首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unicellular algaeScenedesmus obliquus (125),Chlorella pyrenoidosa (82) andCoccomyxa solorinae saccatae (111) were studied with respect to the form of uptake of potassium, phosphate, calcium and zinc ions and to the energy sources involved: light under autotrophic conditions, glucose under mixotrophic or heterotrophic conditions (in light and in darkness or together with yeast extract as an auxotrophic substrate). We respected the trophic conditions of algae when preparing the experimental material (precultivation). The following conditions were reached:
  1. (1)
    The three algae grow faster in a glucose medium under mixotrophic conditions and are capable of growing on it also heterotrophically:Ch. pyrenoidosa andSc. obliquus grow substantially better thanC. solorinae saccatae. The first two algae grow more intensively in a glucose medium containing yeast extract whileCoccomyxa does not. After cultivation under mixotrophic conditions the first two diminish endogenous respiration, the third raises it. Glucose stimulates respiration in the first two when grown autotrophically, while after mixotrophic cultivation the effect of glucose is suppressed inCh. pyrenoidosa and in the other two only after growth on glucose with yeast extract.  相似文献   

2.
Acetic acid is an important chemical raw material that can be produced directly from sugars in lignocellulosic biomass. Development of kinetic models that capture the bioconversion dynamics of multiple sugar systems will be critical to optimization and process control in future lignocellulosic biorefinery processes. In this work, a kinetic model was developed for the single- and dual-substrate conversion of xylose and glucose to acetic acid using the acetogen Moorella thermoacetica. Batch fermentations were performed experimentally at 20 g L?1 total sugar concentration using synthetic glucose, xylose, and a mixture of glucose and xylose at a 1:1 ratio. The product yield, calculated as total product formed divided by total sugars consumed, was 79.2, 69.9, and 69.7 % for conversion of glucose, xylose, and a mixture of glucose and xylose (1:1 ratio), respectively. During dual-substrate fermentation, M. thermoacetica demonstrated diauxic growth where xylose (the preferred substrate) was almost entirely consumed before consumption of glucose began. Kinetic parameters were similar for the single-substrate fermentations, and a strong linear correlation was determined between the maximum specific growth rate μ max and substrate inhibition constant, K s . Parameters estimated for the dual-substrate system demonstrated changes in the specific growth rate of both xylose and glucose consumption. In particular, the maximum growth rate related to glucose tripled compared to the single-substrate system. Kinetic growth is affected when multiple substrates are present in a fermentation system, and models should be developed to reflect these features.  相似文献   

3.
Respiratory metabolism of the cultures of algaeChlorella pyrenoidosa (82) andScenedesmus obliquus (125) was investigated. One part of algae were cultivated on a mineral nutrient solution, another two parts on the solution with glucose and on the solution with glucose and yeast decoction. Individual steps of respiratory metabolism—endogenous as well as in the presence of exogenous sugars—were estimated according to the response to the following inhibitors: monoiodacetate, NaF, NaN3, and 2,4-DNP. In the last two cases, fructose, glucose-6-phosphate and fructose-1,6-diphosphate were applied in parallel for comparison. Na-monoiodacetate was found to inhibit the respiration of both endogenous and exogenous (with glucose) substrates, NaF (concentrations up to 2.5.10?2 m) stimulated the O2 uptake. The effect of sodium azide and 2,4-DNP depended in both strains on previous cultivation. On the basis of the results obtained, the presence of particular respiration pathways in the dissimilation of glucose is discussed. The following catabolic processes are to be considered: a) direct oxidation (with both autotrophically cultivated strains and with theChlorella cultivated on glucosecontaining medium), b) the process similar to glycolysis, which, however, does not necessarily involve the enolase (it is not inhibited by NaF) c) pentosephosphate cycle (Chlorella), and d) glycolysis, in which both algae can operate when sugars previously phosphorylated are applied.  相似文献   

4.
5.
The yeast Saccharomyces cerevisiae cannot utilize xylose, but the introduction of a xylose isomerase that functions well in yeast will help overcome the limitations of the fungal oxido-reductive pathway. In this study, a diploid S. cerevisiae S288c[2n YMX12] strain was constructed expressing the Bacteroides thetaiotaomicron xylA (XI) and the Scheffersomyces stipitis xyl3 (XK) and the changes in the metabolite pools monitored over time. Cultivation on xylose generally resulted in gradual changes in metabolite pool size over time, whereas more dramatic fluctuations were observed with cultivation on glucose due to the diauxic growth pattern. The low G6P and F1,6P levels observed with cultivation on xylose resulted in the incomplete activation of the Crabtree effect, whereas the high PEP levels is indicative of carbon starvation. The high UDP-d-glucose levels with cultivation on xylose indicated that the carbon was channeled toward biomass production. The adenylate and guanylate energy charges were tightly regulated by the cultures, while the catabolic and anabolic reduction charges fluctuated between metabolic states. This study helped elucidate the metabolite distribution that takes place under Crabtree-positive and Crabtree-negative conditions when cultivating S. cerevisiae on glucose and xylose, respectively.  相似文献   

