首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine seminal ribonuclease (BS-RNase) is made up of two identical subunits bridged through two disulfide bonds. In solution, it exists as a 2:1 equilibrium mixture between two forms, with (MxM) and without swapping (M=M) of the N-terminal arms. The swapping endows BS-RNase with some special biological functions, including antitumor activity, since MxM retains a dimeric structure even under reducing conditions, thus evading the cytosolic ribonuclease inhibitor. To investigate the structural basis of domain swapping in BS-RNase, we have obtained several mutants by replacing selected residues with the corresponding ones of its monomeric counterpart, bovine pancreatic ribonuclease (RNase A). We have already shown that, in contrast with all other cases of swapped proteins, the swapping propensity of BS-RNase does not depend on the specific sequence of the 16-22 hinge loop, which connects the main body to the dislocating arm. In this paper we report the design, the expression, and the structural characterization of two mutants obtained by replacing Arg80 with Ser either in BS-RNase or in the mutant already containing the 16-22 hinge sequence of RNase A. NMR and circular dichroism data indicate that, in the monomeric form of the latter mutant, Ser80 acts as a switch for the conformation of the hinge region. Accordingly, in the dimeric form of the same mutant the MxM:M=M equilibrium ratio is inverted to 1:2. Overall, these data suggest that the presence of Arg80 triggers the swapping of N-terminal ends and plays a relevant role in the stability of the swapped form of BS-RNase.  相似文献   

2.
Protein aggregation via 3D domain swapping is a complex mechanism which can lead to the acquisition of new biological, benign or also malignant functions, such as amyloid deposits. In this context, RNase A represents a fascinating model system, since by dislocating different polypeptide chain regions, it forms many diverse oligomers. No other protein displays such a large number of different quaternary structures. Here we report a comparative structural analysis between natural and artificial RNase A dimers and bovine seminal ribonuclease, a natively dimeric RNase with antitumor activity, with the aim to design RNase A derivatives with improved pharmacological potential.  相似文献   

3.
Four residues Pro19, Leu28, Cys31 and Cys32 proved to be the minimal structural requirements in determining the dimeric structure and the N-terminal segment swapping of bovine seminal ribonuclease, BS-RNase. We analyzed the content of secondary and tertiary structures in RNase A, P-RNase A, PL-RNase A, MCAM-PLCC-RNase A and MCAM-BS-RNase, performing near and far-UV CD spectra. It results that the five proteins have very similar native conformations. Thermal denaturation at pH 5.0 of the proteins, studied by means of CD measurements, proved reversible and well represented by the two-state ND transition model. Thermodynamic data are discussed in the light of the structural information available for RNase A and BS-RNase.  相似文献   

4.
Bovine seminal ribonuclease, a homodimeric enzyme joined covalently by two interchain disulphide bonds, is an equilibrium mixture of two conformational isomers, MxM and M=M. The major form, MxM, whose crystal structure has been previously determined at 1.9 A resolution, presents the swapping of the N-terminal segments (residues 1-15) and composite active sites formed by residues of different chains. The three-dimensional domain swapping does not occur in the M=M form. The different fold of each N-terminal tail is directed by the hinge loop (residue 16-22) connecting the swapping domain to the body of the protein. Reduction and alkylation of interchain disulphide bridges produce a monomeric derivative and a noncovalent swapped dimer, which are both active. The free and nucleotide-bound forms of the monomer have been crystallized at an alkaline pH and refined at 1.45 and 1.65 A resolution, respectively. In both cases, the N-terminal fragment is folded on the main body of the protein to produce an intact active site and a chain architecture very similar to that of bovine pancreatic ribonuclease. In this new fold of the seminal chain, the hinge loop is disordered. Despite the difference between the tertiary structure of the monomer and that of the chains in the MxM form, the active sites of the two enzymes are virtually indistinguishable. Furthermore, the structure of the liganded enzyme represents the first example of a ribonuclease complex studied at an alkaline pH and provides new information on the binding of a nucleotide when the catalytic histidines are deprotonated.  相似文献   

5.
6.
Bovine pancreatic ribonuclease A forms 3D domain-swapped oligomers by lyophilization from 40% acetic acid solutions or if subjected to various thermally-induced denaturation procedures.Considering that the intrinsic swapping propensity of bovine seminal RNase, the only member of the pancreatic-type RNase super-family that is dimeric in nature, is decreased from 70 to 30% if Arg80 is substituted by Ser (the corresponding residue in native RNase A), we introduced the opposite mutation in position 80 of the pancreatic enzyme. Our aim was to detect if the RNase A tendency to aggregate through domain swapping could increase.Aggregation of the S80R-RNase A mutant was induced either through the ‘classic’ acetic acid lyophilization, or through a thermally-induced method. The results indicate that the S80R mutant aggregates to a higher extent than the native protein, and that the increase occurs especially through N-terminal swapping.Additional investigations on the dimeric and multimeric species formed indicate that the S80R mutation increases their stability against regression to monomer, and does not significantly change their structural and functional features.  相似文献   

