首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tooth development is a complex process including successive stages of initiation, morphogenesis, and histogenesis. The role of the Dlx family of homeobox genes during the early stages of tooth development has been widely analyzed, while little data has been reported on their role in dental histogenesis. The expression pattern of Dlx2 has been described in the mouse incisor; an inverse linear relationship exists between the level of Dlx2 expression and enamel thickness, suggesting a role for Dlx2 in regulation of ameloblast differentiation and activity. In vitro data have revealed that DLX homeoproteins are able to regulate the expression of matrix proteins such as osteocalcin. The aim of the present study was to analyze the expression and function of Dlx genes during amelogenesis. Analysis of Dlx2/LacZ transgenic reporter mice, Dlx2 and Dlx1/Dlx2 null mutant mice, identified spatial variations in Dlx2 expression within molar tooth germs and suggests a role for Dlx2 in the organization of preameloblastic cells as a palisade in the labial region of molars. Later, during the secretory and maturation stages of amelogenesis, the expression pattern in molars was found to be similar to that described in incisors. The expression patterns of the other Dlx genes were examined in incisors and compared to Dlx2. Within the ameloblasts Dlx3 and Dlx6 are expressed constantly throughout presecretory, secretory, and maturation stages; during the secretory phase when Dlx2 is transitorily switched off, Dlx1 expression is upregulated. These data suggest a role for DLX homeoproteins in the morphological control of enamel. Sequence analysis of the amelogenin gene promoter revealed five potential responsive elements for DLX proteins that are shown to be functional for DLX2. Regulation of amelogenin in ameloblasts may be one method by which DLX homeoproteins may control enamel formation. To conclude, this study establishes supplementary functions of Dlx family members during tooth development: the participation in establishment of dental epithelial functional organization and the control of enamel morphogenesis via regulation of amelogenin expression.  相似文献   

2.
In order to investigate similarities and differences in genetic control of development among teeth within and between species, we determined the expression pattern of all eight Dlx genes of the zebrafish during development of the pharyngeal dentition and compared these data with that reported for mouse molar tooth development. We found that (i) dlx1a and dlx6a are not expressed in teeth, in contrast to their murine orthologs, Dlx1 and Dlx6; (ii) the expression of the six other zebrafish Dlx genes overlaps in time and space, particularly during early morphogenesis; (iii) teeth in different locations and generations within the zebrafish dentition differ in the number of genes expressed; (iv) expression similarities and differences between zebrafish Dlx genes do not clearly follow phylogenetic and linkage relationships; and (v) similarities and differences exist in the expression of zebrafish and mouse Dlx orthologs. Taken together, these results indicate that the Dlx gene family, despite having been involved in vertebrate tooth development for over 400 million years, has undergone extensive diversification of expression of individual genes both within and between dentitions. The latter type of difference may reflect the highly specialized dentition of the mouse relative to that of the zebrafish, and/or genome duplication in the zebrafish lineage facilitating a redistribution of Dlx gene function during odontogenesis.  相似文献   

3.
Bmp4 is a downstream gene of Msx1 in early mouse tooth development. In this study, we introduced the Msx1-Bmp4 transgenic allele to the Msx1 mutants in which tooth development is arrested at the bud stage in an effort of rescuing Msx1 mutant tooth phenotype in vivo. Ectopic expression of a Bmp4 transgene driven by the mouse Msx1promoter in the dental mesenchyme restored the expression of Lef-1 and Dlx2 but neither Fgf3 nor syndecan-1 in the Msx1 mutant molar tooth germ. The mutant phenotype of molar but not incisor could be partially rescued to progress to the cap stage. The Msx1-Bmp4 transgene was also able to rescue the alveolar processes and the neonatal lethality of the Msx1 mutants. In contrast, overexpression of Bmp4 in the wild type molar mesenchyme down-regulated Shh and Bmp2 expression in the enamel knot, the putative signaling center for tooth patterning, but did not produce a tooth phenotype. These results indicate that Bmp4 can bypass Msx1 function to partially rescue molar tooth development in vivo, and to support alveolar process formation. Expression of Shh and Bmp2 in the enamel knot may not represent critical signals for tooth patterning.  相似文献   

