首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Norway spruce (Picea abies (L.)Karst.) from seven seed sources was grown in a greenhouse with 8.3 and 14.7 kJ·m−2·d−1 m UV-BBE (biologically effective UV-B: 280–320 nm) irradiation, and with no supplemental irradiation as control. The seedlings total biomass (dry weight) and shoot growth decreased with high UV-B treatment but spruce from low elevation seed sources were more affected. The seedlings grown at the highest UV-B irradiance (14.7 kJ·m−2·d−1) showed from 5 to 38% inhibition of total biomass and 15 to 70 % shoot growth inhibition. Norway spruce populations from higher altitude seed sources manifested greater tolerance to UV-B radiation compared to plants from low altitudes. Changes in phospholipids and protective pigments were also determined. The plants grown at the lower UV-B irradiance (8.3 kJ·m−2·d−1) showed greater ability to concentrations UV-B-absorbing pigments then control plants. Chlorophyll a fluorescence parameter Rfd, (Rfd=(Fm-Fs)/Fs) showed a significant decrease in needles of UV-B treated plants and this correlated with the altitude of seed source. Exposure to UV-B affect levels of the ratio of variable to maximum fluorescence (Fv/Fm). Results from this study suggest that the response to increased levels of UV-B radiation is depended upon the ecotypic differentiation of Norway spruce and involved changes in metabolites in plant tissues.  相似文献   

2.
Lichen substances (i.e. lichen-specific carbon-based secondary compounds) are known to be involved in the uptake and immobilization of metal ions, though the biochemical mechanisms of this interaction are largely unexplained. Previous research on potential effects of lichen substances on heavy metal uptake and tolerance mostly focused on lichens in heavily polluted areas with exceptionally high metal concentrations. In the present study, we aimed at gathering information as to whether lichen substances might be involved in the fine-tuning of metal uptake even at not or low-polluted sites. Therefore, we studied lichen substance concentrations in the epiphytic lichen Hypogymnia physodes and metal concentrations in its substratum in a montane spruce forest of Germany. H. physodes produces two depsides and five depsidones, which had been shown to be involved in metal homeostasis, namely in Cu and Mn uptake, in previous laboratory experiments. The amount of lichen substances increased with increasing heavy metal concentration in the substratum, though the latter varied only in the range of a few μmol g−1 between the sample trees. Variability of lichen substance concentrations in H. physodes within the individual trees was low. Among the different lichen substances of H. physodes, the amount of the depsidone physodalic acid relative to the total of lichen substances was most closely correlated to the concentrations of Cu and Mn in the substratum, whereas the amount of the depsidone 3-hydroxyphysodic acid decreased both with increasing concentrations of these two metals and physodalic acid. Thus, our data suggest that lichen substances contribute to metal homeostasis not only in heavy metal-rich habitats, but also at not or low-polluted sites where the lichen substances apparently help to maintain constant intracellular metal concentrations despite of spatially varying availabilities of metal ions.  相似文献   

3.
This study aimed to assess biomass growth as a response variable in lichens during short-term laboratory experiments. To do this, we studied the influence of UV-B and temperature on lichen performance including the synthesis of solar radiation screening cortical compounds. The pioneer lichen Xanthoria aureola from exposed sea cliffs and the old forest lichen Lobaria pulmonaria were cultivated for 15 days in the laboratory in a factorial experiments with temperature (12 and 21 °C) and UV-B (0, 0.1, 0.3 and 1.0 W m?2) as treatments. Prior to the experiment, the cortical pigment parietin was non-destructively extracted from X. aureola, whereas the sampled shade-adapted thalli of L. pulmonaria lacked cortical melanic compounds. Therefore both lichens were deficient in cortical sun-screening compounds when the UV-B exposure started. At 12 °C, the relative growth rate was 7.2 ± 0.6 and 3.0 ± 0.8 mg g?1 day?1 in L. pulmonaria and X. aureola, respectively, reduced to 1.8 ± 0.5 and ?2.6 ± 0.9 mg g?1 day?1, at 21 °C. These figures showed that lichen growth is a useful response variable in short-term laboratory experiments. Growth was not influenced by UV-B alone in these pigment-deficient transplants, suggesting that UV-B had little adverse effects on either of the lichen bionts. The cortical sun screens (parietin and melanic compounds) were synthesized in the presence of UV-B, and increased statistically significantly with increasing UV-B at both cultivation temperatures. However, in X. aureola the synthesis was highest at the lowest temperature (12 °C). At 12 °C, changes in chlorophylls, Fv/Fm and NPQ during cultivation were consistent with a substantial level of acclimation to the growth chamber conditions for both species, whereas strong reductions in photosynthetic pigments, Fv/Fm and ФII at 21 °C indicated serious damage and chlorophyll degradation at high temperature. In conclusion, lichen growth and the synthesis of protective compounds are highly responsive lichen processes in short-term experiments.  相似文献   

