首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
An investigation was made to determine the effective time forCO2 treatment in overcoming self-incompatibility in Brassica.CO2 was effective when supplied to a self-pollinated flowerwhile hundreds of pollen grains were germinating on the stigma.Since the effective time coincides with the attachment of pollentubes to papilla cells, it is thought that CO2 produces a metabolicchange in these cells during attachement. 1Part of a thesis submitted for the Dr. of Agr. degree by thesenior author at Tohoku University. 2Present address: Faculty of Agriculture, Kobe University, Nada-ku,Kobe, Japan. (Received December 7, 1972; )  相似文献   

2.
To test thehypothesis that intracellular Ca2+activation of large-conductanceCa2+-activatedK+ (BK) channels involves thecytosolic form of phospholipase A2 (cPLA2), we first inhibited theexpression of cPLA2 by treating GH3 cells with antisenseoligonucleotides directed at the two possible translation start siteson cPLA2. Western blot analysis and a biochemical assay of cPLA2activity showed marked inhibition of the expression ofcPLA2 in antisense-treated cells.We then examined the effects of intracellularCa2+ concentration([Ca2+]i)on single BK channels from these cells. Open channel probability (Po) for thecells exposed to cPLA2 antisenseoligonucleotides in 0.1 µM intracellularCa2+ was significantly lower thanin untreated or sense oligonucleotide-treated cells, but the voltagesensitivity did not change (measured as the slope of thePo-voltagerelationship). In fact, a 1,000-fold increase in[Ca2+]ifrom 0.1 to 100 µM did not significantly increasePoin these cells, whereas BK channels from cells in the other treatmentgroups showed a normalPo-[Ca2+]iresponse. Finally, we examined the effect of exogenous arachidonic acidon thePoof BK channels from antisense-treated cells. Although arachidonic aciddid significantly increasePo,it did so without restoring the[Ca2+]isensitivity observed in untreated cells. We conclude that although [Ca2+]idoes impart some basal activity to BK channels inGH3 cells, the steepPo-[Ca2+]irelationship that is characteristic of these channels involves cPLA2.

  相似文献   

3.
The Cyanobacterium Anabaena variabilis ATCC 29413 grown at lowCO2 concentration under mixotrophic conditions with fructoseshowed a repression in the ability to fix inoganic carbon. Thisrepression was not due to a diminution in the ability to transportexternal inorganic carbon but could be explained by a decreaseof two enzymatic activities involved in the assimilation ofinorganic carbon: carbonic anhydrase and Rubisco. Carbonic anhydraseactivity was close to 50% lower in mixotrophic than in autotrophiccells. Moreover growth under mixotrophic conditions reducedRubisco activity at all dissolved inorganic carbon concentrationsassayed (5–60 mM). Maximum Rubisco activity (Vmax decreasedfrom µmol CO2 mg protein-1h-1 in autotrophic cells to2.3 µmol CO2 mg protein-1h-1 in mixotrophic cells. Nosignificant differences in Km(C1) between autotrophic and mixotrophiccells were however observed. The possible mechanisms involvedin the inhibition of Rubisco are discussed. (Received November 8, 1994; Accepted October 12, 1995)  相似文献   

4.
Two cDNA clones exclusively induced under an extremely high-CO2concentration (20%) were isolated from Chlorococcum littoraleby differential screening and named HCR (high-CO2 response)1 and 2, respectively. The amino acid sequence of the proteinencoded by HCR2 exhibited homology to the gp91-phox protein,a critical component of a human phagocyte oxidoreductase, andto the yeast ferric reductases, Saccharomyces cerevisiae FRE1and FRE2 and Schizosaccharomyces pombe Frpl. The induction ofboth HCR mRNAs required extremely high-CO2 conditions and irondeficiency, being suppressed under air conditions and by ironsufficiency, suggesting that the expression of these two HCRgenes required extremely high-CO2 conditions and iron deficiencyin combination. The HCR2 protein was detected in the membranefractions of cells grown under conditions which would favorthe induction of HCR2-mRNA and the protein level was loweredwhen the cells were transferred from iron deficient to 10 µMFeSO4 conditions (with 20% CO2). (Received September 10, 1997; Accepted November 14, 1997)  相似文献   

