首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A modified refractometric method (compensation in sucrose solution) was used for measuring the suction force (water potential) of active roots ofFraxinas excelsior L. in pot experiments and in the field under natural humidity conditions in two soil types. It was shown that if one part of the root system was in soil with low humidity as compared with the remaining predominant part, the suction force of roots in the “dry” soil did not rise in proportion with the rise of the suction force of the drying soil but, due to gradients of suction forces between these root parts, water was translocated into roots in the “dry” soil and thus their suction force was decreased to the relatively lowest value of suction force within the whole root system. The suction force of roots surrounded by soil of humidity below the availability limit was in these cases very low or else its value changed in parallel with changes of the suction force of the remaining part of the root system. It was completely independent of the soil water content in which it existed. The root system is thus a hydrodynamic unit, the individual parts of which do not respond to changes in soil humidity separately by changes in their suction force, but rather in mutual relationship which is brought about by gradients in suction force. These gradients are the cause of water translocation between individual branches of the root system.  相似文献   

2.
Czarnes  S.  Dexter  A.R.  Bartoli  F. 《Plant and Soil》2000,221(2):253-271
Mechanical properties of the topsoil (sandy Podsol and silty Luvisol, FAO) adhering to maize (Zea mays L.) roots and its bulk soil counterpart were studied as a function of soil texture and final soil water suction at harvest, with three soil water suction values of approximately 30, 50 and 60 kPa. Two scales of observation were also selected: the whole soil:root system and the root-adhering soil aggregates. Three methods were used to characterize the stability of the soil:root system: mechanical shaking in air, and dispersion by low-power ultrasonication, with or without preliminary immersion of the soil:root system in water. Soil disruption kinetics, which were fitted with first-order kinetics equations, were analyzed and discussed. For example, silty soil ultrasonication kinetics, without preliminary water-immersion, could be divided into two parts: the first faster part, which was characterized by a mean rate K value of 6.8–7.2 mJ-1, is attributed to soil slaking, whereas the second slower part, which was characterized by a mean rate K value of 1.5–1.6 mJ-1, was attributed to the rupture of the `firmly root-adhering soil' from the roots. A clear plant effect was observed for both aggregate tensile strength and friability, with higher aggregate strength for the root-adhering silty soil (450–500 kPa) than for its bulk silty soil counterpart (410–420 kPa), and lower friability (coefficient of variation of the aggregate strength) for the root-adhering silty soil (e.g. 67% at a soil water suction value of 30 kPa) than for its bulk silty soil counterpart (e.g. 49% at asoil water suction value of 30 kPa). These effects were attributed to root exudation, which was significantly higher for the driest silty topsoil than for the wetter ones. In conclusion, the mechanical properties of the silty topsoil adhering to the maize roots are attributed to both physical and biological interactions occurring in the maize rhizosphere. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
To determine how root‐to‐shoot abscisic acid (ABA) signalling is regulated by vertical soil moisture gradients, root ABA concentration ([ABA]root), the fraction of root water uptake from, and root water potential of different parts of the root zone, along with bulk root water potential, were measured to test various predictive models of root xylem ABA concentration [RX‐ABA]sap. Beans (Phaseolus vulgaris L. cv. Nassau) were grown in soil columns and received different irrigation treatments (top and basal watering, and withholding water for varying lengths of time) to induce different vertical soil moisture gradients. Root water uptake was measured at four positions within the column by continuously recording volumetric soil water content (θv). Average θv was inversely related to bulk root water potential (Ψroot). In turn, Ψroot was correlated with both average [ABA]root and [RX‐ABA]sap. Despite large gradients in θv, [ABA]root and root water potential was homogenous within the root zone. Consequently, unlike some split‐root studies, root water uptake fraction from layers with different soil moisture did not influence xylem sap (ABA). This suggests two different patterns of ABA signalling, depending on how soil moisture heterogeneity is distributed within the root zone, which might have implications for implementing water‐saving irrigation techniques.  相似文献   