4.
To test the hypotheses that (1) protective mycobiont tissues and/or (2) medullary UV-B-absorbing carbon-based secondary compounds (CBSCs) protect lichen photobionts against UV-B radiation, we quantified cortical UV-transmittance and ran a three-way factorial lab experiment with (1) three UV radiation regimes, (2) photobiont layers with/without a screening cortex, and (3) with natural/reduced CBSC-concentration. We used melanin-deficient Lobaria pulmonaria from shaded forests. Maximum photochemical efficiency of photosystem II (Fv/Fm) in photobionts inside thalli with natural CBSC-concentrations was not affected by any UV-regime, consistent with close to 0% measured cortical transmittance of wavelengths <325 nm. Exposing photobiont layers to direct radiation strongly aggravated photoinhibition (P < 0.001), as did an increase in UV-exposure (P < 0.001). The effect of CBSC-removal was weaker (yet significant at P = 0.001), mainly affecting exposed photobiont layers given short-wavelength UV radiation. Based on these findings, we conclude that the primary role of extrolites in L. pulmonaria is not to screen excess solar radiation.  相似文献   

5.
Epiphytic lichen diversity in a boggy stand of Norway spruce (Picea abies) was studied in the eastern Harz Mountains, northern Germany. Spruce trees at wet sites were affected by forest dieback, whereas trees on drier sites remained unaffected. Lichen diversity was higher on dieback-affected trees than on healthy ones. The foliose lichen Hypogymnia physodes was significantly more frequent on dead trees, whereas the crustose, extremely toxitolerant Lecanora conizaeoides occurred more frequently on healthy trees. Stemflow concentrations of NH4+, NO3, PO3, and SO42− were lower on affected trees. This is attributed to reduced interception from the atmosphere due to needle loss. Cover of H. physodes decreased with increasing mean SO42− concentration in stemflow. The total of lichen species per sample tree also decreased with increasing SO42− concentration in stemflow, indicating that most species reacted in a similar way as H. physodes. Cover of L. conizaeoides increased with increasing SO42− concentration, but decreased at higher SO42− concentrations. Bark chemistry had a minor influence on lichen diversity.  相似文献   

6.
7.
We studied the diel responses of the liverwort Jungermannia exsertifolia subsp. cordifolia to radiation changes under laboratory conditions. The samples were exposed to three radiation regimes: P (only PAR), PA (PAR + UV-A), and PAB (PAR + UV-A + UV-B). The day was divided in four periods: darkness, a first low-PAR period, the high-PAR plus UV period, and a second low-PAR period. After 15 days of culture, we measured photosynthetic pigments, chlorophyll fluorescence and UV-absorbing compounds in the four periods of the day on two consecutive days. With respect to UV-absorbing compounds, we analyzed their global amount (as the bulk UV absorbance of methanolic extracts) and the concentration of seven hydroxycinnamic acid derivatives, both in the soluble (mainly vacuolar) and insoluble (cell wall-bound) fractions of the plant extracts. PAB samples increased the bulk UV absorbance of the soluble and insoluble fractions, and the concentrations of p-coumaroylmalic acid in the soluble fraction and p-coumaric acid in the cell wall. Most of these variables showed significant diel changes and responded within a few hours to radiation changes (more strongly to UV-B), increasing at the end of the period of high-PAR plus UV. Fv/Fm, ΦPSII, NPQ and the components of the xanthophyll cycle showed significant and quick diel changes in response to high PAR, UV-A and UV-B radiation, indicating dynamic photoinhibition and protection of PSII from excess radiation through the xanthophyll cycle. Thus, the liverwort showed a dynamic protection and acclimation capacity to the irradiance level and spectral characteristics of the radiation received.  相似文献   