4.
5.
Wnt/beta-catenin signaling plays key roles in tooth development, but how this pathway intersects with the complex interplay of signaling factors regulating dental morphogenesis has been unclear. We demonstrate that Wnt/beta-catenin signaling is active at multiple stages of tooth development. Mutation of beta-catenin to a constitutively active form in oral epithelium causes formation of large, misshapen tooth buds and ectopic teeth, and expanded expression of signaling molecules important for tooth development. Conversely, expression of key morphogenetic regulators including Bmp4, Msx1, and Msx2 is downregulated in embryos expressing the secreted Wnt inhibitor Dkk1 which blocks signaling in epithelial and underlying mesenchymal cells. Similar phenotypes are observed in embryos lacking epithelial beta-catenin, demonstrating a requirement for Wnt signaling within the epithelium. Inducible Dkk1 expression after the bud stage causes formation of blunted molar cusps, downregulation of the enamel knot marker p21, and loss of restricted ectodin expression, revealing requirements for Wnt activity in maintaining secondary enamel knots. These data place Wnt/beta-catenin signaling upstream of key morphogenetic signaling pathways at multiple stages of tooth development and indicate that tight regulation of this pathway is essential both for patterning tooth development in the dental lamina, and for controlling the shape of individual teeth.  相似文献   

6.
We have studied the expression patterns of the newly isolated homeobox gene, Hox-8 by in situ hybridisation to sections of the developing heads of mouse embryos between E9 and E17.5, and compared them to Hox-7 expression patterns in adjacent sections. This paper concentrates on the interesting expression patterns of Hox-8 during initiation and development of the molar and incisor teeth. Hox-8 expression domains are present in the neural crest-derived mesenchyme beneath sites of future tooth formation, in a proximo-distal gradient. Tooth development is initiated in the oral epithelium which subsequently thickens in discrete sites and invaginates to form the dental lamina. Hox-8 expression in mouse oral epithelium is first evident at the sites of the dental placodes, suggesting a role in the specification of tooth position. Subsequently, in molar teeth, this patch of Hox-8 expressing epithelium becomes incorporated within the buccal aspect of the invaginating dental lamina to form part of the external enamel epithelium of the cap stage tooth germ. This locus of Hox-8 expression becomes continuous with new sites of Hox-8 expression in the enamel navel, septum, knot and internal enamel epithelium. The transitory enamel knot, septum and navel were postulated, long ago, to be involved in specifying tooth shape, causing the inflection of the first buccal cusp, but this theory has been largely ignored. Interestingly, in the conical incisor teeth, the enamel navel, septum and knot are absent, and Hox-8 has a symmetrical expression pattern. Our demonstration of the precise expression patterns of Hox-8 in the early dental placodes and their subsequent association with the enamel knot, septum and navel provide the first molecular clues to the basis of patterning in the dentition and the association of tooth position with tooth shape: an association all the more intriguing in view of the evolutionary robustness of the patterning mechanism, and the known role of homeobox genes in Drosophila pattern formation. At the bell stage of tooth development, Hox-8 expression switches tissue layers, being absent from the differentiating epithelial ameloblasts and turned on in the differentiating mesenchymal odontoblasts. Hox-7 is expressed in the mesenchyme of the dental papilla and follicle at all stages. This reciprocity of expression suggests an interactive role between Hox-7, Hox-8 and other genes in regulating epithelial mesenchymal interactions during dental differentiation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
8.
Multiple functions of Dlx genes   总被引:5,自引:0,他引:5  
  相似文献   