4.
Measurements with a pressure chamber were made of the xylem water potential of leaves, shoots and roots from bean plants (Pkaseolus vulgaris L. cv. Processor) grown with a 12 hour dark period and natural or artificial light conditions during the day. The water potentials were measured at the end of a dark period and during the light period. Measurements taken at the end of the dark period indicated normal potential gradients within the soil/plant system (leaf < shoot < root < soil), when the matric potential of soil water was relatively high (above ?0.02 bar), and the gradients then also remained normal during the day (natural light). When the soil water potential was ?1 bar or lower in the morning, however, the root xylem water potential was higher than the soil water potential; at very low soil water potentials (< ?4 bar) it remained higher during most of the day. In this case also leaf and shoot xylem water potentials were higher than the soil water potential in the early morning, although decreasing rapidly in daylight. Under artificial light, both leaf and root water potentials were higher than the soil water potential throughout the whole diurnal cycle when the latter potential was below ?4 bar. From measurements of stomatal diffusion resistance, transpiration, relative water content of leaves and of changes in the matric potential of soil water, it was concluded that when the matric potential of soil water was low, water could be taken up by the plant against a water potential gradient. Because leaf xylem water potential was always lower than root xylem water potential, the mechanism involved in the inversion of water potential gradient must be localized in the roots, and probably related to ion uptake. Symbols and abbreviations used in the text: Ψ: Plant water potential (thermocouple psychrometer); Ψx: Xylem water potential (pressure chamber); Ψs: Osmotic potential of xylem sap; Ψm: Matric potential of soil water; RWC: Relative water content.  相似文献   

5.
? Despite the importance of rhizosphere properties for water flow from soil to roots, there is limited quantitative information on the distribution of water in the rhizosphere of plants. ? Here, we used neutron tomography to quantify and visualize the water content in the rhizosphere of the plant species chickpea (Cicer arietinum), white lupin (Lupinus albus), and maize (Zea mays) 12 d after planting. ? We clearly observed increasing soil water contents (θ) towards the root surface for all three plant species, as opposed to the usual assumption of decreasing water content. This was true for tap roots and lateral roots of both upper and lower parts of the root system. Furthermore, water gradients around the lower part of the roots were smaller and extended further into bulk soil compared with the upper part, where the gradients in water content were steeper. ? Incorporating the hydraulic conductivity and water retention parameters of the rhizosphere into our model, we could simulate the gradual changes of θ towards the root surface, in agreement with the observations. The modelling result suggests that roots in their rhizosphere may modify the hydraulic properties of soil in a way that improves uptake under dry conditions.  相似文献   

6.
塑料大棚渗灌灌水下限对番茄生长和产量的影响   总被引:18,自引:2,他引:18  
利用土壤水分张力计监测土壤水分吸力的变化,以灌水时30cm土层的土壤水分吸力表示渗灌灌水下限,研究灌水下限为10、16、25、40和63kPa时对塑料大棚番茄生长和产量的影响.结果表明,番茄株高、生物量分别随灌水下限的增大而减小.番茄的产量和水分利用率与灌水下限间的关系曲线为抛物线,而茎粗/株高比与灌水下限间的关系曲线为三次多项式曲线.灌水下限不同,番茄的根/冠比(R/S)动态不同,番茄根系与株冠的生长状况不同.灌水下限在25~33kPa时,番茄植株生长健壮,根冠比例协调,产量大,水分利用率高.此指标作为渗灌灌水下限,灌水时土壤水分的含量比常规灌水低,灌水次数少,有利于提高保护地番茄栽培的水分利用率和劳动生产率.  相似文献   