8.
Enhanced ultraviolet-B radiation (UV-B, 280?C320?nm) is recognized as one of the environmental stress factors that cannot be neglected. Jasmonic acid (JA) is an important signaling molecule in a plant??s defense against biotic and abiotic stresses. To determine the role of exogenous JA in the resistance of wheat to stress from UV-B radiation, wheat seedlings were exposed to 0.9?kJ?m?2?h?1 UV-B radiation for 12?h after pretreatment with 1 and 2.5?mM JA, and the activity of antioxidant enzymes, the level of malondialdehyde (MDA), the content of UV-B absorbing compounds, photosynthetic pigments, and proline and chlorophyll fluorescence parameters were measured. The results of two-way ANOVA illustrated that the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), MDA level, anthocyanin and carotenoid (Car) content, and almost all chlorophyll fluorescence parameters were significantly affected by UV-B, JA, and UV-B?×?JA (P?<?0.05) [the maximal efficiency of photosystem II photochemistry (F v/F m) was not affected significantly by UV-B radiation]. Duncan??s multiple-range tests demonstrated that UV-B stress induced a significant reduction in plant photosystem II (PSII) function and SOD activity and an increased level of membrane lipid peroxidation, indicative of the deleterious effect of UV-B radiation on wheat. JA pretreatment obviously mitigated the detrimental effect of UV-B on PSII function by increasing F v/F m, reaction centers?? excitation energy capture efficiency (F v??/F m??), effective photosystem II quantum yield (??PSII), and photosynthetic electron transport rate (ETR), and by decreasing nonphotochemical quenching (NPQ) of wheat seedlings. Moreover, the activity of SOD and the content of proline and anthocyanin were provoked by exogenous JA. However, the MDA level was increased and Car content was decreased by exogenous JA with or without the presence of supplementary UV-B, whereas the contents of chlorophyll and flavonoids and related phenolics were not affected by exogenous JA. Meanwhile, exogenous JA resulted in a decrease of CAT and POD activities under UV-B radiation stress. These results partly confirm the hypothesis that exogenous JA could counteract the negative effects of UV-B stress on wheat seedlings to some extent.  相似文献   

9.
Csintalan  Z.  Tuba  Z.  Takács  Z.  Laitat  E. 《Photosynthetica》2001,39(2):317-320
Chlorophyll fluorescence parameters (Fv/Fm, RFd) of nine bryophyte and one lichen species were investigated after prolonged exposure to elevated UV-B radiation. The majority of the investigated bryophytes showed a prompt or inducible tolerance to increase UV-B irradiation. Among the investigated species high degree of UV-tolerance coincides with strong desiccation tolerance.  相似文献   

10.
The sensitivity ofHypogymnia physodes,Lobaria pulmonariaandPeltigera aphthosaH. physodesto six photosystem II herbicides and to DBMIB was tested in the laboratory by chlorophyll flouresence and oxygen-exchange measurements. in addition, experiments with freshly isolated photobiont cells fromH. physodesandL. pulmonariawere performed. Generally, the lichens were most sensitive to the urea herbicides diuron and isoproturon, whereas the triazines atrazine, terbuthylazine, and simazine and the triazinone metamitron wre less inhibitory. Among the three lichen species invesigated,H. physodeswas the most sensitive to the urea herbicides. For the other agents, no signifiant differences between lichen species could be found. The highest pI50values obtained from dose response curves were around 6.5 for isolated photobionts, but most values for lichen thalli were in the range 5-6. Thus, there is no particular sensitivity of green algal lichen photobionts to photosytem II herbicides as compared to other algae, higher plant chloroplasts or protoplasts. In nature, we observed recovery from (damaging) treatment with 10−5mol diuron 1−1forH. physodeswithin weeks. Therefore, damage to lichens fromt he use of photosystem-II herbicides in agriculture is probably only of very local occurence.  相似文献   

11.

