidium arcuatum (Korsch.) Hind.—used in bioassay in monocultures as test objects were studied. The toxic effect of cell-free filtrates from different “age” monoculture (2, 7, 10, 15, 21, and 28 days) of S. quadricauda on the growth of the “young” test culture of M. arcuatum and, conversely, the toxic effect of cell-free filtrates from the different “age” (2, 7, 10, 15, 21, and 28 days) monoculture of M. arcuatum on the growth of the “young” test culture of S. quadricauda was evaluated. Simultaneously, the toxicity of their own filtrates of different “ages” was monitored by a test culture of each species. The interactions of the species in the mixed culture can be regarded as negative, as an antagonistic one, when both populations inhibit the growth of each other through metabolites and food resource competition, while the effect of S. quadricauda on M. arcuatum is much stronger. The main factor constraining the growth of monoculture S. quadricauda is the rapid depletion of the food resource from the medium and not the inhibition of growth by its own metabolites. The depletion of the food resources from the medium in monoculture of M. arcuatum occurs much later than in monoculture of S. quadricauda. Metabolites of S. quadricauda cause a strong inhibitory effect on the growth of M. arcuatum, and the metabolites of M. arcuatum cause a weak inhibitory effect on the growth of S. quadricauda. The filtrates of the “old” culture of S. quadricauda (21–28 days) cause the greatest inhibitory effect on cell division of M. arcuatum. The filtrates of the “old” culture of S. quadricauda (21–28 days) cause the greatest inhibitory effect on cell division of M. arcuatum. Comparative analysis of the cell number dynamics of two species, S. quadricauda and M. arcuatum, in mono- and two-species algal cultures, as well as experiments with filtrates of these monocultures, showed that the interaction of species can be explained by the food resource competition and allelopathic interaction (exometabolite effect).  相似文献   

9.
Do trade-offs between growth and reproduction differ between an invasive and noninvasive plant species and how do such trade-offs relate to population demographics? To help address these questions, we compared demographics for an invasive plant species, Rubus discolor, with a noninvasive congener, R. ursinus, in several populations of varying density. Removal of floral buds from reproductive canes increased the size of juvenile canes that arose from clonal sprouting in R. ursinus, suggesting a trade-off between current reproduction and growth. Removal of floral buds had no effect on growth of R. discolor. R. ursinus displayed trade-offs between reproduction (sexual and vegetative) and future growth based on negative correlations between leaf area production and both clonal sprouting and seedling production during the previous year. R. discolor did not exhibit these trade-offs. Both species had high population growth rates in low-density populations, but exhibited little or no growth in high-density populations. A life table response experiment was used to determine the underlying cause for the effect of density on population growth. For R. ursinus, lack of population growth in high-density populations was due primarily to increased mortality of clonally sprouting canes, while for R. discolor, it was due to decreased clonal cane production. Elasticity analysis revealed that clonal growth was more important than sexual reproduction for population growth of both species. However, elasticity values for sexual reproduction in R. discolor were greater in high- than low-density populations. This suggests an increased reliance on sexual reproduction in populations that had reached stable sizes, which could increase the capacity of R. discolor to disperse to new sites. Elasticity analyses were also used to simulate the efficacy of various control strategies for R. discolor. Control of this species could be attained by reducing clonal production within existing populations while reducing seed production to limit establishment of new populations.  相似文献   

10.
Escherichia coli open reading frames ydiO and ydiQRST were identified as genes encoding components of the acyl-CoA dehydrogenase complex of anaerobic fatty acid β-oxidation. Individual or concomitant inactivation of fadE gene, encoding known aerobic acyl-CoA dehydrogenase, and ydiO and/or ydiQRST genes did not affect cellular growth on glucose as a sole carbon source. Aerobic growth on sodium oleate was observed only for the cells with intact fadE gene. With an alternative electron acceptor, the cells possessing intact fadE gene demonstrated anaerobic growth on sodium oleate irrespective of the presence or absence of ydiO and ydiQRST genes. For the fadE-deficient mutants, anaerobic growth on sodium oleate was observed only for cells with intact ydiO and ydiQRST genes, while the fadE/ydiO and fadE/ydiQRST mutants failed to grow under the similar conditions.  相似文献   