7.
王传华  曾春函  沈德嵩  钟丽  李俊清 《生态学报》2016,36(17):5343-5352
干热河谷地区水电站建设对当地植被的潜在影响是一个值得关注的生态学问题。车桑子是当地植被灌木层的主要成分,开展水库气候效应对车桑子生长、发育影响的研究具有现实价值。以车桑子的实生幼苗为材料,将土壤含水量控制为13%、7%和1.5%,空气湿度控制为50%、65%和75%,从幼苗生长、构件发育、根系发育、生物量分配等方面研究了降水减少和大气湿度增加的气候效应对车桑子的影响,通过叶绿素含量、Fv/Fm、丙二醛(MDA)含量和叶片可溶性糖含量等指标,从光合系统特性、膜质过氧化和渗透调节3个方面研究了车桑子的受损与适应机制。结果表明,土壤干旱能够抑制车桑子幼苗高生长和根系发育的各项指标,并促进生物量向根系分配;当大气湿度增加时,幼苗高生长和根长虽呈增加趋势,但生物量积累、根系发育指标及RMR却具有单峰效应,显示空气湿度过高时对其生长发育具有抑制作用。综合而言,由于大气湿度增加能够部分补偿土壤的干旱效应,干热河谷区水库建设的气候效应不会对车桑子幼苗的生长和发育产生重要影响。结果还表明,土壤干旱和大气湿度变化对叶绿素含量无影响,土壤水分胁迫和空气湿度下降导致Fv/Fm显著下降,说明光合电子传递链受损是车桑子光合抑制的主要原因;土壤水分胁迫导致MDA含量升高,说明细胞膜质过氧化是车桑子幼苗受损的重要机制;而土壤干旱导致叶片可溶性糖含量升高,说明车桑子幼苗具有较好的渗透调节机制。研究结果对评估干热河谷区水电站建设对植被的影响具有参考价值。  相似文献   

8.
在黄土丘陵沟壑区陕西省安塞县,于2007年生长季内,采用根钻法对刺槐(Robinia pseudoacacia)、侧柏(Platycladus orientalis)、油松(Pinus tabulaeformis)林地的细根和土壤水分进行了动态调查。结果表明:生长季内,刺槐、侧柏、油松林地0-200cm土层的土壤含水量变动较大,此土层是树木细根表面积的主要分布层,分别有82.4%(侧柏)、86.5%(刺槐)和87.5%(油松)的细根表面积分布。侧柏、刺槐、油松细根表面积垂直分布与剖面土壤水分间呈显著的正相关关系(p0.05)。模型S=AhB(C+Dh+Eh2+Fh3)可以较好地拟合不同树种细根表面积的垂直分布,拟合决定系数R2均在0.85以上。刺槐、侧柏、油松林地土壤含水量的动态变化均表现为10月4月6月8月。刺槐、油松细根表面积在6月出现1个高峰,侧柏在6月和10月各出现1个高峰。树木细根表面积动态与土壤含水量的季节动态不完全一致。侧柏、刺槐、油松生长所需的水分约87%来自降水的补给。但是,总体上侧柏、刺槐、油松细根表面积与林地土壤含水量的相关性不显著(p0.05)。全面了解树木细根季节动态的机理,还需对水分、温度、养分和树种本身遗传特性等影响因子进行综合研究。  相似文献   

9.
To observe root system development, soybean plants (Glycine max) were grown in root boxes that were set horizontally to reduce the effect of gravity. Along with the root system development, the two-dimensional distribution of soil water content in the root boxes was measured continuously by the time domain reflectometry (TDR) method. Root system development and its morphological architecture were strongly affected by the positions of the water supply. It is suggested that root hydrotropism plays the dominant role in root system development. In addition to root hydrotropism, the importance of root compensatory growth is suggested. A combined model of root system development and soil water flow considering root hydrotropism and compensatory growth was used to simulate root system development and soil water flow. The morphological architecture of root systems and the distribution of soil water content obtained in the experiment were successfully explained by the model simulation. These results confirmed that root hydrotropism and compensatory growth are dominant factors in root system development under a reduced effect of gravity. The validity of the model was confirmed, and its applications for various purposes were suggested.  相似文献   

