首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trees play a crucial role in nutrient cycling and ecosystem fertility, notably through rhizosphere processes. The aim of this study was to compare soil physicochemical properties between bulk soil and rhizosphere of several tree species, and to compare rhizosphere properties between fertilized and non-fertilized conditions. The soil sampling was performed in Breuil-Chenue forest (North-East of France) in seven stands: native forest (old beech (Fagus sylvatica L.) and oak (Quercus sessiliflora Smith) coppice with standards; CwS), beech, oak (Quercus petraea [Matt.] Liebl.), Douglas-fir and fertilised Douglas-fir, Norway spruce (Picea abies Karst.) and fertilised Norway spruce. Systematic soil sampling was performed at 0–3, 3–10, and 10–23 cm in 20 calibrated pits. The rhizosphere of the different species was generally enriched in C, N, Ca, Mg, and K. Interestingly, the same positive effect was observed in the fertilised plots. The rhizosphere effect varied between tree species for C, “base” cations, pHwater and cation exchange capacity. This study reveals that interactions between roots, microorganisms and soil can enrich the pool of nutrients in the rhizosphere compared to bulk soil whatever the soil fertility conditions, and that the magnitude of the rhizosphere effect depends on tree species.  相似文献   

2.
How tree morphology develops in mixed-species stands is essential for understanding and modelling mixed-stand dynamics. However, research so far focused on the morphological variation between tree species and neglected the variation within a species depending on intra- and interspecific competition. Our study, in contrast, addresses crown properties of nine mature Norway spruces (Picea abies [L.] Karst.) of a pure stand and compares them with ten spruces growing in mixture with European beech (Fagus sylvatica [L.]). The same was done with 11 pure stand beeches and 12 beeches growing in mixture with spruce. Through application of a terrestrial laser scanner and a new skeletonization approach, we deal with both species’-specific morphological traits such as branch angle, branch length, branch bending, crown volume and space occupation of branches within the crown, some of which were hardly accessible so far. Special attention is paid to distinct differences between trees growing in mixed and pure stands: for spruce, our study reveals significantly longer branches and greater crown volumes in the mixed stand when compared to the pure stand. In case of European beech, individuals growing in mixture show flatter branch angles, more distinct ramification, greater crown volumes and a lower share of a single branch’s space occupation in the total crown volume. The results show that the presented methods yield detailed information on the morphological traits analyzed in this study and that interspecific competition on its own may have a significant impact on crown structures. Implications for production ecology and stand dynamics of mixed-species forests are discussed.  相似文献   

3.
Biomass conversion and expansion factors (BCEF) which convert tree stem volume to whole tree biomass and biomass allocation patterns in young trees were studied in order to estimate tree and stand biomass in naturally regenerated forests. European beech (Fagus sylvatica L.), Sessile oak (Quercus petraea (Mattuschka) Liebl.) and Scots pine (Pinus sylvestris L.) stands were compared. Seven forest stands of each species were chosen to cover their natural distribution in Slovakia. Species-specific BCEF are presented, generally showing a steep decrease in all species in the smallest trees, with the only exception in the case of branch BCEF in beech which grows with increasing tree size. The values of BCEF for all tree compartments stabilise in all species once trees reach about 60–70-mm diameter at base. As they grow larger, all species increase their allocation to stem and branches, while decreasing the relative growth of roots and foliage. There are, however, clear differences between species and also between broadleaves and conifers in biomass allocation. This research shows that species-specific coefficients must be used if we are to reduce uncertainties in estimates of carbon stock changes by afforestation and reforestation activities.  相似文献   