7.
BACKGROUND: Domain swapping has been proposed as a mechanism that explains the evolution from monomeric to oligomeric proteins. Bovine and human pancreatic ribonucleases are monomers with no biological properties other than their RNA cleavage ability. In contrast, the closely related bovine seminal ribonuclease is a natural domain-swapped dimer that has special biological properties, such as cytotoxicity to tumour cells. Several recombinant ribonuclease variants are domain-swapped dimers, but a structure of this kind has not yet been reported for the human enzyme. RESULTS: The crystal structure at 2 A resolution of an engineered ribonuclease variant called PM8 reveals a new kind of domain-swapped dimer, based on the change of N-terminal domains between the two subunits. The swapping is fastened at both hinge peptides by the newly introduced Gln101, involved in two intermolecular hydrogen bonds and in a stacking interaction between residues of different chains. Two antiparallel salt bridges and water-mediated hydrogen bonds complete a new interface between subunits, while the hinge loop becomes organized in a 3(10) helix structure. CONCLUSIONS: Proteins capable of domain swapping may quickly evolve toward an oligomeric form. As shown in the present structure, a single residue substitution reinforces the quaternary structure by forming an open interface. An evolutionary advantage derived from the new oligomeric state will fix the mutation and favour others, leading to a more extended complementary dimerization surface, until domain swapping is no longer necessary for dimer formation. The newly engineered swapped dimer reported here follows this hypothetical pathway for the rapid evolution of proteins.  相似文献   

8.
The pairing of the four intrachain disulfide bonds of bovine seminal ribonuclease, a dimeric protein isolated from bovine seminal plasma, has been established by the isolation and characterization of the cystine peptides obtained from a thermolytic-tryptic hydrolysate of the protein. These disulfide bonds involve eight half-cystine residues located in the protein subunit chain at sequence positions identical with those of the eight half-cystine residues of the strictly homologous chain of bovine pancreatic ribonuclease. The results reported show that these eight 'homologous' half-cystine residues pair in seminal ribonuclease exactly as they do in pancreatic ribonuclease. They also indirectly confirm that the remaining two half-cystine residues present in each chain of the seminal enzyme are involved in intersubunit bonds.  相似文献   

9.
The model system made up of a monomeric and a dimeric ribonuclease of the pancreatic-type superfamily has recently attracted the attention of investigators interested in the evolution of oligomeric proteins. In this system, bovine pancreatic ribonuclease (RNase A) is the monomeric prototype, and bovine seminal ribonuclease (BS-RNase) is the dimeric counterpart. However, this evolutionary case is unusual, as BS-RNase is the only dimeric member of the whole large superfamily comprising more than 100 identified members from amphibia, aves, reptilia and mammalia. Furthermore, although the seminal-type RNase gene can be traced back to the divergence of the ruminants, it is expressed only in a single species (Bos taurus). These unusual findings are discussed, as well as previous hypotheses on the evolution of seminal RNase. Furthermore, a new 'minimalist' hypothesis is proposed, in line with basic principles of structural biology and molecular evolution.  相似文献   

10.
Bovine seminal ribonuclease (BS-RNase) is a unique member of the pancreatic-like ribonuclease superfamily. This enzyme exists as two conformational isomers with distinctive biological properties. The structure of the major isomer is characterized by the swapping of the N-terminal segment (MxM BS-RNase). In this article, the crystal structures of the ligand-free MxM BS-RNase and its complex with 2'-deoxycitidylyl(3',5')-2'-deoxyadenosine derived from isomorphous crystals have been refined. Interestingly, the comparison between this novel ligand-free form and the previously published sulfate-bound structure reveals significant differences. In particular, the ligand-free MxM BS-RNase is closer to the structure of MxM BS-RNase productive complexes than to the sulfate-bound form. These results reveal that MxM BS-RNase presents a remarkable flexibility, despite the structural constraints of the interchain disulfide bridges and the swapping of the N-terminal helices. These findings have important implications to the ligand binding mechanism of MxM BS-RNase. Indeed, a population shift rather than a substrate-induced conformational transition may occur in the MxM BS-RNase ligand binding process.  相似文献   

11.
Sequence analysis of a cloned cDNA coding for bovine seminal ribonuclease   总被引:5,自引:0,他引:5  
The sequence of a cloned cDNA coding for bovine seminal ribonuclease, an enzyme secreted in the bull seminal vesicles, was determined. The cDNA starts at the amino acid residue 47 and terminates 12 nucleotides beyond the consensus sequence AAUAAA in the 3' non-coding region of the mRNA. Northern blotting analysis shows that the mRNA for bovine seminal ribonuclease consists of about 950 nucleotides, a value that is similar to that of other mRNAs coding for ribonucleases of the pancreatic type.  相似文献   