Background and Aims

Anthropogenic depletion of stratospheric ozone in Arctic latitudes has resulted in an increase of ultraviolet-B radiation (UV-B) reaching the biosphere. UV-B exposure is known to reduce above-ground biomass and plant height, to increase DNA damage and cause accumulation of UV-absorbing compounds in polar plants. However, many studies on Arctic mosses tended to be inconclusive. The importance of different water availability in influencing UV-B impacts on lower plants in the Arctic has been poorly explored and might partially explain the observed wide variation of responses, given the importance of water in controlling bryophyte physiology. This study aimed to assess the long-term responses of three common sub-Arctic bryophytes to enhanced UV-B radiation (+UV-B) and to elucidate the influence of water supply on those responses.

Methods

Responses of three sub-Arctic bryophytes (the mosses Hylocomium splendens and Polytrichum commune and the liverwort Barbilophozia lycopodioides) to +UV-B for 15 and 13 years were studied in two field experiments using lamps for UV-B enhancement with identical design and located in neighbouring areas with contrasting water availability (naturally mesic and drier sites). Responses evaluated included bryophyte abundance, growth, sporophyte production and sclerophylly; cellular protection by accumulation of UV-absorbing compounds, β-carotene, xanthophylls and development of non-photochemical quenching (NPQ); and impacts on photosynthesis performance by maximum quantum yield (Fv /Fm) and electron transport rate (ETR) through photosystem II (PSII) and chlorophyll concentrations.

Results

Responses were species specific: H. splendens responded most to +UV-B, with reduction in both annual growth (–22 %) and sporophyte production (–44 %), together with increased β-carotene, violaxanthin, total chlorophyll and NPQ, and decreased zeaxanthin and de-epoxidation of the xanthophyll cycle pool (DES). Barbilophozia lycopodioides responded less to +UV-B, showing increased β-carotene and sclerophylly and decreased UV-absorbing compounds. Polytrichum commune only showed small morphogenetic changes. No effect of UV-B on bryophyte cover was observed. Water availability had profound effects on bryophyte ecophysiology, and plants showed, in general, lower growth and ETR, together with a higher photoprotection in the drier site. Water availability also influenced bryophyte responses to +UV-B and, in particular, responses were less detectable in the drier site.

Conclusions

Impacts of UV-B exposure on Arctic bryophytes were significant, in contrast to modest or absent UV-B effects measured in previous studies. The impacts were more easily detectable in species with high plasticity such as H. splendens and less obvious, or more subtle, under drier conditions. Species biology and water supply greatly influences the impact of UV-B on at least some Arctic bryophytes and could contribute to the wide variation of responses observed previously.  相似文献   

12.
Barták  M.  Hájek  J.  Gloser  J. 《Photosynthetica》2000,38(4):531-537
Spatial heterogeneity of chlorophyll (Chl) fluorescence over thalli of three foliose lichen species was studied using Chl fluorescence imaging (CFI) and slow Chl fluorescence kinetics supplemented with quenching analysis. CFI values indicated species-specific differences in location of the most physiologically active zones within fully hydrated thalli: marginal thallus parts (Hypogymnia physodes), central part and close-to-umbilicus spots (Lasallia pustulata), and irregulary-distributed zones within thallus (Umbilicaria hirsuta). During gradual desiccation of lichen thalli, decrease in Chl fluorescence parameters (FO - minimum Chl fluorescence at point O, FP - maximum Chl fluorescence at P point, 2 - effective quantum yield of photochemical energy conversion in photosystem 2) was observed. Under severe desiccation (>85 % of water saturation deficit), substantial thalli parts lost their apparent physiological activity and the resting parts exhibited only a small Chl fluorescence. Distribution of these active patches was identical with the most active areas found under full hydration. Thus spatial heterogeneity of Chl fluorescence in foliose lichens may reflect location of growth zones (pseudomeristems) within thalli and adjacent newly produced biomass. When exposed to high irradiance, fully-hydrated thalli of L. pustulata and U. hirsuta showed either an increase or no change in FO, and a decrease in FP. Distribution of Chl fluorescence after the high irradiance treatment, however, remained the same as before the treatment. After 60 min of recovery in the dark, FO and FP did not recover to initial values, which may indicate that the lichen used underwent a photoinhibition. The CFI method is an effective tool in assessing spatial heterogeneity of physiological activity over lichen thalli exposed to a variety of environmental factors. It may be also used to select a representative area at a lichen thallus before application of single-spot fluorometric techniques in lichens.  相似文献   