10.
To observe root system development, soybean plants (Glycine max) were grown in root boxes that were set horizontally to reduce the effect of gravity. Along with the root system development, the two-dimensional distribution of soil water content in the root boxes was measured continuously by the time domain reflectometry (TDR) method. Root system development and its morphological architecture were strongly affected by the positions of the water supply. It is suggested that root hydrotropism plays the dominant role in root system development. In addition to root hydrotropism, the importance of root compensatory growth is suggested. A combined model of root system development and soil water flow considering root hydrotropism and compensatory growth was used to simulate root system development and soil water flow. The morphological architecture of root systems and the distribution of soil water content obtained in the experiment were successfully explained by the model simulation. These results confirmed that root hydrotropism and compensatory growth are dominant factors in root system development under a reduced effect of gravity. The validity of the model was confirmed, and its applications for various purposes were suggested.  相似文献   

11.
Analysis of soil moisture variations in an irrigated orchard root zone   总被引:1,自引:1,他引:0  
Polak  Amir  Wallach  Rony 《Plant and Soil》2001,233(2):145-159
Soil moisture and suction head in an irrigated orchard were continuously monitored by time domain reflectometry (TDR) probes and gypsum blocks, respectively, during and between successive irrigation events. On each side of the trees in the plot, two 30-cm long probes were installed vertically 10 cm below the soil surface (denoted as shallow) and another two probes were installed vertically 40 cm below the soil surface (denoted as deep). The variation in moisture content measured by the TDR probes between successive irrigation events was qualitatively divided into four stages: the first was during water application; the second initiated when irrigation stopped and the moisture content in the layer sharply decreased, mainly due to free drainage. The succeeding moderate soil-moisture decrease, caused by the simultaneous diminishing free drainage and root uptake, was the third stage. During the fourth stage, moisture depletion from the layer was solely by root uptake. The slopes of moisture content variation with time throughout this stage enabled the monitoring of water availability to the plant. The range of moisture content variations and moisture depletion rates between subsequent irrigation events was higher in the shallow (10–40 cm) than in the deeper (40–70 cm) layer. Irrigation nonuniformity and spatial variability of soil hydraulic properties contributed to the unevenness of the moisture distribution in the soil profile. However, as soon as moisture content within a layer reached field capacity, namely the free drainage had stopped, irrigation uniformity had a negligible effect on water flux to the plant roots. The measured data indicate that soil moisture is fully available to the plant as long as the momentary moisture flux from the soil bulk to the soil–root interface can replenish the moisture being depleted to supply, under non-stressed conditions, the atmospheric water demand. This flux is dominated by the local momentary value of the soil's bulk hydraulic conductivity, K r, and it stays constant for a certain range of K r values, controlled by the increasing root suction. A decrease in water availability to the plant appears for longer irrigation intervals as a break in the constant soil-moisture depletion rate during stage 4. This break is better correlated to a threshold K r value than to threshold values of moisture content or suction. Therefore, it is suggested that moisture content or suction used to measure water availability or to control irrigation first be alibrated by K r() or K r() curves, respectively.  相似文献   

12.
A two-dimensional trickle-irrigated soil model was examined in order to determine its aeration regime. Oxygen diffusion rate (O.D.R.) was used as an index of the soil aeration regime, and its influence on the development of root systems was determined. Volumetric soil air content was calculated from soil water tension data, using a retention curve.The root system was markedly concentrated at the periphery of the trickle-irrigated soil volume, while in the center there were few roots. An exponential correlation was found between root distribution and O.D.R., in which 20×10–8g O2×cm–2×min–1 was the critical value for root growth. There was a linear correlation between O.D.R. and volumetric air content which was affected by diffusion distance.  相似文献   