12.
Bovine seminal ribonuclease (BS-RNase), the only dimeric protein among the pancreatic-like ribonucleases, is endowed with special structural features and with biological functions beyond enzymatic activity. In solution, the protein exists as an equilibrium mixture of two forms, with or without exchange (or swapping) of the N-terminal arms. After selective reduction and alkylation of the two intrachain disulfide bridges, the dimeric protein can be transformed into a monomeric derivative that has a ribonuclease activity higher than that of the parent dimeric protein but is devoid of the special biological functions. A detailed investigation of the structural features of this protein in solution, in comparison with those of other monomeric ribonucleases, may help unveil the structural details which induce swapping of the N-terminal arms of BS-RNase. The solution structure of the recombinant monomeric form of BS-RNase, as determined by 3D heteronuclear NMR, shows close similarity with that of bovine pancreatic ribonuclease (RNase A) in all regions characterized by regular elements of secondary structure. However, significant differences are present in the flexible regions, which could account for the different behavior of the two proteins. To characterize in detail these regions, we have measured H/D exchange rate constants, temperature coefficients and heteronuclear NOEs of backbone amides for both RNase A and monomeric BS-RNase. The results indicate a large difference in the backbone flexibility of the hinge peptide segment 16-22 of the two proteins, which could provide the molecular basis to explain the ability of BS-RNase subunits to swap their N-terminal arms.  相似文献   

13.
Seminal RNase (BS-RNase), a ribonuclease from bovine seminal vesicles, is a homodimeric enzyme with a strong cytotoxic activity selective for tumor cells. It displays the unusual structural feature of existing in solution as an equilibrium mixture of two quaternary isoforms. The major one is characterized by the swap between subunits of their N-terminal ends, whereas the minor isoform shows no swap. The tendency of the two isolated isoforms to interconvert into each other has so far made it difficult to attribute the functional properties of BS-RNase to either isoform. Herein, molecular modeling and site-directed mutagenesis were used to engineer the refolding pathway of BS-RNase and obtain a stable variant of its non-swapping isoform. The protein was engineered with two extra disulfide bridges linking the N-terminal helix of each subunit to the main body of the same subunit. Purified as an active enzyme, the BS-RNase variant was found to be very resistant to thermal denaturation. Its functional characterization revealed that the lack of swapping has a negative effect on the cytotoxic activity of BS-RNase.  相似文献   

14.
The hypothesis previously advanced that interchain disulfide bridges link the two identical subunits of bovine seminal ribonuclease BS-1 has been confirmed. The sedimentation rate and the electrophoretic mobility of the protein are not affected by denaturing agents unless thiol reagents are present in the denaturation mixtures. Reduction under controlled conditions results in the immediate cleavage of only 2 disulfide bonds out of 10 percent in the dimeric protein. Under these conditions, and the results do not change when partial reduction is followed by S-alkylation, 30% of the protein dissociates, while the remaining is found to consist of a dimeric species easily dissociable by denaturing agents without addition of thiol reagents. This indicates that the dimeric structure of seminal ribonuclease is maintained not only by disulfide bridges, but also by noncovalent forces. The protein derivative prepared by selective reduction and alkylation has been identified as monomeric bis-S-carboxymethylcysteine-31,32-ribonuclease BS-1. This is on the basis of the characterization of the 14C-labeled S-carboxymethylated peptides isolated from a thermolytic hydrolysate of the derivative prepared with iodo-2-[14C]acetic acid. Monomeric, selectively alkylated ribonuclease BS-1 is stable and catalytically active. The importance of such a derivative is discussed both in the light of the recent studies on the biological actions of seminal ribonuclease and as the fourth component of an experimental system of ribonucleases consisting of two homologous dimers (bovine seminal ribonuclease BS-1 and dimerized bovine pancreatic ribonuclease A) and two homologous monomers (ribonuclease A and the monomeric derivative of ribonuclease BS-1.  相似文献   

15.
Bovine seminal ribonuclease (BS-RNase) is a unique member of the pancreatic-like ribonuclease superfamily. The native enzyme is a mixture of two dimeric forms with distinct structural features. The most abundant form is characterized by the swapping of N-terminal fragments. In this paper, the crystal structure of the complex between the swapping dimer and uridylyl(2',5')adenosine is reported at 2.06 A resolution. The refined model has a crystallographic R-factor of 0.184 and good stereochemistry. The quality of the electron density maps enables the structure of both the inhibitor and active site residues to be unambiguously determined. The overall architecture of the active site is similar to that of RNase A. The dinucleotide adopts an extended conformation with the pyrimidine and purine base interacting with Thr45 and Asn71, respectively. Several residues (Gln11, His12, Lys41, His119, and Phe120) bind the oxygens of the phosphate group. The structural similarity of the active sites of BS-RNase and RNase A includes some specific water molecules believed to be relevant to catalytic activity. Upon binding of the dinucleotide, small but significant modifications of the tertiary and quaternary structure of the protein are observed. The ensuing correlation of these modifications with the catalytic activity of the enzyme is discussed.  相似文献   