11.
Human amniotic membrane (HAM) due to its high biocompatibility, low immunogenicity, anti-microbial, anti-viral properties as well as the presence of growth factors has been used in various clinical applications. The growth factors play an important role in wound healing. The current study aimed to explore the effect of 15 kGy gamma radiation dose on selected growth factors and receptors mRNA present in HAM. Eight growth factors, namely, EGF, HGF, KGF, TGF-α, TGF-β1, TGF-β2, TGF-β3 and bFGF and two growth factor receptors, HGFR and KGFR were evaluated in this study. The total RNA was extracted and converted to complimentary DNA using commercial kits. Subsequently, the mRNA expressions of these growth factors were evaluated using real-time PCR and the results were statistically analyzed using REST-MCS software. This study confirmed the presence of these mRNA growth factors and receptors in fresh, glycerol cryopreserved and irradiated glycerol cryopreserved HAM. In glycerol cryopreserved HAM, the results showed up-regulation of HGF and bFGF and down-regulation of EGF, HGFR, KGF, KGFR, TGF-α, TGF-β1, TGF-β2 and TGF-β3 relative to the fresh HAM which acted as the control, whereas in irradiated glycerol cryopreserved HAM, the results showed up-regulation of EGF, HGF, KGF, KGFR, TGF-β1, TGF-β2 and TGF-β3 and down-regulation of HGFR, TGF-α and bFGF relative to the glycerol cryopreserved HAM which acted as the control. However, these mRNA expressions did not show any statistical significant difference compared to the control groups. This study concluded that a dose of 15 kGy of gamma radiation did not affect the mRNA expression for the growth factors’ and receptors’ in the glycerol cryopreserved HAM.  相似文献   

12.
The sensitivity of MDR (multi drug resistant) strains of Stenotrophomonas maltophilia, Acinetobacter baumannii, and Pseudomonas aeruginosa to essential oils and their individual components was studied; bacteriostatic and bactericidal concentrations of 16 substances were determined. Crimean rose oil exhibited the highest activity, with the minimum inhibitory concentration of 1.95 μL/ mL. Growth of bacterial batch cultures in the presence of subinhibitory concentrations of essential oils or their individual components was studied. Kinetic models analysis revealed positive correlations of growth characteristics of the studied bacteria the effects of essential oils (p-level < 0.05). Correlations between lag phase duration and the death of bacterial cultures and correlations between the concentration of linalool (a component of essential oils) and the degree of growth suppression for S. maltophilia and A. baumannii were revealed.  相似文献   

13.
The orange-spotted grouper, Epinephelus coioides, is one of the most popular fish in China and Southeast Asian countries because of its important economic value. However, molecular mechanism underlying the growth of orange-spotted grouper has never been fully understood. Herein, we performed a genome-wide association study (GWAS) on a natural population of 198 individuals aiming to screen the whole genome of orange-spotted grouper for identification of growth-related loci by restrictionsite associated DNA sequencing. In this research, 261,366 single nucleotide polymorphisms (SNPs) were developed, in which 110 SNPs were identified to be correlated with growth and 20 SNPs were further confirmed to be associated with both body weight and total length. From these identified SNPs, we annotated a total of 34 genes, including adgrb2, csnkza1, cers5, col22a1, creb5, dnd1, dzank1, dnai1, npy2r, fat3, lrrk2, lrp5, map3k9, and so on. Among these candidate genes, npy2r (neuropeptide Y receptor Y2) was reported to play a critical role in growth of the orange-spotted grouper. In addition, population structure, principal component analysis, kinship matrix and linkage disequilibrium were examined to verify the accuracy and reliability of our GWAS results. Our data will also provide a valuable genetic resource for further marker-assisted selection program to improve growth quality in groupers.  相似文献   

14.
This paper identifies the potential molecular markers predicting the impact of nTiO2 on plants and explores the new statistical correlations between the biomarkers and growth parameters. The quantitative mRNA expression of the three genes involved in DNA mismatch repair (MLH1) and cell division (PCNA1 and PCNA2) in Zea mays and Triticum aestivum seedlings were related to the growth parameters measured in response to five nTiO2 treatments. The results indicated that the higher concentrations were harmless to Z. mays but not to T. aestivum. nTiO2 treatments increased the total protein levels in both species and significantly inhibited the percentage of DPPH radical scavenging in Z. mays compared with T. aestivum seedlings. The exposure to both 50 μg/ml and 30 μg/ml concentrations of nTiO2 significantly induced the expression of MLH1 and PCNA1 genes in both species; however, the exposure to 30 μg/ml of nTiO2 also significantly induced the expression of PCNA2 genes in T. aestivum. The exposure to 50, 70 and 140 μg/ml significantly inhibited the expression of PCNA2 in both species, while 70 and 140 μg/ml repressed the expression of MLH1 and PCNA1 in the seedlings of Z. mays. The induction and repression of the expression of the three genes were correlated with some growth parameters and biological indices in both species. This key finding suggests that the above genes may play a vital role in mediating plant stress response to nTiO2 and could be used as sensitive molecular biomarkers indicative of the oxidative stress of nTiO2 exposure.  相似文献   