13.
Czarnes  S.  Hiller  S.  Dexter  A. R.  Hallett  P. D.  Bartoli  F. 《Plant and Soil》1999,211(1):69-86
This study was designed to investigate the strength of attachment of plant seedling roots to the soil in which they were grown. The study also assessed the effects of differing soil textures and differing soil matric potentials upon the strength of the root:soil attachment. A device for growing roots upon a soil surface was designed, and was used to produce roots which were attached to the soil. In order to quantify root:soil adhesion, roots of maize seedlings, grown on the soil surface, were subsequently peeled off using a universal test machine, in conjunction with simultaneous time-lapse video observation. To clarify the partitioning of energy in the root:soil peeling test, separate mechanical tests on roots, and on two adherent remoulded topsoil balls were also carried out. The seedling root was characterised by a low bending stiffness. The energy stored in bending was negligible, compared to the root:soil adhesion energy. The mechanical properties of two adherent remoulded topsoil balls were a decrease of the soil:soil adhesion energy as the soil:soil plastic energy increased. These two parameters were therefore interdependent. Using a video-camera system, it was possible to separate the different processes occurring during the root:soil peeling test, in particular, the seed:soil adhesion and the root:soil soil adhesion. An interpretation of the complex and variable force:displacement curves was thus possible, enabling calculation of the root:soil interfacial rupture energy. At a given suction (10 kPa), the results of the peeling test showed a clear soil texture effect on the value of the root:soil interfacial rupture energy. In contrast, for the same silty topsoil, the effect of the soil water suction on the value of the interfacial rupture energy was very moderate. The root:soil interfacial rupture energy was controlled mainly by a product of microscopic soil specific surface area and the macroscopic contact surface area between the root and the soil. Biological and physical interactions contributing to root:soil adhesion such as root:soil interlocking mechanics were also analysed and discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Uptake of soil water by plants may result in significant gradients between bulk soil and soil in the vicinity of roots. Few experimental studies of water potential gradients in close proximity to roots, and no studies on the relationship of water potential gradients to the root and leaf water potentials, have been conducted. The occurrence and importance of pre-dawn gradients in the soil and their relation to the pre-dawn root and leaf water potentials were investigated with seedlings of four species. Pre-germinated seeds were grown without watering for 7 and lid in a silt loam soil with initial soil matric potentials of -0.02, -0.1 and -0.22 MPa. Significant gradients, independent of the species, were observed only at pre-dawn soil matric potentials lower than -0.25 MPa; the initial soil matric potentials were -0.1 MPa. At an initial bulk soil matric potential of -0.22 MPa, a steep gradient between bulk and rhizoplane soil was observed after 7 d for maize (Zea mays L. cv. Issa) and sunflower (Helianthus annuus L. cv. Nanus), in contrast to barley (Hordeum vulgare L. cv. Athos) and wheat (Triticum aestivum L. cv. Kolibri). Pre-dawn root water potentials were usually about the same as the bulk soil matric potential and were higher than the rhizoplane soil matric potential. Pre-dawn root and leaf water potentials tended to be much higher than rhizoplane soil matric potentials when the latter were lower than -0.5 MPa. It is concluded that plants tend to become equilibrated overnight with the wetter bulk soil or with wetter zones in the bulk soil. Plants can thus circumvent negative effects of localized steep pre-dawn soil matric potential gradients. This may be of considerable importance for water uptake and growth in drying soil.  相似文献   

15.
Hydraulic redistribution (HR) occurs in many ecosystems; however, key questions remain about its consequences at the ecosystem level. The objectives of the present study were to quantify seasonal variation in HR and its driving force, and to manipulate the soil-root system to elucidate physiological components controlling HR and utilization of redistributed water. In the upper soil layer of a young Douglas-fir forest, HR was negligible in early summer, but increased to 0.17 mm day(-1) (20-60 cm layer) by late August when soil water potential was approximately -1 MPa. When maximum HR rates were observed, redistributed water replenished approximately 40% of the water depleted from the upper soil on a daily basis. Manipulations to the soil or to the soil/plant water potential driving force altered the rate of observed HR indicating that the rate of HR is controlled by a complex interplay between competing soil and plant water potential gradients and pathway resistances. Separating roots from the transpiring tree resulted in increased HR, and sap flow measurements on connected and disconnected roots showed reversal of water flow, a prerequisite for HR. Irrigating a small plot with deuterated water demonstrated that redistributed water was taken up by small understorey plants as far as 5 m from the watering source, and potentially further, but the utilization pattern was patchy. HR in the upper soil layers near the watering plot was twice that of the control HR. This increase in HR also increased the amount of water utilized by plants from the upper soil. These results indicate that the seasonal timing and magnitude of HR was strongly governed by the development of water potential differences within the soil, and the competing demand for water by the above ground portion of the tree.  相似文献   