5.
The electon transport systems of Rhizobium japonicum were studied,comparing cells harvested from effective nodules with thosefrom artificial culture. Participation of the cytochrome systemwas confirmed in both forms of cells. Absorption peaks of thecytochromes of cultured cells were a, b, c type, resemblingthose of Bacillus subtilis, yeast and mammalian tissue. Cytochromea could not be detected in the absorption spectrum of symbioticcells, although the CO binding difference spectrum showed apeak at about 438 mµ, which can be attributed to a componenta3 or a1. CO difference spectrum also showed a shoulder at about416 mµ. Cells cultivated under the insufficient supply of oxygen showedthe cytochrome absorption spectrum closely resembled that ofsymbiotic cells. Diaphorase activity was lower in symbioticcells. These results are considered to be due to the insufficientsupply of oxygen within nodule tissue. Succinate oxidation bythe symbiotic cell paniculate was shown to be carbon monooxideresistant. NADH2 oxidation by the supernatant fraction of symbioticcells was accelerated by flavin mononucleotide, 2, 6-dichiorophenolindophenol, methylene blue and vitamin K3. 1Present address: Faculty of Agriculture, Tôhoku University,Sendai. 2Present address: Central Agricultural Experiment Station, Kitamoto.  相似文献   

6.
Inactivation of the L-type Ca2+ current (ICaL) was studied in isolated guinea pig ventricular myocytes with different ionic solutions. Under basal conditions, ICaL of 82% of cells infused with Cs+-based intracellular solutions showed enhanced amplitude with multiphasic decay and diastolic depolarization-induced facilitation. The characteristics of ICaL in this population of cells were not due to contamination by other currents or an artifact. These phenomena were reduced by ryanodine, caffeine, cyclopiazonic acid, the protein kinase A inhibitor H-89, and the cAMP-dependent protein kinase inhibitor. Forskolin and isoproterenol increased ICaL by only 60% in these cells. Cells infused with either N-methyl-D-glucamine or K+-based intracellular solutions did not show multiphasic decay or facilitation under basal conditions. Isoproterenol increased ICaL by 200% in these cells. In conclusion, we show that multiphasic inactivation of ICaL is due to Ca2+-dependent inactivation that is reversible on a time scale of tens of milliseconds. Cs+ seems to activate the cAMP-dependent protein kinase pathway when used as a substitute for K+ in the pipette solution. L-type calcium current; calcium-dependent inactivation; facilitation; phosphorylation; cesium  相似文献   

7.
Seeni  S.; Gnanam  A. 《Plant & cell physiology》1983,24(6):1033-1041
Photomixotrophic cell suspension culture was established fromthe leaf derived callus cells of Gisekia pharnaceoides L., aC4 dicotyledonous weed. The late log phase cells possessed shade-typecharacters such as low chlorophyll a/b ratio, less pronouncedO2 evolution and CO2 fixation, saturation of photosyntheticCO2 fixation at low intensity. The chloroplasts from these cellscontained granal stacking with high degree of a very few granawhich are characterized by their wide and high degree of stackings. The predominant labelling of 3-phosphoglyceric acid and sugarphosphates (40% of the total 14C incorporated) during 5 s exposureto 14CO2 in light and subsequent decrease in percentage of 14Cin these compounds with increase in exposure time indicatedthe operation of the C3 pathway in these cells. The simultaneoussynthesis of malate (23% of the total 14C incorporated) is relatedto the much pronounced glycolytic and tricarboxylic acid cycleactivities in these cells. The initial proliferation of callimainly from the zones of vascular supplies in the leaf, highstarch content of the cells, presence of large starch grainsin all the chloroplasts, activities of Calvin cycle enzymes,heavy labelling of C3 type intermediates and less labellingof aspartate as early photosynthates and rapid accumulationof radioactivity into starch during 14CO2 assimilation indicatedthat most of the cells in photomixotrophic culture were derivedfrom bundle sheath cells or the leaf cells of Gisekia changetheir function under culture conditions. 1Present address: Tropical Botanic Garden and Research Institute,Navaranga Road, Trivandrum 695 011, India. (Received January 29, 1982; Accepted June 4, 1983)  相似文献   