4.
The effect of non-reproductive trees and saplings as a physical barrier to pollen dispersal in wind-pollinated species?? forests has not received enough attention in the literature so far. The neighborhood seedling model was used to fit pollen dispersal models for beech at different stages of gap recolonization and to elucidate the effect of saplings as a physical barrier on pollen dispersal at local scale. Phenological overlap of leaf emergence, and pollen release as well as wind directionality patterns were also examined. As a case study, we used a mixed beech-oak forest that was managed as open woodland until 1974. The ban on entry of cattle has led to the recolonization of empty spaces by seedlings and saplings of beech (Fagus sylvatica L.) and two oak species (Quercus petraea (Matts.) Liebl. and Q. pyrenaica Willd.) and, at last, to canopy closure. The average pollen dispersal distance for the first plants that regenerated in the gaps was almost twice those found for recently installed seedlings and seeds collected in traps, supporting the hypothesis that the understory may act as a physical barrier to pollen dispersal. Although a substantial part of effective pollination directionality is at random, horizontal winds and vertical anabatic winds may explain some of this directionality. At the time of beech pollen release, leaves of beech and sessile oak are fully developed, enhancing pollen interception by the saplings. Explicit models of pollen dispersal for wind-pollinated trees should incorporate the effect of canopy closure caused by growth of saplings and account for leaf phenology of co-occurring species in the forest.  相似文献   

5.
Diversity and storage function of mycorrhiza as well as soil organoprofile formation were investigated in a chronosequence of a pure Scots pine (Pinus sylvestris L.) stand, of Scots pine stands that were underplanted with beech (Fagus sylvatica L.) and in three pure beech stands of different age. Mycorrhiza diversity was higher in the pure beech stands compared to the pure pine stand. Beech and pine trees in the mixed stands had similar dominant mycorrhiza morphotypes. However, trees in two of the three pure beech stands were mycorrhized with other types. Mycorrhizal abundance and nutrient amounts of mycorrhizae associated with beech trees were higher in the mixed and in the pure beech stands compared to pine mycorrhizae indicating that nutrient uptake was higher in older beech than in older pine trees. Humus quality varied from pine to beech stands. Plant litter storage in the humus layer was highest in the youngest mixed stand and lowest in the oldest beech stand. Humus forms changed from moder grass-type in the pure Scots pine stand to mor-like moder and moder rich in fine humus with increasing age of beeches in the mixed stands. The older beech stands were characterised by oligomull and mull-like moder as the dominating humus forms. The ecologically favourable humus forms, i.e., nutrient rich humus forms in the older beech stands correlate well with the higher mycorrhizal diversity and abundance as well as the higher nutrient storage of their mycorrhizae in these stands. The results are also discussed with regard to the 'base-pump effect' of beech trees.  相似文献   

6.
In high-elevation forests, growth is limited by low temperatures, while in Mediterranean climates drought and high temperatures are the main limiting factors. Consequently, the climate-growth relationships on Mont Ventoux, a mountain in the Mediterranean area, are influenced by both factors. Two co-occurring species were studied: silver fir (Abies alba Mill.) and common beech (Fagus sylvatica L.), whose geographical distribution depends on their low tolerance to summer drought at low altitude/latitude, and low temperatures (late frost and short length of the growing season) at high altitude/latitude. Firs and beeches distributed along an elevational gradient were investigated using dendroecological methods. Silver fir growth was found to be more sensitive to summer water stress than beech. On the other hand, beech growth was more impacted by extreme events such as the 2003 heat wave, and negatively related to earlier budburst, which suggests a higher sensitivity to late frost. These results are confirmed by the different altitudinal effects observed in both species. Beech growth decreases with altitude whereas an optimum of growth potential was observed at intermediate elevations for silver fir. Recent global warming has caused a significant upward shift of these optima. As found for the period 2000–2006, rising temperatures and decreasing rainfall may restrain growth of silver fir. If these trends continue in the future beech might be favored at low altitudes. The species will have a reduced capacity to migrate to higher altitudes due to its sensitivity to late frosts, although an upward shift of silver fir is likely.  相似文献   