15.
Zingiber zerumbet, a perennial rhizomatous herb exhibits remarkable disease resistance as well as a wide range of pharmacological activities. Towards characterizing the endophytic population of Z. zerumbet rhizomes, experiments were carried out during two different growing seasons viz., early-June of 2013 and late-July of 2014. A total of 34 endophytes were isolated and categorized into 11 morphologically distinct groups. Fungi were observed to predominate bacterial species with colonization frequency values ranging from 12.5 to 50 %. Among the 11 endophyte groups isolated, molecular analyses based on ITS/16S rRNA gene sequences identified seven isolate groups as Fusarium solani, two as F. oxysporum and one as the bacterium Rhizobium spp. Phylogenetic tree clustered the ITS sequences from Z. zerumbet endophytes into distinct clades consistent with morphological and sequence analysis. Dual culture assays were carried out to determine antagonistic activity of the isolated endophytes against Pythium myriotylum, an economically significant soil-borne phytopathogen of cultivated ginger. Experiments revealed significant P. myriotylum growth inhibition by F. solani and F. oxysporum isolates with percentage of inhibition (PoI) ranging from 45.17 ± 0.29 to 62.2 ± 2.58 with F. oxysporum exhibiting higher PoI values against P. myriotylum. Using ZzEF8 metabolite extract, concentration-dependent P. myriotylum hyphal growth inhibition was observed following radial diffusion assays. These observations were confirmed by scanning electron microscopy analysis wherein exposure to ZzEF8 metabolite extract induced hyphal deformities. Results indicate Z. zerumbet endophytes as promising resources for biologically active compounds and as biocontrol agents for soft rot disease management caused by Pythium spp.  相似文献   

16.
Bruguiera hainesii (Rhizophoraceae) is one of the two Critically Endangered mangrove species listed in the IUCN Red List of Threatened Species. Although the species is vulnerable to extinction, its genetic diversity and the evolutionary relationships with other Bruguiera species are not well understood. Also, intermediate morphological characters imply that the species might be of hybrid origin. To clarify the genetic relationship between B. hainesii and other Bruguiera species, we conducted molecular analyses including all six Bruguiera species using DNA sequences of two nuclear genes (CesA and UNK) and three chloroplast regions (intergenic spacer regions of trnL-trnF, trnS-trnG and atpB-rbcL). For nuclear DNA markers, all nine B. hainesii samples from five populations were heterozygous at both loci, with one allele was shared with B. cylindrica, and the other with B. gymnorhiza. For chloroplast DNA markers, the two haplotypes found in B. hainesii were shared only by B. cylindrica. These results suggested that B. hainesii is a hybrid between B. cylindrica as the maternal parent and B. gymnorhiza as the paternal one. Furthermore, chloroplast DNA haplotypes found in B. hainesii suggest that hybridization has occurred independently in regions where the distribution ranges of the parental species meet. As the IUCN Red List of Threatened Species currently excludes hybrids (except for apomictic plant hybrids), the conservation status of B. hainesii should be reconsidered.  相似文献   

17.
We carried out an allozyme analysis to investigate polymorphism and genetic structure of the populations of D. incarnata and D. ochroleuca in regions of their joint growth in Russia and Belarus. We found that D. ochroleuca individuals in the populations of the Urals and Siberia, which are distant fragments from the main range of the species, do not differ significantly from individuals within the main part of the area (Belarus) on the basis of the allelic composition of eight gene loci. We revealed that D. ochroleuca and D. incarnata are differentiated by different alleles of the GDH locus. Thus, we established a genetic marker suitable to distinguish these closely related taxa. In addition to the GDH locus, D. ochroleuca and D. incarnata in the places of their joint growth, differ in the allelic structure of the PGI and NADHD loci. D. incarnata from the Urals and Siberia were polymorphic for both loci, and individuals from Belarus were polymorphic for one locus (PGI). In contrast, all D. ochroleuca individuals growing in sympatric populations with polymorphic D. incarnata were homozygous for the same alleles. Thus, comparison of the genetic structure of D. ochroleuca and D. incarnata points to the existence of a genetic isolation and a functioning isolation mechanism even under conditions of their joint growth. We found that the GDH locus in D. incarnata is polymorphic only in populations which grow together with D. ochroleuca, with exception a few examples. Thus, we conclude that variability of the GDH locus in D. incarnata is associated with hybridization with D. ochroleuca.  相似文献   