9.
10.
Dlx homeobox genes of vertebrates are often organised as physically linked pairs in which the two genes are transcribed convergently (tail-to-tail arrangement). Three such Dlx pairs have been found in mouse, human, and zebrafish and are thought to have originated from the duplication of an ancestral gene pair. These pairs include Dlx1/Dlx2, Dlx7/Dlx3, and Dlx6/Dlx5 (the zebrafish orthologue of Dlx5 is named dlx4). Expression patterns of physically linked Dlx genes overlap extensively. Furthermore, orthologous Dlx genes often show highly similar expression patterns. We analysed Dlx expression during the gastrula and early somitogenesis of the mouse and zebrafish. It was found that expression of the mouse Dlx6 gene takes place in the rostral ectoderm and presumptive olfactory and otic placodes with patterns similar to the previously reported expression of the physically linked Dlx5 gene. However, we observed only very weak expression of the mouse Dlx3 gene at the same stage. This contrasts with the expression of dlx genes in zebrafish where dlx3 and dlx7, but not dlx4 and dlx6 are expressed during gastrulation in the rostral ectoderm and presumptive placodes. Thus, Dlx expression patterns at early stages are better conserved between paralogous pairs of physically linked genes than between orthologous pairs. This suggests that early expression of Dlx genes existed prior to the duplications that led to the multiple pairs of physically linked genes but was differentially conserved in different paralogs in zebrafish and mice.  相似文献   

11.
12.
Dlx5 and Dlx6, two members of the Distalless gene family, are required for development of numerous tissues during embryogenesis, including facial and limb development. This gene pair is expressed in tandem, transcribed toward each other and separated by a short intergenic region containing multiple putative enhancers. Targeted inactivation of Dlx5 and Dlx6 in mice results in multiple developmental defects in craniofacial and limb structures, suggesting that these genes are crucial for aspects of both neural crest and nonneural crest development. To further investigate potential developmental roles of Dlx5 and Dlx6, we used one of the Dlx5/6 intergenic enhancers to drive Cre recombinase expression in transgenic mice. Crossing Dlx5/6-Cre transgenic mice with mice from the R26R strain results in beta-galactosidase staining in the apical ectodermal ridge, brain, and neural crest-derived mesenchyme of the pharyngeal arches, with staining in term embryos observed in the facial skeleton and specific brain structures. However, in contrast to endogenous expression patterns of Dlx5 and Dlx6, Cre expression within the pharyngeal arches occurs during a very narrow window in early development. Our studies suggest that Dlx5/6-Cre mice may prove useful both in further understanding the function and regulation of Distalless genes during development and in studies of gene function in conditional knockout mice.  相似文献   

13.
14.
15.
Dihydropyrimidinase-related protein 4 (Dpysl4) is a known regulator of hippocampal neuron development. Here, we report that Dpysl4 is involved in growth regulation, polarization and differentiation of dental epithelial cells during tooth germ morphogenesis. A reduction in Dpysl4 gene expression in the tooth germ produced a loss of ameloblasts, resulting in the decrease of synthesis and secretion of enamel. The inhibition of Dpysl4 gene expression led to promotion of cell proliferation of inner enamel epithelial cells and inhibition of the differentiation of these cells into pre-ameloblasts, which was confirmed by analyzing cell polarization, columnar cell structure formation and the expression of ameloblast marker genes. By contrast, overexpression of Dpysl4 in dental epithelial cells induces inhibition of growth and increases the expression of the inner enamel epithelial cell marker gene, Msx2. These findings suggest that Dpysl4 plays essential roles in tooth germ morphogenesis through the regulation of dental epithelial cell proliferation, cell polarization and differentiation.  相似文献   