13.
W. Guan  X. Peng  S. Lu 《Photosynthetica》2016,54(2):219-225
This study investigated the effect of solar ultraviolet radiation (UVR) and temperature on a chain length and photosynthetic performance of diatom Chaetorceros curvisetus. The cells were cultured in large quartz tubes and exposed to PAR, PAR + UV-A (PA), or PAR + UV-A + UV-B (PAB) radiation at 20°C and 28°C for six days, respectively. After recovery for 1 h, the cells were exposed again to three different radiations for 1 h. Then, a change in the photochemical efficiency (FPSII) was examined and UVR-induced photoinhibition was calculated. The percentage of long chains (more than five single cells per chain) in C. curvisetus significantly increased from 8.2% (PAR) to 38.9% (PAB) at 20°C; while it was not notably affected at 28°C. Mycosporine-like amino acids (MAAs) concentration obviously increased by irradiance increment from PAR to PAB at 20°C. Chlorophyll (Chl) a concentration significantly declined with increasing irradiance at 20°C. Both MAAs and Chl a concentrations were not obviously changed by irradiance at 28°C. Before and after reexposure, FPSII was significantly reduced both at 20°C and 28°C. UVR-induced photoinhibition at 20°C (39%) was higher than that at 28°C (30.9%). Solar UV radiation, especially UV-B, could significantly influence the percentage of long chains of C. curvisetus, especially at low temperature. UVR-induced photoinhibition can be alleviated by higher temperatures.  相似文献   

14.
The effects of ultraviolet-B (UV-B between 290 and 320 nm) on photosynthesis and growth characteristics were investigated in field grown cassava (Manihot esculentum Crantz). Plants were grown at ambient and ambient plus a 5.5kJ m?2 d?1 supplementation of UV-B radiation for 95 d. The supplemental UV-B fluence used in this experiment simulated a 15% depletion in stratospheric ozone at the equator (0°N). Carbon dioxide exchange, oxygen evolution, and the ratio of variable to maximum fluorescence (Fv/Fm) were determined for fully expanded leaves after 64–76 d of UV-B exposure. AH plants were harvested after 95 d of UV-B exposure, assayed for chlorophyll and UV-B absorbing compounds, and separated into leaves, petioles, stems and roots. Exposure to UV-B radiation had no effect on in situ rates of photosynthesis or dark respiration. No difference in the concentration of UV-B absorbing compounds was observed between treatments. A 2-d daytime diurnal comparison of Fv to Fm ratios indicated a significant decline in Fv/Fm ratios and a subsequent increase in photoinhibition under enhanced UV-B radiation if temperature or PPF exceeded 35°C or 1800μmol m?2 s?1, respectively. However, UV-B effects on fluorescence kinetics appeared to be temporal since maximal photosynthetic rates as determined by oxygen evolution at saturated CO2 and PPF remained unchanged. Although total biomass was unaltered with UV-B exposure, alterations in the growth characteristics of cassava grown with supplemental UV-B radiation are consistent with auxin destruction and reduced apical dominance. Changes in growth included an alteration of biomass partitioning with a significant increase in shoot/root ratio noted for plants receiving supplemental UV-B radiation. The increase in shoot/root ratio was due primarily to a significant decrease in root weight (–32%) with UV-B exposure. Because root production determines the harvest-able portion of cassava, UV-B radiation may still influence the yield of an important tropical agronomic species, even though photosynthesis and total dry biomass may not be directly affected.  相似文献   

15.
Due to anthropogenic influences, solar UV-B irradiance at the earth’s surface is increasing. To determine the effects of enhanced UV-B radiation on photosynthetic characteristics of Prunus dulcis, two-year-old seedlings of the species were submitted to four levels of UV-B stress, namely 0 (UV-Bc), 4.42 (UV-B1), 7.32 (UV-B2) and 9.36 (UV-B3) kJ m−2 d−1. Effects of UV-B stress on a range of chlorophyll (Chl) fluorescence parameters (FPs), Chl contents and photosynthetic gas-exchange parameters were investigated. UV-B stress promoted an increase in minimal fluorescence of dark-adapted state (F0) and F0/Fm, and a decrease in variable fluorescence (Fv, Fv/Fm, Fv/F0 and F0/Fm) due to its adverse effects on photosystem II (PSII) activity. No significant change was observed for maximal fluorescence of dark-adapted state (Fm). Enhanced UV-B radiation caused a significant inhibition of net photosynthetic rate (P N) at UV-B2 and UV-B3 levels and this was accompanied by a reduction in stomatal conductance (g s) and transpiration rate (E). The contents of Chl a, b, and total Chl content (a+b) were also significantly reduced at increased UV-B stress. In general, adverse UV-B effects became significant at the highest tested radiation dose 9.36 kJ m−2 d−1. The most sensitive indicators for UV-B stress were Fv/F0, Chl a content and P N. Significant P<0.05 alteration in these parameters was found indicating the drastic effect of UV-B radiation on P. dulcis.  相似文献   