8.
Riboflavin uptake by human-derived colonic epithelial NCM460 cells   总被引:2,自引:0,他引:2  
Normal microflora ofthe large intestine synthesize a number of water-soluble vitaminsincluding riboflavin (RF). Recent studies have shown that colonicepithelial cells posses an efficient carrier-mediated mechanism forabsorbing some of these micronutrients. The aim of the present studywas to determine whether colonic cells also posses a carrier-mediatedmechanism for RF uptake and, if so, to characterize this mechanism andstudy its cellular regulation. Confluent monolayers of thehuman-derived nontransformed colonic epithelial cells NCM460 and[3H]RF were used in the study. Uptake of RF wasfound to be 1) appreciable and temperature and energydependent; 2) Na+ independent; 3) saturableas a function of concentration with an apparent Kmof 0.14 µM and Vmax of 3.29 pmol · mgprotein1 · 3 min1; 4) inhibited by the structural analogslumiflavin and lumichrome (Ki of 1.8 and 14.1 µM,respectively) but not by the unrelated biotin; 5) inhibited ina competitive manner by the membrane transport inhibitor amiloride(Ki = 0.86 mM) but not by furosemide, DIDS, orprobenecid; 6) adaptively regulated by extracellular RF levels with a significant and specific upregulation and downregulation in RFuptake in RF-deficient and oversupplemented conditions, respectively;and 7) modulated by an intracellularCa2+/calmodulin-mediated pathway. These studies demonstratefor the first time the existence of a specialized carrier-mediatedmechanism for RF uptake in an in vitro cellular model system of humancolonocytes. This mechanism appears to be regulated by extracellularsubstrate level and by an intracellularCa2+/calmodulin-mediated pathway. It is suggested that theidentified transport system may be involved in the absorption ofbacterially synthesized RF in the large intestine and that this sourceof RF may contribute toward RF homeostasis, especially that of colonocytes.

  相似文献   

9.
To examine theeffect of hyperosmolality on Na+/H+ exchanger(NHE) activity in mesangial cells (MCs), we used apH-sensitive dye,2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-AM, to measure intracellular pH (pHi) in a single MC from ratglomeruli. All the experiments were performed inCO2/HCO3-free HEPESsolutions. Exposure of MCs to hyperosmotic HEPES solutions (500 mosmol/kgH2O) treated with mannitol caused cellalkalinization. The hyperosmolality-induced cell alkalinization wasinhibited by 100 µM ethylisopropylamiloride, a specific NHEinhibitor, and was dependent on extracellular Na+. Thehyperosmolality shifted the Na+-dependent acid extrusionrate vs. pHi by 0.15-0.3 pH units in thealkaline direction. Removal of extracellular Cl byreplacement with gluconate completely abolished the rate of cellalkalinization induced by hyperosmolality and inhibited the Na+-dependent acid extrusion rate, whereas, under isosmoticconditions, it caused no effect on Na+-dependentpHi recovery rate or Na+-dependent acidextrusion rate. The Cl-dependent cell alkalinizationrate under hyperosmotic conditions was partially inhibited bypretreatment with 5-nitro-2-(3-phenylpropylamino)benzoic acid, DIDS,and colchicine. We conclude: 1) in MCs, hyperosmolality activates NHE to cause cell alkalinization, 2) the acidextrusion rate via NHE is greater under hyperosmotic conditions thanunder isosmotic conditions at a wide range of pHi,3) the NHE activation under hyperosmotic conditions, but notunder isosmotic conditions, requires extracellularCl, and 4) theCl-dependent NHE activation under hyperosmoticconditions partly occurs via Cl channel andmicrotubule-dependent processes.