7.
While previous studies focused on tree growth in pure stands, we reveal that tree resistance and resilience to drought stress can be modified distinctly through species mixing. Our study is based on tree ring measurement on cores from increment boring of 559 trees of Norway spruce (Picea abies [L.] Karst.), European beech (Fagus sylvatica [L.]) and sessile oak (Quercus petraea (Matt.) Liebl.) in South Germany, with half sampled in pure, respectively, mixed stands. Indices for resistance, recovery and resilience were applied for quantifying the tree growth reaction on the episodic drought stress in 1976 and 2003. The following general reaction patterns were found. (i) In pure stands, spruce has the lowest resistance, but the quickest recovery; oak and beech were more resistant, but recover was much slower and they are less resilient. (ii) In mixture, spruce and oak perform as in pure stands, but beech was significantly more resistant and resilient than in monoculture. (iii) Especially when mixed with oak, beech is facilitated. We hypothesise that the revealed water stress release of beech emerges in mixture because of the asynchronous stress reaction pattern of beech and oak and a facilitation of beech by hydraulic lift of water by oak. This facilitation of beech in mixture with oak means a contribution to the frequently reported overyield of beech in mixed versus pure stands. We discuss the far‐reaching implications that these differences in stress response under intra‐ and inter‐specific environments have for forest ecosystem dynamics and management under climate change.  相似文献   

8.
Atmospheric deposition is an important nutrient input to forests. The chemical composition of the rainfall is altered by the forest canopy due to interception and canopy exchange. Bulk deposition and stand deposition (throughfall plus stemflow) of Na+, Cl?, K+, Ca2+, Mg2+, PO 4 3? , SO 4 2? , H+, Mn2+, Al3+, Fe2+, NH 4 + , NO 3 ? and Norg were measured in nine deciduous forest plots with different tree species diversity in central Germany. Interception deposition and canopy exchange rates were calculated with a canopy budget model. The investigated forest plots were pure beech (Fagus sylvatica L.) plots, three-species plots (Fagus sylvatica, Tilia cordata Mill. or T. platyphyllos Scop. and Fraxinus excelsior L.) and five-species plots (Fagus sylvatica, T. cordata or T. platyphyllos, Fraxinus excelsior, Acer platanoides L., A. pseudoplatanus L. or A. campestre L. and Carpinus betulus L.). The interception deposition of all ions was highest in pure beech plots and was negatively related to the Shannon index. The stand deposition of K+, Ca2+, Mg2+ and PO 4 3? was higher in mixed species plots than in pure beech plots due to higher canopy leaching rates in the mixed species plots. The acid input to the canopy and to the soil was higher in pure beech plots than in mixed species plots. The high canopy leaching rates of Mn2+ in pure beech plots indicated differences in soil properties between the plot types. Indeed, pH, effective cation exchange capacity and base saturation were lower in pure beech plots. This may have contributed to the lower leaching rates of K+, Ca2+ and Mg2+ compared to the mixed species plots. However, foliar analyses indicated differences in the ion status among the tree species, which may additionally have influenced canopy exchange. In conclusion, the nutrient input to the soil resulting from deposition and canopy leaching was higher in mixed species plots than in pure beech plots, whereas the acid input was highest in pure beech plots.  相似文献   

9.
Based on the growth-differentiation balance theory (GDB) and the influence of tropospheric ozone (O3) on plants, we hypothesized that pre-conditioning with elevated O3 reduces adverse effects of the root rot pathogen Phytophthora citricola Sawada. To this end a 2-year phytotron study with juvenile European beech (Fagus sylvatica L.) and (Picea abies [L.] Karst.) grown in mixture was performed. The hypothesis was tested on phenological, leaf and root morphological as well as physiological aspects of plant performance. Contrasting with spruce, elevated O3 limited leaf and root biomass development, photosynthetic performance and N uptake of beech. The growth limitation by O3 conveyed increased resistance in beech against the pathogen. Conversely, spruce displayed enhanced susceptibility in the combined O3/P. citricola treatment. The hypothesis was supported in the case of beech rather than spruce. Nevertheless, conclusions support GDB regarding the trade-off between growth and stress defense, although compliance appears to be species-specific.  相似文献   

10.
Climate change is expected to result in more extreme weather conditions over large parts of Europe, such as the prolonged drought of 2003. As water supply is critical for tree growth on many sites in North-Western Europe, such droughts will affect growth, species competition, and forest dynamics. To be able to assess the susceptibility of tree species to climate change, it is necessary to understand growth responses to climate, at a high temporal resolution. We therefore studied the intra-annual growth dynamics of three beech trees (Fagus sylvatica L.) and five oak trees (Quercus robur L.) growing on a sandy site in the east of the Netherlands for 2 years: 2003 (oak and beech) and 2004 (oak). Microcores were taken at 2-week intervals from the end of April until the end of October. Intra-annual tree-ring formation was compared with prior and contemporary records of precipitation and temperature from a nearby weather station.The results indicate that oak and beech reacted differently to the summer drought in 2003. During the drought, wood formation in both species ceased, but in beech, it recovered after the drought. The causes of species-specific differences in intra-annual wood formation are discussed in the context of susceptibility to drought.  相似文献   