16.
Li  Yan  Wallach  Rony  Cohen  Yehezkel 《Plant and Soil》2002,243(2):131-142
A multiplexed TDR system and a heat-pulse system for stem sap flow measurements were used to determine the spatial and temporal pattern of root water uptake in field-grown corn. The TDR probes, 0.15 and 0.30 m in length, were buried vertically in the soil profile to a depth of 0.95 m below the soil surface and heat-pulse sensors were installed on the plant base. Nocturnal readings from TDR probes were used successfully to differentiate the two components of moisture change: root uptake and net drainage. The instantaneous rate of water extraction by the plant measured by the heat-pulse system agreed well with the integrated rate of root water uptake measured frequently (at half-hour or hourly intervals) by the TDR probes. This agreement enabled further exploration into the cause of the evolution of the spatial and temporal patterns of root water uptake during a drying cycle. The results indicated that right after irrigation in the well-watered soil profile, it is the spatial distribution of the roots that mainly determines the typical pattern of root extraction, in addition to the fact that the roots near the plant base are more effective than those farther away. The higher density and effectiveness of the roots near the plant base dry the soil rapidly so that soil hydraulic conductivity soon becomes a limiting factor for water uptake. Further analysis revealed that a decrease in root uptake occurs near the plant base under a given atmospheric demand when the relative bulk soil hydraulic conductivity decreases to 0.002K r. This suggests that low conductivity (high resistance) in the soil near the plant base is the initial cause for downward and lateral shifting of the root uptake pattern. Note that this critical value of hydraulic conductivity is not universal since it depends on the soil type and atmospheric water demand during the period under observation. Therefore, prior to the application of moisture content or suction head as measures of water availability or to control irrigation scheduling, it is suggested that these parameters be calibrated by the soil K() or K() curves, respectively, for the expected atmospheric water demand for the specific crop and growing period.  相似文献   

17.
Using native vegetation to improve soil stiffness, stabilise slopes and control erosion is a rapidly evolving process. A theoretical model previously developed by the authors for the rate of tree root water uptake together with an associated numerical simulation is used to study the effects of a wide range of soil, tree, and atmospheric parameters on partially saturated ground. The influence of different parameters on the maximum initial rate of root water uptake is investigated through parametric and sensitivity analyses. Field measurements taken from previously published literature are compared with numerical predictions for validation. The rate of selected parameters such as potential transpiration and its distribution, suction at wilting point, the coefficient of permeability and the distribution of root length density are studied in detail. The analysis shows that the rate of potential transpiration increases the soil matric suction and ground settlement, while the potential transpiration rate has an insignificant effect on the distribution of soil suction. Root density distribution factors affect the size of the influence zone. Suction at the wilting point increases the soil matric suction and ground settlement, whereas the saturation permeability decreases the maximum soil matric suction generated. The analysis confirms that the most sensitive parameters, including the coefficients of the tree root system, the transpiration rate, the permeability of the soil and its suction at the wilting point should be measured or estimated accurately for an acceptable prediction of ground conditions in the vicinity of trees.  相似文献   