  相似文献   

10.
It has been suggested that L-type Ca2+ channels play an important role in cell swelling-induced vasoconstriction. However, there is no direct evidence that Ca2+ channels in vascular smooth muscle are modulated by cell swelling. We tested the hypothesis that L-type Ca2+ channels in rabbit portal vein myocytes are modulated by hypotonic cell swelling via protein kinase activation. Ba2+ currents (IBa) through L-type Ca2+ channels were recorded in smooth muscle cells freshly isolated from rabbit portal vein with the conventional whole cell patch-clamp technique. Superfusion of cells with hypotonic solution reversibly enhanced Ca2+ channel activity but did not alter the voltage-dependent characteristics of Ca2+ channels. Bath application of selective inhibitors of protein kinase C (PKC), Ro-31–8425 or Go-6983, prevented IBa enhancement by hypotonic swelling, whereas the specific protein kinase A (PKA) inhibitor KT-5720 had no effect. Bath application of phorbol 12,13-dibutyrate (PDBu) significantly increased IBa under isotonic conditions and prevented current stimulation by hypotonic swelling. However, PDBu did not have any effect on IBa when cells were first exposed to hypotonic solution. Furthermore, downregulation of endogenous PKC by overnight treatment of cells with PDBu prevented current enhancement by hypotonic swelling. These data suggest that hypotonic cell swelling can enhance Ca2+ channel activity in rabbit portal vein smooth muscle cells through activation of PKC. cell swelling; protein kinases; calcium current  相似文献   

11.
Chlorella vulgaris 11h cells grown in air enriched with 4% CO2(high-CO2 cells) had carbonic anhydrase (CA) activity whichwas 20 to 90 times lower than that of algal cells grown in ordinaryair (containing 0.04% CO2, low-CO2 cells). The CO2 concentrationduring growth did not affect either ribulose 1,5-bisphosphate(RuBP) carboxylase activity or its Km for CO2. When high-CO2 cells were transferred to low CO2 conditions,CA activity increased without a lag period, and this increasewas accompanied by an increase in the rate of photosynthetic14CO2 fixation under 14CO2-limiting conditions. On the otherhand, CA activity as well as the rate of photosynthetic 14CO2fixation at low 14CO2 concentrations decreased when low-CO2cells were transferred to high CO2 conditions. Diamox, an inhibitor of CA, at 0.1 mM did not affect photosynthesisof low-CO2 cells at high CO2 concentration (0.5%). Diamox inhibitedphotosynthesis only under low CO2 concentrations, and the lowerthe CO2 concentration, the greater was the inhibition. Consequently,the CO2 concentration at which the rate of photosynthesis attainedone-half its maximum rate (Km) greatly increased in the presenceof this inhibitor. When CO2 concentration was higher than 1%, the photosyntheticrate in low-CO2 cells decreased, while that in high-CO2 cellsincreased. Fractionation of the low-CO2 cells in non-aqueous medium bydensity showed that CA was fractionated in a manner similarto the distribution of chlorophyll and RuBP carboxylase. These observations indicate that CA enhances photosynthesisunder CO2-limiting conditions, but inhibits it at CO2 concentrationshigher than a certain level. The mechanism underlying the aboveregulatory functions of CA is discussed. 1This work was reported at the International Symposium on PhotosyntheticCO2-Assimilation and Photorespiration, Sofia, August, 1977 (18).Requests for reprints should be addressed to S. Miyachi, RadioisotopeCentre, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan. (Received December 11, 1978; )  相似文献   