6.
In this work, we aimed to evaluate the effect of the water-soluble fraction (WSF) of petroleum on the photosynthesis and chemical defenses of two sympatric members of the brown algal family Dictyotaceae, Dictyota caribaea and Stypopodium zonale. The algae were cultivated in incubator chambers for 8 days in flasks containing the WSF or seawater as a control laboratory cultivation. Measurements of chlorophyll fluorescence revealed distinct responses between the two species. Stypopodium zonale was less tolerant than D. caribaea as shown by a more intense diminishing of the potential quantum yield of photosystem II (F v/F m) as well as by the reduction of the intrinsic photosynthetic capacity observed in parameters obtained from the rapid light curves. Feeding experiments revealed that the WSF reduced strongly the palatability of the lipophilic extracts from both algae to the herbivore crab Pachygrapsus transversus (Gibbes). The analyses of the chemical profiles from these extracts by chromatographic techniques showed that the effect of the WSF on secondary metabolites production could only be observed in D. caribaea. Our results indicated that these sympatric species showed distinct tolerances to the WSF where S. zonale was more sensitive than D. caribaea. On the other hand, both species responded to the WSF with a more deterrent behavior to herbivory. Possible ecological consequences are discussed.  相似文献   

7.
Βeta-glucans, widespread glucose polymers in mushrooms, yeasts, and bacteria, but rarely found in microalgae, have wide applications and high medicinal and economical potential. Some β-glucans like paramylon from algae-like Euglena gracilis are well investigated, but there is little information about the β-glucan content of microalgae. Therefore, more than 40 species of cultured microalgae have been investigated for composition of their biomass regarding to lipids, carbohydrates including β-glucans and proteins. Most of algae species showed a rather similar biomass composition of about 10 % lipids, 25 % carbohydrates, and 40 % proteins if they have been cultivated in a full medium, rather low light conditions of 50 μmol photons m?2 s?1, 12/12 h light/dark cycle under aeration and a temperature of 25?±?2 °C. The content of β-glucans varied between 1.7 and 24.2 % of dry weight, respectively. Two microalgae, Scenedesmus ovalternus SAG 52.80 and Porphyridium purpureum SAG 1380-1d with a yield of more than 20 % of dry weight were identified as the best β-glucan producers under standard cultivation conditions. Culture optimization experiments revealed that enhanced irradiance increased the β-glucan content of Scenedesmus obtusiusculus A 189, a novel green algae isolate, from 6.4 to 19.5 %, but the β-glucan content of the green alga S. ovalternus SAG 52.80 remained unaffected (24.2 vs. 23.3 %). Nitrate starvation enhanced the β-glucan content of S. obtusiusculus A 189 from 16 to 23 % and of S. ovalternus SAG 52.80 from 23.3 to 36.7 %.  相似文献   

8.

Objectives

To develop a xylose-nonutilizing Escherichia coli strain for ethanol production and xylose recovery.

Results

Xylose-nonutilizing E. coli CICIM B0013-2012 was successfully constructed from E. coli B0013-1030 (pta-ack, ldhA, pflB, xylH) by deletion of frdA, xylA and xylE. It exhibited robust growth on plates containing glucose, arabinose or galactose, but failed to grow on xylose. The ethanol synthesis pathway was then introduced into B0013-2012 to create an ethanologenic strain B0013-2012PA. In shaking flask fermentation, B0013-2012PA fermented glucose to ethanol with the yield of 48.4 g/100 g sugar while xylose remained in the broth. In a 7-l bioreactor, B0013-2012PA fermented glucose, galactose and arabinose in the simulated corncob hydrolysate to 53.4 g/l ethanol with the yield of 48.9 g/100 g sugars and left 69.6 g/l xylose in the broth, representing 98.6% of the total xylose in the simulated corncob hydrolysate.