18.
太岳山油松人工林土壤呼吸对强降雨的响应   总被引:2,自引:0,他引:2  
在全球气候变化背景下,关于森林生态系统土壤呼吸变化的研究越来越受到关注,然而目前由于测定技术限制,对于强降雨影响森林土壤呼吸的国内相关研究还不够深入.选取山西省太岳山油松人工林土壤作为研究对象,应用LI-8150土壤CO2通量全自动连续测量系统,对降雨前后的土壤呼吸速率和环境因子在原位置进行全天候连续监测,分析了3次强降雨前后的土壤呼吸速率变化.结果表明,(1)5月的旱季降雨改善了土壤水分状况,促进了土壤呼吸,降雨结束后土壤呼吸速率的平均水平是降雨发生前的2倍;7月的雨季开端期降雨对土壤呼吸先促进后抑制,土壤容积含水量和土壤呼吸速率的二次关系曲线存在拐点,但总体上降雨是促进了土壤呼吸;8月的雨季降雨整体上抑制土壤呼吸,土壤呼吸速率和土壤容积含水量的变化曲线走势呈明显的镜像,雨中及雨后土壤呼吸速率分别下降了约45%和28%.(2)每一次降雨结束后,土壤温度都有一定程度的下降.雨后,较低的土壤温度在土壤呼吸得到降雨促进时,可加速土壤呼吸速率的恢复;在土壤呼吸受到降雨抑制时,能阻碍土壤呼吸速率的恢复.(3)降雨的不同时期,影响半湿润地区油松人工林土壤呼吸的关键因子也是不同的.降雨前如果土壤容积含水量处于明显变化的状态,水分是影响土壤呼吸的关键因子;如果土壤容积含水量比较稳定,则土壤温度是关键因子.降雨过程中由土壤温湿共同影响土壤呼吸,降雨结束后水分是影响土壤呼吸的关键因子.  相似文献   

19.
Hydraulic redistribution (HR) of roots plays an important role in the water relations of desert riparian plants. In order to estimate the effect of vertical root distribution on the HR process of Populus euphratica Oliv. during the entire growth season, we performed simulation and scenario analyses based on the observed soil water potential and root distribution data. The results showed that our simulation model achieved a good accuracy. The initial value of soil water content could significantly affect the simulated soil water content at soil depths of >90 cm, but had only limited effect on soil water content in the 0- to 90-cm soil layers. Scenario analysis revealed that with increase in root distribution depth, the HR process extended from the upper and middle soil layers downward toward the middle and deeper soil layers: the deeper the root distribution, the more likely it was to trigger the HR process in deep soil layers. However, a deeper rooting system led to a decrease in the total amount of hydraulically redistributed water over the entire soil column. Redistributed water also significantly increased the soil water depletion and the soil water storage. However, the effects of redistributed water (HR vs. without HR) on water depletion and soil water storage were reduced with the deepening of root distribution. These results indicate that HR can obviously affect the moisture of the upper soil layers, while vertical root distribution significantly changes the spatial and quantitative characteristics of HR within soil columns.  相似文献   

20.
猪毛蒿(Artemisia scoparia)为菊科蒿属草本植物,是一种适应性较强的广幅种。研究荒漠草原不同土壤相对湿度条件下猪毛蒿的表型可塑性,对认识异质生境下猪毛蒿的生存适应策略具有重要的生态学意义。结果表明:株高、茎粗、根长、根重和单株生物量均表现出随土壤相对湿度的增大而增加的趋势,对异质生境具有较强的可塑性,而根冠比则表现出相对的稳定性。植株不同部位生物量大小排序为:上部中部下部,且植株下部显著大于上部生物量(P0.05)。土壤相对湿度40%生境下的头状花序数量和重量显著高于土壤相对湿度30%和30%—40%生境。繁殖器官绝对投入量(lg R)随着个体大小(lg V)的增大呈极显著的增加(P0.001),繁殖阈值介于1.868—2.006 g。随着土壤相对湿度的增加,繁殖分配比例极显著增大(P0.001)。营养器官和繁殖器官生物量、头状花序重量和数量、地下生物量和地上生物量均呈极显著线性正相关关系(P0.001),存在正向权衡。单个头状花序重量并不随个体大小和头状花序数量的增加而发生显著变化(P0.05),且在不同土壤相对湿度和不同部位间均无显著差异(P0.05)。由此可见,猪毛蒿在异质生境下产生的可塑性是其生存繁殖的重要反应机制之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号