12.
Using thepH-sensitive dye2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF),we examined the effect of hyperosmolar solutions, which presumablycaused cell shrinkage, on intracellular pH(pHi) regulation in mesangialcells (single cells or populations) cultured from the rat kidney. Thecalibration of BCECF is identical in shrunken and unshrunken mesangialcells if the extracellular K+concentration ([K+])is adjusted to match the predicted intracellular[K+]. ForpHi values between ~6.7 and~7.4, the intrinsic buffering power in shrunken cells (600 mosmol/kgH2O) is threefold larger than in unshrunken cells (~300mosmol/kgH2O). In the nominalabsence ofCO2/HCO3,exposing cell populations to a HEPES-buffered solution supplementedwith ~300 mM mannitol (600 mosmol/kgH2O) causes steady-statepHi to increase by ~0.4. The pHi increase is due to activationofNa+/H+exchange because, in single cells, it is blocked in the absence ofexternal Na+ or in the presence of50 µM ethylisopropylamiloride (EIPA). Preincubating cells in aCl-free solution for atleast 14 min inhibits the shrinkage-induced pHi increase by 80%. Wecalculated the pHi dependence oftheNa+/H+exchange rate in cell populations under normosmolar and hyperosmolar conditions by summing 1) thepHi dependence of the totalacid-extrusion rate and 2) thepHi dependence of theEIPA-insensitive acid-loading rate. Shrinkage alkali shifts thepHi dependence ofNa+/H+exchange by ~0.7 pH units.  相似文献   

13.
Endogenous gibberellins (GAs) in several kinds of crown gallcells and cultured cells derived from normal tissue of Nicotianatabacum were systematically analyzed by gas chromatography-selectedion current monitoring (GC-SICM) after chromatographic purifications,and GA1, GA9, GA19 and GA20 were identified. Agrobacterium tumefaciens,a pathogen of crown gall, was confirmed not to produce GAs inits culture. We also investigated endogenous GAs of mother plant,tobacco, and found the same kinds of GAs as in cultured cells. 3 Present address: College of Agriculture, Chonnam NationalUniversity, Kwangju 500, Korea. (Received May 19, 1982; Accepted July 22, 1983)  相似文献   

14.
Lectin-induced apoptosis of tumour cells   总被引:3,自引:0,他引:3  
The mechanisms of cytotoxic activity of Griffonia simplicifolia1-B4 (GS1B4) and wheat germ agglutinin (WGA) lectins againstvarious murine tumour cell lines were studied. Tumour cellsthat lack lectin-binding carbohydrates were resistant to lysisby these lectins. However, YAC-1 cells that expressed GS1B4lectin-binding sites showed low sensitivity to lysis. To furtheranalyse the relative importance of cell surface carbohydratesin lectin cytotoxicity, BL6–8 melanoma cells, which donot express the  相似文献   

15.
Functional ion channels in mouse bone marrow mesenchymal stem cells   总被引:1,自引:0,他引:1  
Bone marrow mesenchymal stem cells (MSCs) are used as a cell source for cardiomyoplasty; however, the cellular electrophysiological properties are not fully understood. The present study was to investigate the functional ionic channels in undifferentiated mouse bone marrow MSCs using whole cell patch-voltage clamp technique, RT-PCR, and Western immunoblotting analysis. We found that three types of ionic currents were present in mouse MSCs, including a Ca2+-activated K+ current (IKCa), an inwardly rectifying K+ current (IKir), and a chloride current (ICl). IKir was inhibited by Ba2+, and IKCa was activated by the Ca2+ ionophore A-23187 and inhibited by the intermediate-conductance IKCa channel blocker clotrimazole. ICl was activated by hyposmotic (0.8 T) conditions and inhibited by the chloride channel blockers DIDS and NPPB. The corresponding ion channel genes and proteins, KCa3.1 for IKCa, Kir2.1 for IKir, and Clcn3 for ICl, were confirmed by RT-PCR and Western immunoblotting analysis in mouse MSCs. These results demonstrate that three types of functional ion channel currents (i.e., IKir, IKCa, and ICl) are present in mouse bone marrow MSCs. inward rectifier potassium current; intermediate-conductance calcium-activated potassium current; volume-sensitive chloride current  相似文献   