Conclusions

By using newly constructed strain B0013-2012PA, we successfully developed an efficient bioprocess for ethanol production and xylose recovery from the simulated corncob hydrolysate.
  相似文献   

9.
Pure cultures ofChlorella pyrenoidosa (82) andScenedesmus obliquus (125) were grown in the nutrient medium according to Benson in the presence of 0·05m sugars or 0·025m sodium salts of organic acids. The density of culture was measured throughout the course of growth. Satisfactory heterotrophic sources of nutrition forChlorella pyrenoidosa appear to be galactose, glucose and acetate, whereasScenedesmus utilizes glucose, cellobiose and acetate. The growth ofChlorella in the light is enhanced by galactose, glucose, fructose, cellobiose and maltose, that ofScenedesmus by glucose, fructose, cellobiose, galactose, maltose, acetate and pyruvate. Soluble starch suppresses growth of both cultures. The role of the substrates is discussed. It follows from the results that the growth-promoting sugars and organic acids can act not only as a source of carbon during general carbon shortage but also as ergastic material. The mechanism of utilization of some organic substrates will be taken up in a subsequent paper.  相似文献   

10.
The plant SWEET family is a sugar transporter family that plays a significant role in plant development. Here, seven loquat SWEET family members were identified by RNA-seq. These were designated as EjSWEET1, EjSWEET2a, EjSWEET2b, EjSWEET2c, EjSWEET4, EjSWEET15, and EjSWEET17. Phylogenetic and predictive functional annotation analyses suggest that the loquat SWEETs are classified as having sucrose, glucose and fructose transportation features. The in vivo responses of loquat SWEETs to exogenous sugar or NaCl was investigated by applying high concentrations of sugar or salt to 7-month-old loquat seedlings cultured in a nutrient medium. The results showed that most loquat SWEET genes can respond to exogenous applications of sucrose, glucose, fructose and salt. The response of EjSWEET1 to exogenous fructose was faster than the others, indicating that EjSWEET1 is more sensitive to exogenous fructose compared with other loquat SWEETs. EjSWEET15 can be induced by sucrose, but is suppressed by glucose. This indicates its possible role in sucrose transporting. The response of loquat SWEETs to NaCl showed broadly similar patterns compared to sugars. However, after a longer time of NaCl treatment, most loquat SWEETs are upregulated, especially EjSWEET15. This indicates its long-term response to high salinity.  相似文献   

11.
12.
13.
The parasitism of the mouldPenicillium purpurogenum onAspergillus niger   总被引:1,自引:0,他引:1  
The enzymatic composition of thePenicillium purpurogenum preparation cultivated on Czapek medium (PCz), and on the medium prepared from the mycelium of the mouldAspergillus niger (PAn), has been followed, causing the lysis ofAspergillus niger cell walls.Penicillium purpurogenum forms cellulolytic enzymes, enabling the utilization of cellulose as a sole carbon source.In vitro experiments with enzymatic preparations (PAn) indicated a rapid decrease inviscosity of carboxymethylcellulose at a negligible increase in reduction. The enzymatic preparations (PCz), causing also cell wall lysis inAspergillus niger, were however cellulolytically inactive, their presence in the systems causing their lysis is therefore not assumed.Penicillium purpurogenum also forms amylases, in cell walls ofAspergillus niger however no corresponding substrate is present. Proteases are synthetized only adaptively, and the results indicate that even lipases, also present in the substrate, are not a part of the lytic system. Chitinases are of the constitutive type, and are presumably a part of the enzymatic complex causing cell lysis. The main factor is anyhow an enzyme, or an enzymatic system, which is subjected to further investigation.  相似文献   

14.
The gene of Pae1263 (2,196 bp, 732 aa) was found from the full-length sequence analysis of bacterium Paenibacillus terrae HPL-003 isolated from soil on Gara Mountain in Korea (CP003107, our previous study). Among the 20 open reading frames (ORFs) related with the xylose substrate, only the recombinant enzyme of ORF Pae1263 showed a 1,4-beta-D-xylosidase activity when all of the ORFs were transformed into E. coli. This gene is considered to be a new 1,4-beta-D-xylosidase because it has up to 93% similarity with other genes of ZP_10240221.1 from Lactococcus raffinolactis 4877 and ZP_11237858.1 from Paenibacillus peoriae in the GenBank blast search. The enzyme activity was confirmed by HPLC in which xylose was produced from xylobiose as a substrate by this recombinant enzyme. Mass production of the recombinant enzyme was done with the construction of the pET22(+)- Pae1263-6H expression vector system from E. coli. This new 1,4-beta-D-xylosidase was highly active at 50°C in a pH range between 6.0 and 8.0 and had thermo-stability for at least 24 h at 50°C and a K m and V max of 6.42 mg/mL and 75.76 U/mg on a xylobiose substrate, respectively.  相似文献   