11.
12.
ABSTRACT

Structural traits of the vegetation types and plantations occurring in a protected area within the caldera of Vico Lake (Italy) were analysed. There were significant correlations among structural traits, at leaf and stand level. Leaf area index (LAI) and specific leaf area (SLA) were the most significantly correlated traits. LAI rose according to stand plant density, tree size and SLA; the highest LAI value monitored in the Fagus sylvatica L. forest was justified by the largest tree size (28.9±2.8 m height and 53±15 cm diameter) and the highest SLA (212±23 cm2 g-1). The main traits determining the variations in leaf structure among species were analysed by Principal Component Analysis (PCA). The LAI values were used to realise a map allowing us to delimit high LAI values (4.1–5.0), corresponding to the F. sylvatica forest and to the F. sylvatica forest with the sporadic presence of Quercus cerris L. and Castanea sativa Miller, mean LAI values (classes 3.1–4.0) corresponding to Corylus avellana L. plantations and to the Phragmites australis (Cav.) Trin. vegetation type, low LAI values (classes 2.6–3.0) corresponding to Q. cerris forests and C. sativa plantations.  相似文献   

13.
This study investigated the belowground development and strategy of late-successional European beech (Fagus sylvatica L.) in ageing natural Scots pine (Pinus sylvestris L.) and Silver birch (Betula pendula Roth.) woodlands in a French volcanic mid-elevation area. For this purpose root biomass, root profile and fine-root architecture of competitor trees were examined in 53 mixed pine–beech and 42 birch–beech woodlands along a stand maturation gradient, using the root auger technique (0–75-cm). The total beech fine-root biomass highly correlated with aerial dimensions such as stem height and girth, whereas it moderately correlated with its age, thus indicating the effects of competition. Basic stand biometric data such as stand density and basal area had no significant effect on beech root biomass. Conversely, competition indices taking into account the vertical dimensions of competitor trees were efficient, probably due to redundancy with beech height. At similar age and height, beeches under birch had a greater belowground development than beeches under pine. Each species exhibited specific rooting pattern and plasticity of fine-root architecture along the gradients of stand maturation and competition. Beech had a heart-shaped rooting habit in both mixings, which strongly increased along stand maturation. Its fine-root system adopted a foraging strategy to respond to increasing stand competition. The Scots pine fine-root system was plate-like and showed a low morphological plasticity, thus presumably a conservative strategy. Silver birch exhibited a high biomass and a foraging capacity in the topsoil but a loose root system in the subsoil. The coexistence of pine and beech roots in the upper soil presumably leads to a high belowground competition. Beech root system becomes predominant throughout the soil profile and it adopts an efficient foraging strategy, but at the expense of its belowground development. Conversely, the niche partitioning strategy between beech and birch may explain why beech develops strongly belowground in spite of the fact that birch has a dense rooting and a competitive fine-root architecture. As a consequence, beech mid-term regeneration and development may be facilitated under birch as compared with pine.  相似文献   

14.
The distribution of fine roots and external ectomycorrhizal mycelium of three species of trees was determined down to a soil depth of 55 cm to estimate the relative nutrient uptake capacity of the trees from different soil layers. In addition, a root bioassay was performed to estimate the nutrient uptake capacity of Rb+ and NH4+ by these fine roots under standardized conditions in the laboratory. The study was performed in monocultures of oak (Quercus robur L.), European beech (Fagus sylvatica L.) and Norway spruce [Picea abies (L.) Karst.] on sandy soil in a tree species trial in Denmark. The distribution of spruce roots was found to be more concentrated to the top layer (0–11 cm) than that of oak and beech roots, and the amount of external ectomycorrhizal mycelia was correlated to the distribution of the roots. The uptake rate of [86Rb+] by oak roots declined with soil depth, while that of beech or spruce roots was not influenced by soil depth. In modelling the nutrient sustainability of forest soils, the utilization of nutrient resources in deep soil layers has been found to be a key factor. The present study shows that the more shallow-rooted spruce can have a similar capacity to take up nutrients from deeper soil layers than the more deeply rooted oak. The distribution of roots and mycelia may therefore not be a reliable parameter for describing nutrient uptake capacity by tree roots at different soil depths.  相似文献   