16.
The role of nitric oxide (NO) in the occurrence of intracellular Ca2+ concentration ([Ca2+]i) oscillations in pituitary GH3 cells was evaluated by studying the effect of increasing or decreasing endogenous NO synthesis with L-arginine and nitro-L-arginine methyl ester (L-NAME), respectively. When NO synthesis was blocked with L-NAME (1 mM) [Ca2+]i, oscillations disappeared in 68% of spontaneously active cells, whereas 41% of the quiescent cells showed [Ca2+]i oscillations in response to the NO synthase (NOS) substrate L-arginine (10 mM). This effect was reproduced by the NO donors NOC-18 and S-nitroso-N-acetylpenicillamine (SNAP). NOC-18 was ineffective in the presence of the L-type voltage-dependent Ca2+ channels (VDCC) blocker nimodipine (1 µM) or in Ca2+-free medium. Conversely, its effect was preserved when Ca2+ release from intracellular Ca2+ stores was inhibited either with the ryanodine-receptor blocker ryanodine (500 µM) or with the inositol 1,4,5-trisphosphate receptor blocker xestospongin C (3 µM). These results suggest that NO induces the appearance of [Ca2+]i oscillations by determining Ca2+ influx. Patch-clamp experiments excluded that NO acted directly on VDCC but suggested that NO determined membrane depolarization because of the inhibition of voltage-gated K+ channels. NOC-18 and SNAP caused a decrease in the amplitude of slow-inactivating (IDR) and ether-à-go-go-related gene (ERG) hyperpolarization-evoked, deactivating K+ currents. Similar results were obtained when GH3 cells were treated with L-arginine. The present study suggests that in GH3 cells, endogenous NO plays a permissive role for the occurrence of spontaneous [Ca2+]i oscillations through an inhibitory effect on IDR and on IERG. voltage-gated potassium channels; ether-à-go-go-related gene potassium channels; slow-inactivating outward currents; fast-inactivating outward currents  相似文献   

17.
We report, for the epithelialNa+ channel (ENaC) in A6 cells,the modulation by cell pH (pHc)of the transepithelial Na+ current(INa), thecurrent through the individual Na+channel (i), the openNa+ channel density(No), and thekinetic parameters of the relationship betweenINa and theapical Na+ concentration. Thei andNo were evaluatedfrom the Lorentzian INa noise inducedby the apical Na+ channel blocker6-chloro-3,5-diaminopyrazine-2-carboxamide.pHc shifts were induced, understrict and volume-controlled experimental conditions, byapical/basolateral NH4Cl pulses orbasolateral arrest of theNa+/H+exchanger (Na+ removal; block byethylisopropylamiloride) and were measured with the pH-sensitive probe2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Thechanges in pHc were positivelycorrelated to changes inINa and theapically dominated transepithelial conductance. The sole pHc-sensitive parameter underlyingINa wasNo. Only thesaturation value of theINa kinetics wassubject to changes in pHc.pHc-dependent changes inNo may be causedby influencingPo, the ENaC openprobability, or/and the total channel number,NT = No/Po.

  相似文献   

18.
Vitamin B6 is essential for cellular functions and growth due to its involvement in important metabolic reactions. Humans and other mammals cannot synthesize vitamin B6 and thus must obtain this micronutrient from exogenous sources via intestinal absorption. The intestine, therefore, plays a central role in maintaining and regulating normal vitamin B6 homeostasis. Due to the water-soluble nature of vitamin B6 and the demonstration that transport of other water-soluble vitamins in intestinal epithelial cells involves specialized carrier-mediated mechanisms, we hypothesized that transport of vitamin B6 in these cells is also carrier mediated in nature. To test this hypothesis, we examined pyridoxine transport in a model system for human enterocytes, the human-derived intestinal epithelial Caco-2 cells. The results showed pyridoxine uptake to be 1) linear with time for up to 10 min of incubation and to occur with minimal metabolic alteration in the transported substrate, 2) temperature and energy dependent but Na+ independent, 3) pH dependent with higher uptake at acidic compared with alkaline pHs, 4) saturable as a function of concentration (at buffer pH 5.5 but not 7.4) with an apparent Michaelis-Menten constant (Km) of 11.99 ± 1.41 µM and a maximal velocity (Vmax) of 67.63 ± 3.87 pmol · mg protein-1 · 3 min-1, 5) inhibited by pyridoxine structural analogs (at buffer pH 5.5 but not 7.4) but not by unrelated compounds, and 6) inhibited in a competitive manner by amiloride with an apparent inhibitor constant (Ki) of 0.39 mM. We also examined the possible regulation of pyridoxine uptake by specific intracellular regulatory pathways. The results showed that whereas modulators of PKC, Ca+2/calmodulin (CaM), and nitric oxide (NO)-mediated pathways had no effect on pyridoxine uptake, modulators of PKA-mediated pathway were found to cause significant reduction in pyridoxine uptake. This reduction was mediated via a significant inhibition in the Vmax, but not the apparent Km, of the pyridoxine uptake process. These results demonstrate, for the first time, the involvement of a specialized carrier-mediated mechanism for pyridoxine uptake by intestinal epithelial cells. This system is pH dependent and amiloride sensitive and appears to be under the regulation of an intracellular PKA-mediated pathway. vitamin B6; intestinal transport; transport regulation; Caco-2 cell  相似文献   