16.
Dlx2, a member of the distal-less gene family, is expressed in the first branchial arch, prior to the initiation of tooth development, in distinct, non-overlapping domains in the mesenchyme and the epithelium. In the mesenchyme Dlx2 is expressed proximally, whereas in oral epithelium it is expressed distally. Dlx2 has been shown to be involved in the patterning of the murine dentition, since loss of function of Dlx1 and Dlx2 results in early failure of development of upper molar teeth. We have investigated the regulation of Dlx2 expression to determine how the early epithelial and mesenchymal expression boundaries are maintained, to help to understand the role of these distinct expression domains in patterning of the dentition. Transgenic mice produced with a lacZ reporter construct, containing 3.8 kb upstream sequence of Dlx2, led to the mapping of regulatory regions driving epithelial but not mesenchymal expression in the first branchial arch. We show that the epithelial expression of Dlx2 is regulated by planar signalling by BMP4, which is coexpressed in distal oral epithelium. Mesenchymal expression is regulated by a different mechanism involving FGF8, which is expressed in the overlying epithelium. FGF8 also inhibits expression of Dlx2 in the epithelium by a signalling pathway that requires the mesenchyme. Thus, the signalling molecules BMP4 and FGF8 provide the mechanism for maintaining the strict epithelial and mesenchymal expression domains of Dlx2 in the first arch.  相似文献   

17.
18.
 Amelogenins are the most abundant constituent in the enamel matrix of developing teeth. Recent investigations of rodent incisors and molar tooth germs revealed that amelogenins are expressed not only in secretory ameloblasts but also in maturation ameloblasts, although in relatively low levels. In this study, we investigated expression of amelogenin in the maturation stage of porcine tooth germs by in situ hybridization and immunocytochemistry. Amelogenin mRNA was intensely expressed in ameloblasts from the differentiation to the transition stages, but was not detected in maturation stage ameloblasts. C-terminal specific anti-amelogenin antiserum, which only reacts with nascent amelogenin molecules, stained ameloblasts from the differentiation to the transition stages. This antiserum also stained the surface layer of immature enamel at the same stages. At the maturation stage, no immunoreactivity was found within the ameloblasts or the immature enamel. These results indicate that, in porcine tooth germs, maturation ameloblasts do not express amelogenins, suggesting that newly secreted enamel matrix proteins from the maturation ameloblast are not essential to enamel maturation occurring at the maturation stage. Accepted: 14 January 1999  相似文献   

19.
《Gene》1998,216(1):131-137
The amelogenin genes encode abundant enamel proteins that are required for the development of normal tooth enamel. These genes are active only in enamel-forming ameloblasts within the dental organ of the developing tooth, and are part of a small group of genes that are active on both sex chromosomes. The upstream regions of the bovine X- and Y-chromosomal and the sole murine X-chromosomal amelogenin genes have been cloned and sequenced, and conservation at nearly 60% is found in the 300 bp upstream of exon 1 for the 3 genes. A region of the bovine X-chromosomal gene that has inhibitory activity when assayed by gene transfer into heterologous cells includes motifs that have a silencing activity in other genes, and may be important to the mechanism that represses amelogenin expression in non-ameloblast cells in vivo. A comparison of sequences from three genes has led to the identification of several regions with conserved motifs that are strong candidates for having positive or negative regulatory functions, and these regions can now be tested further for interaction with nuclear proteins, and for their ability to regulate expression in vivo.  相似文献   

20.
Dlx homeobox genes, the vertebrate homologs of Distal-less, play important roles in the development of the vertebrate forebrain, craniofacial structures and limbs. Members of the Dlx gene family are also expressed in retinal ganglion cells (RGC), amacrine and horizontal cells of the developing and postnatal retina. Expression begins at embryonic day 12.5 and is maintained until late embryogenesis for Dlx1, while Dlx2 expression extends to adulthood. We have assessed the retinal phenotype of the Dlx1/Dlx2 double knockout mouse, which dies at birth. The Dlx1/2 null retina displays a reduced ganglion cell layer (GCL), with loss of differentiated RGCs due to increased apoptosis, and corresponding thinning of the optic nerve. Ectopic expression of Crx, the cone and rod photoreceptor homeobox gene, in the GCL and neuroblastic layers of the mutants may signify altered cell fate of uncommitted RGC progenitors. However, amacrine and horizontal cell differentiation is relatively unaffected in the Dlx1/2 null retina. Herein, we propose a model whereby early-born RGCs are Dlx1 and Dlx2 independent, but Dlx function is necessary for terminal differentiation of late-born RGC progenitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号