15.
The tolerance to shear stress of Tetraselmis suecica, Isochrysis galbana, Skeletonema costatum, and Chaetoceros muelleri was determined in shear cylinders. The shear tolerance of the microalgae species strongly depends on the strain. I. galbana, S. costatum, and C. muelleri exposed to shear stress between 1.2 and 5.4 Pa resulted in severe cell damage. T. suecica is not sensitive to stresses up to 80 Pa. The possibility to grow these algae in a tubular photobioreactor (PBR) using a centrifugal pump for recirculation of the algae suspension was studied. The shear stresses imposed on the algae in the circulation tubes and at the pressure side of the pump were 0.57 and 1.82 Pa, respectively. The shear stress tolerant T. suecica was successfully cultivated in the PBR. Growth of I. galbana, S. costatum, and C. muelleri in the tubular PBR was not observed, not even at the lowest pumping speed. For the latter shear sensitive strains, the encountered shear stress levels were in the order of magnitude of the determined maximum shear tolerance of the algae. An equation was used to simulate the effect of possible damage of microalgae caused by passages through local high shear zones in centrifugal pumps on the total algae culture in the PBR. This simulation shows that a culture of shear stress sensitive species is bound to collapse after only limited number of passages, confirming the importance of considering shear stress as a process parameter in future design of closed PBRs for microalgal cultivation.  相似文献   

16.
In northern China, freezing injury is observed frequently in the rare species Magnolia wufengensis but not in the more common species Magnolia denudata. To investigate the role of the phytohormone abscisic acid (ABA) on frost tolerance in these two species, exogenous ABA was applied to the seedlings and then physiological and biochemical responses were measured during cold acclimation. Shoot growth cessation was stimulated by ABA in M. wufengensis but not in M. denudata. Abscisic acid inhibited shoot growth in M. wufengensis but not in M. denudata. Treatment with ABA stimulated leaf senescence in both species, and this effect was greater in M. denudata. For both species, ABA-treated plants exhibited bud dormancy sooner and had an increased tolerance to freezing, decreased water content and increased accumulation of proline, glucose, and fructose in shoots. These effects were generally greater for M. denudata. Freezing tolerance was significantly correlated with content of water, proline, glucose, and fructose for both species, but freezing tolerance was significantly correlated with raffinose content only in M. wufengensis. We conclude that exogenous ABA could increase cold acclimation and improve cold hardiness of both Magnolia species, although M. denudata was more responsive to ABA than M. wufengensis, which might result from a greater dehydration and accumulation of proline and certain soluble sugars.  相似文献   

17.
The oleaginous yeast Lipomyces starkeyi was engineered for the production of long-chain fatty alcohols by expressing a fatty acyl-CoA reductase, mFAR1, from Mus musculus. The optimal conditions for production of fatty alcohols by this strain were investigated. Increased carbon-to-nitrogen ratios led to efficient C16 and C18 fatty alcohol production from glucose, xylose and glycerol. Batch cultivation resulted in a titer of 1.7 g/L fatty alcohol from glucose which represents a yield of 28 mg of fatty alcohols per gram of glucose. This relatively high level of production with minimal genetic modification indicates that L. starkeyi may be an excellent host for the bioconversion of carbon-rich waste streams, particularly lignocellulosic waste, to C16 and C18 fatty alcohols.  相似文献   

18.
Carbon balancing within the plant species is an important feature for climatic adaptability. Photosynthesis and respiration traits are directly linked with carbon balance. These features were studied in 20 wild rice accessions Oryza spp., and cultivars. Wide variation was observed within the wild rice accessions for photosynthetic oxygen evolution or photosynthetic rate (A), dark (R d), and light induced respiration (LIR) rates, as well as stomatal density and number. The mean rate of A varied from 10.49 μmol O2 m?2 s?1 in cultivated species and 13.09 μmol O2 m?2 s?1 in wild spp., The mean R d is 2.09 μmol O2 m?2 s?1 and 2.31 μmol O2 m?2 s?1 in cultivated and wild spp., respectively. Light induced Respiration (LIR) was found to be almost twice in wild rice spp., (16.75 μmol O2 m?2 s?1) compared to cultivated Oryza spp., Among the various parameters, this study reveals LIR and A as the key factors for positive carbon balance. Stomatal contribution towards carbon balance appears to be more dependent on abaxial surface where several number of stomata are situated. Correlation analysis indicates that R d and LIR increase with the increase in A. In this study, O. nivara (CR 100100, CR 100097), O. rufipogon (IR 103404) and O. glumaepatula (IR104387) were identified as potential donors which could be used in rice breeding program. Co-ordination between gas exchange and patchiness in stomatal behaviour appears to be important for carbon balance and environmental adaptation of wild rice accessions, therefore, survival under harsh environment.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号