19.
It has been suggested that the sodium/calcium exchanger NCX1 may have a more important physiological role in embryonic and neonatal hearts than in adult hearts. However, in chick heart sarcolemmal vesicles, sodium-dependent calcium transport is reported to be small and, moreover, to be 3–12 times smaller in hearts at embryonic day (ED) 4–5 than at ED18, the opposite of what would be expected of a transporter that is more important in early development. To better assess the role of NCX1 in calcium regulation in the chick embryonic heart, we measured the activity of NCX1 in chick embryonic hearts as extracellular calcium-activated exchanger current (INCX) under controlled ionic conditions. With intracellular calcium concentration ([Ca2+]i) = 47 nM, INCX density increased from 1.34 ± 0.28 pA/pF at ED2 to 3.22 ± 0.55 pA/pF at ED11 (P = 0.006); however, with [Ca2+]i = 481 nM, the increase was small and statistically insignificant, from 4.54 ± 0.77 to 5.88 ± 0.73 pA/pF (P = 0.20, membrane potential = 0 mV, extracellular calcium concentration = 2 mM). Plots of INCX density against [Ca2+]i were well fitted by the Michaelis-Menton equation and extrapolated to identical maximal currents for ED2 and ED11 cells (extracellular calcium concentration = 1, 2, or 4 mM). Thus the increase in INCX at low [Ca2+]i appeared to reflect a developmental change in allosteric regulation of the exchanger by intracellular calcium rather than an increase in the membrane density of NCX1. Supporting this conclusion, RT-PCR demonstrated little change in the amount of mRNA encoding NCX1 expression from ED2 through ED18. NCX1; chick embryo; allosteric regulation; sodium/calcium exchange current  相似文献   

20.
We have isolatedciliated respiratory cells from the nasal epithelium of wild-type andcystic fibrosis (CF) null mice and used the patch-clamp technique toinvestigate their basal conductances. Current-clamp experiments onunstimulated cells indicated the presence ofK+ andCl conductances and, undercertain conditions, a small Na+conductance. Voltage-clamp experiments revealed three distinct Cl conductances.Itv-indep wastime and voltage independent with a linear current-voltage(I-V)plot; Iv-actexhibited activation at potentials greater than ±50 mV, giving anS-shapedI-Vplot; andIhyp-act wasactivated by hyperpolarizing potentials and had an inwardly rectifiedI-Vplot. The current density sequence was Ihyp-act = Iv-act  Itv-indep. Theseconductances hadCl-to-N-methyl-D-glucaminecation permeability ratios of between 2.8 and 10.3 and were unaffectedby tamoxifen, flufenamate, glibenclamide, DIDS, and5-nitro-2-(3-phenylpropylamino) benzoic acid but were inhibited byZn2+ andGd3+.Itv-indep andIv-act werepresent in wild-type and CF cells at equal density and frequency.However, Ihyp-actwas detected in only 3% of CF cells compared with 26% of wild-typecells, suggesting that this conductance may be modulated by cysticfibrosis transmembrane conductance regulator (CFTR).

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号