16.
Three-dimensional domain swapping is a common phenomenon in pancreatic-like ribonucleases. In the aggregated state, these proteins acquire new biological functions, including selective cytotoxicity against tumour cells. RNase A is able to dislocate both N- and C-termini, but usually this process requires denaturing conditions. In contrast, bovine seminal ribonuclease (BS-RNase), which is a homo-dimeric protein sharing 80% of sequence identity with RNase A, occurs natively as a mixture of swapped and unswapped isoforms. The presence of two disulfides bridging the subunits, indeed, ensures a dimeric structure also to the unswapped molecule. In vitro, the two BS-RNase isoforms interconvert under physiological conditions. Since the tendency to swap is often related to the instability of the monomeric proteins, in these paper we have analysed in detail the stability in solution of the monomeric derivative of BS-RNase (mBS) by a combination of NMR studies and Molecular Dynamics Simulations. The refinement of NMR structure and relaxation data indicate a close similarity with RNase A, without any evidence of aggregation or partial opening. The high compactness of mBS structure is confirmed also by H/D exchange, urea denaturation, and TEMPOL mapping of the protein surface. The present extensive structural and dynamic investigation of (monomeric) mBS did not show any experimental evidence that could explain the known differences in swapping between BS-RNase and RNase A. Hence, we conclude that the swapping in BS-RNase must be influenced by the distinct features of the dimers, suggesting a prominent role for the interchain disulfide bridges.  相似文献   

17.
Bovine seminal ribonuclease (BS-RNase) acquires an interesting anti-tumor activity associated with the swapping on the N-terminal. The first direct experimental evidence on the formation of a C-terminal swapped dimer (C-dimer) obtained from the monomeric derivative of BS-RNase, although under non-native conditions, is here reported. The X-ray model of this dimer reveals a quaternary structure different from that of the C-dimer of RNase A, due to the presence of three mutations in the hinge peptide 111–116. The mutations increase the hinge peptide flexibility and decrease the stability of the C-dimer against dissociation. The biological implications of the structural data are also discussed.  相似文献   

18.
Mammalian pancreatic ribonucleases form a family of homologous proteins that has been extensively investigated. The primary structures of these enzymes were used to derive phylogenetic trees. These analyses indicate that the presence of three strictly homologous enzymes in the bovine species (the pancreatic, seminal, and cerebral ribonucleases) is due to gene duplication events which occurred during the evolution of ancestral ruminants.In this paper we present evidence that confirms this finding and that suggests an overall structural conservation of the putative ribonuclease genes in ruminant species.We could also demonstrate that the sequences related to ox ribonuclease coding regions present in genomic DNA of the giraffe species are the orthologues of the bovine genes encoding the three ribonucleases mentioned above.Correspondence to: A. Furia  相似文献   

19.
Bovine seminal ribonuclease (BS-RNase) is a covalent homodimeric enzyme homologous to pancreatic ribonuclease (RNase A), endowed with a number of special biological functions. It is isolated as an equilibrium mixture of swapped (MxM) and unswapped (M=M) dimers. The interchanged N termini are hinged on the main bodies through the peptide 16-22, which changes conformation in the two isomers. At variance with other proteins, domain swapping in BS-RNase involves two dimers having a similar and highly constrained quaternary association, mainly dictated by two interchain disulfide bonds. This provides the opportunity to study the intrinsic ability to swap as a function of the hinge sequence, without additional effects arising from dissociation or quaternary structure modifications. Two variants, having Pro19 or the whole sequence of the hinge replaced by the corresponding residues of RNase A, show equilibrium and kinetic parameters of the swapping similar to those of the parent protein. In comparison, the x-ray structures of MxM indicate, within a substantial constancy of the quaternary association, a greater mobility of the hinge residues. The relative insensitivity of the swapping tendency to the substitutions in the hinge region, and in particular to the replacement of Pro19 by Ala, contrasts with the results obtained for other swapped proteins and can be rationalized in terms of the unique features of the seminal enzyme. Moreover, the results indirectly lend credit to the hypothesis that the major role of Pro19 resides in directing the assembly of the non-covalent dimer, the species produced by selective reduction of the interchain disulfides and considered responsible for the special biological functions of BS-RNase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号