15.
Abstract

Fine roots (<2 mm) are very dynamic and play a key role in forest ecosystem carbon and nutrient cycling and accumulation. We reviewed root biomass data of three main European tree species European beech, (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.), in order to identify the differences between species, and within and between vegetation zones, and to show the relationships between root biomass and the climatic, site and stand factors. The collected literature consisted of data from 36 beech, 71 spruce and 43 pine stands. The mean fine root biomass of beech was 389 g m?2, and that of spruce and pine 297 g m?2 and 277 g m?2, respectively. Data from pine stands supported the hypothesis that root biomass is higher in the temperate than in the boreal zone. The results indicated that the root biomass of deciduous trees is higher than that of conifers. The correlations between root biomass and site fertility characteristics seemed to be species specific. There was no correlation between soil acidity and root biomass. Beech fine root biomass decreased with stand age whereas pine root biomass increased with stand age. Fine root biomass at tree level correlated better than stand level root biomass with stand characteristics. The results showed that there exists a strong relationship between the fine root biomass and the above-ground biomass.  相似文献   

16.
Leaf-hay was the principal winter feed of livestock from the Neolithic until the first archaeological records of scythes dated to the Iron Age (700–0 b.c.). Despite the use of meadow hay, leaf-fodder remained an important winter supplement until the present. Archaeological evidence lists Quercus, Tilia, Ulmus, Acer, Fraxinus and Corylus as woody species harvested for leaf-fodder, while Fagus, Populus or Carpinus were rarely used. The aim of our study was to test whether the use of listed woody species followed the pattern of their forage quality (syn. nutritive value). In late May 2012, we collected leaf biomass at four localities in the Czech Republic and determined concentrations of N, P, K, Ca, Mg, neutral- and acid-detergent fibre and lignin. Species with leaves of low forage quality were Carpinus betulus, Fagus sylvatica and Quercus robur, species with leaves of intermediate quality were Corylus avellana and Populus tremula and species with leaves of high quality were Ulmus glabra, Fraxinus excelsior, Tilia cordata and Acer platanoides. Selective browsing and harvesting of high quality species Acer, Fraxinus, Tilia and Ulmus thus probably supported their decline in the Bronze and Iron ages and supported the expansion of Carpinus and Fagus. Our results indicate that our ancestors’ practice of exploiting woody species as leaf-hay for winter fodder followed their nutritive value.  相似文献   

17.
The mixture of other broadleaf species into beech forests in Central Europe leads to an increase of tree species diversity, which may alter soil biochemical processes. This study was aimed at 1) assessing differences in gross rates of soil N cycling among deciduous stands of different beech (Fagus sylvatica L.) abundance in a limestone area, 2) analyzing the relationships between gross rates of soil N cycling and forest stand N cycling, and 3) quantifying N2O emission and determining its relationship with gross rates of soil N cycling. We used 15N pool dilution techniques for soil N transformation measurement and chamber method for N2O flux measurement. Gross rates of mineral N production in the 0–5 cm mineral soil increased across stands of decreasing beech abundance and increasing soil clay content. These rates were correlated with microbial biomass which, in turn, was influenced by substrate quantity, quality and soil fertility. Leaf litter-N, C:N ratio and base saturation in the mineral soil increased with decreasing beech abundance. Soil mineral N production and assimilation by microbes were tightly coupled, resulting in low N2O emissions. Annual N2O emissions were largely contributed by the freeze-thaw event emissions, which were correlated with the amount of soil microbial biomass. Our results suggest that soil N availability may increase through the mixture of broadleaf species into beech forests.  相似文献   