18.
Suppression subtractive hybridization was used to identify genes showing differential expression profile associated with growth rate in skeletal muscle tissue of Landrace weanling pig. Two subtracted cDNA populations were generated from musculus longissimus muscle tissues of selected pigs with extreme expected breeding values at the age of 100 kg. Three upregulated genes (EEF1A2, TSG101 and TTN) and six downregulated genes (ATP5B, ATP5C1, COQ3, HADHA, MYH1 and MYH7) in pig with genetic propensity for higher growth rate were identified by sequence analysis of 12 differentially expressed clones selected by differential screening following the generation of the subtracted cDNA population. Real-time PCR analysis confirmed difference in expression profiles of the identified genes in musculus longissimus muscle tissues between the two Landrace weanling pig groups with divergent genetic propensity for growth rate. Further, differential expression of the identified genes except for the TTN was validated by Western blot analysis. Additionally, the eight genes other than the ATP5C1 co-localized with the same chromosomal positions as QTLs that have been previously identified for growth rate traits. Finally, the changes of expression predicted from gene function suggested association of upregulation of expression of the EEF1A2, TSG101 and TTN genes and downregulation of the ATP5B, ATP5C1, COQ3, HADHA, MYH1 and MYH7 gene expression with increased growth rate. The identified genes will provide an important insight in understanding of the molecular mechanism underlying growth rate in Landrace pig breed.  相似文献   

19.
Tree growth of Pinus canariensis at treeline in Tenerife, Canary Islands, is thought to be primarily controlled by wet season precipitation (P) prior to the current year´s growth. Therefore, we investigated the inter-annual variations in stem water deficit (ΔW) and radial growth (RG) during two consecutive years differing in wet season P. ΔW was extracted from stem circumference variations, and the influence of environmental variables was evaluated by Pearson correlation statistics. Wet season P was considerably lower in 2008 than in 2009; despite this difference in P between both years, shallow soil water availability was almost exhausted during both summers. However, the effect of shallow soil drought showing a clear seasonality of ΔW and RG was only detected in 2008. In summer 2009, RG rates were highest during the summer indicating that P. canariensis was able to tap water from deep soil layers originating from P prior to the current year´s growth. The ability to use deep soil water during extended periods of shallow soil water deficit was also reflected in a close positive correlation between RG and whole-tree water use. In our study, the effect of only one hydrological dry year resulted in a severe reduction in annual RG. Thus, when wet season P is low for a number of years, chronic drought may have negative implications for tree growth at treeline in Tenerife.  相似文献   

20.
Soft rot caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) is a serious disease in Chinese cabbage (Brassica rapa L. subsp. pekinensis). To reduce the severity of soft rot symptoms in Chinese cabbage, Arabidopsis AtWRKY75 was introduced into Chinese cabbage by Agrobacterium-mediated transformation, which was previously reported to reduce susceptibility to Pcc infection in Arabidopsis. Three independent Chinese cabbage transgenic lines carrying AtWRKY75 were obtained. The growth phenotypes of AtWRKY75 overexpression (OE) lines were normal. Bacterial soft rot symptoms and Pcc growth were reduced in AtWRKY75-OE Chinese cabbage lines compared with WT plants. In contrast, overexpression of AtWRKY75 had no effect on infection with a hemibiotrophic pathogen, Xanthomonas campestris pv. campestris (Xcc) causing black rot disease. These results are consistent with those observed in the transgenic Arabidopsis. We found that AtWRKY75 activated a subset of Chinese cabbage genes related to defense against Pcc infection, such as Meri15B, BrPR4, and BrPDF1.2 (but not BrPGIP2). Moreover, overexpression of AtWRKY75 caused H2O2 production and activation of H2O2 scavenge enzyme genes, suggesting that H2O2 played a role in AtWRKY75-mediated resistance to Pcc. Together, these results demonstrated that AtWRKY75 decreased the severity of Pcc-caused bacterial soft rot and activated a subset of Pcc infection defense-related genes in Chinese cabbage similar to in Arabidopsis. It is suggested that AtWRKY75 is a candidate gene for use in crop improvement, because it results in reduced severity of disease symptoms without concurrent growth abnormalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号