18.
Species mixing is widely held to stabilize productivity, increase resilience and contribute to risk minimization in forest stands in need of special as a result of longevity. However, research on the effects of mixing on productivity and resource consumption so far yielded fairly incoherent results rather than general findings. We focused on the effects of the spatial mixing pattern and the annual climate conditions on the mixing effect, which to date have seldom been considered as modifiers of mixing effects. Nine years of intensive survey of four pure stands of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) and two mixed plots with different mixing pattern showed: (1) mixing hardly changed annual net primary productivity at stand level when Norway spruce and European beech are cultivated group-wise but increased by 37 % on account of a higher efficiency of water and light use in individual tree-wise mixture. (2) Favourable climatic conditions increased the superiority of mixed versus pure stands productivity, while, in particular, water stress cancelled the benefit of mixing considerably. (3) An interaction between the spatial pattern and variable climatic conditions was revealed. Both improved light and water use were found in favourable years in close inter-specific intermingling. However, in unfavourable years the spatial pattern played a less pronounced role in terms of productivity.  相似文献   

19.
Niche differentiation is a common explanation for high ectomycorrhizal diversity. In monocultures and on small spatial scales, the number of variable factors that may provide niches decreases. Still, even in the restricted volume of a soil core, typically more than one ectomycorrhizal species is found. We tested the hypothesis that roots of different individual beech genotypes provide niches on a small spatial scale in a pure beech (Fagus sylvatica L.) stand in the North-eastern Lowlands of Germany. Fourteen ectomycorrhizal species, as determined by ITS sequencing and phylograms were patchily distributed along an 81 m long transect with ten transect points. All root segments in the three species richest soil cores and the surrounding beeches were genotyped by microsatellite PCR. In each of the three soil cores, roots of two host genotypes were present that corresponded to the two closest mature trees. We found that the different root genotypes did not carry different sets of ectomycorrhizal species even at the high species resolution provided through our study. Therefore, the hypothesis of tree genotypes contributing to ectomycorrhizal biodiversity at the analyzed beech stand has to be rejected. Exploration types and stochastic processes are discussed as alternative explanations for the species richness and distributions in the analyzed soil cores. To the best of our knowledge, this is the first report that links ectomycorrhizal biodiversity in a soil core to the individual genotype of an angiosperm host.  相似文献   

20.
Age, genetics and social status of trees affect their sensitivity to environmental factors, and information about such effects is needed for comprehensive assessment of growth potential. Climatic sensitivity of radial increment (i.e., tree-ring width) of introduced European beech (Fagus sylvatica L.) of different generations and social status, growing in its northeasternmost stands in Europe, was studied by dendroclimatological methods. At present, the studied stands occur outside of the natural distribution area of the species, providing opportunity to study adaptability and potential growth of beech in novel environments under changing climate. The sensitivity of radial growth to climatic factors was modulated by the generation and social status (size) of trees. The first generation trees, which were propagated from the material transferred from the northern Germany, were highly sensitive to climatic factors and showed wide spectrum of responses. The dominant trees were particularly sensitive to June precipitation, indicating sensitivity to water deficit in summer. The suppressed trees were mainly sensitive to temperature in the dormant period. Tree-ring width of the second generation trees, which were propagated from the first generation stands, was mainly affected by water deficit in summer, yet the local factors, modulated the mechanisms of response. In one stand, tree-ring width was affected by conditions during the formation of tree-ring, indicating direct influence of weather conditions on xylogenesis. In the other stand, tree-ring width was correlated to weather conditions in the preceding year, suggesting influence via carbohydrate reserves. The effect of social status on climatic sensitivity in the second generation stands was considerably weaker, likely due to the natural and anthropogenic selection of the material best adapted for local conditions. The effect of climatic factors on radial growth of beech has shifted during the 20th century. The effect of autumn temperature has weakened, likely due to warming; the effect of factors related to water deficit in summer has intensified that could be related to both, changes in climate and ageing. The observed climate-growth relationships suggested that conditions in winter have become suitable for beech, yet careful selection of sites/regions with appropriate hydrological conditions appear necessary to counteract the increasing effect of water deficit, hence to ensure productivity of future beech sites in Latvia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号