16.
In this study, Microcystis aeruginosa was cultivated in a P-limited and P-replete culture medium and exposed to artificial UV-B radiation to investigate the interactive effect of UV-B exposure and phosphorus limitation on this harmful alga. After 15 days, both UV-B exposure and phosphorus limitation led to a significant decline in pigment content (phycocyanin and carotene) and photosynthetic activity (F v/F m and ETRmax), and the impact was most pronounced when the two conditions were combined. Due to the interactive effect, P-limited M. aeruginosa under UV-B exposure exhibited the lowest cell density compared to the other treatments. These results suggest that phosphorus limitation increases the stress of UV-B radiation in Microcystis. In other words, high-level UV-B radiation has higher growth inhibitory on Microcystis in P-limited lakes than in P-replete lakes.  相似文献   

17.
In the long-term absence of major disturbances ecosystems enter a state of retrogression, which involves declining soil fertility and consequently a reduction in decomposition rates. Recent studies have looked at how plant traits such as specific leaf mass and amounts of secondary compounds respond to declining soil fertility during retrogression, but there are no comparable studies for lichen traits despite increasing recognition of the role that lichens can play in ecosystem processes. We studied a group of 30 forested islands in northern Sweden differing greatly in fire history, and collectively representing a retrogressive chronosequence, spanning 5000 years. We used this system to explore how specific thallus mass (STM) and carbon based secondary compounds (CBSCs) change in three common epiphytic lichen species (Hypogymnia phsyodes, Melanohalea olivacea and Parmelia sulcata) as soil fertility declines during this retrogression. We found that STMs of lichens increased sharply during retrogression, and for all species soil N to P ratio (which increased during retrogression) was a strong predictor of STM. When expressed per unit area, medullary CBSCs in all species and cortical CBSCs in P. sulcata increased during retrogression. Meanwhile, when expressed per unit mass, only cortical CBSCs in H. physodes responded to retrogression, and in the opposite direction. Given that lichen functional traits are likely to be important in driving ecological processes that drive nutrient and carbon cycling in the way that plant functional traits are, the changes that they undergo during retrogression could potentially be significant for the functioning of the ecosystem.  相似文献   

18.
As a consequence of the ongoing reduction of the stratospheric ozone layer, the vegetation is exposed to increasing levels of UV-B radiation (280–320 nm). In addition ozone in the troposphere is a pollutant and also capable of affecting the photosynthetic machinery. In this study, 5-year-old European beech trees were exposed from 1 July to October 1993 to two levels of UV-B radiation and two levels of ozone, alone and in combination, in open-top chambers equipped with lamps. The simulated UV-B levels corresponded to either clear sky ambient level or a 14% decrease in the stratospheric ozone column over eastern Denmark, resulting in a 23% difference in biologically effective UV-B (UV-BBE) irradiance. The maximum UV-Bbe given was 8.61 kJ m−2 day−1. The ozone levels were either the ambient (average 32 nl l−1) or ambient with ozone addition (average resulting concentration 71 nl l−1). Compared to the control treatment (ambient UV-B, ambient O3) the elevated levels of UV-B and O3 affected the trees negatively, expressed as declines in net photosynthesis (Pn), stomatal conductance (gs), chlorophyll fluorescence (Fv/Fm) and acceleration of senescence, measured as yellowing of the leaves. The UV-B treatment induced stomatal closure before the other treatments did. The magnitude of the decreases in Pn and Fv/Fm occurred in the order: control 3 3. Compared to the control, the combination treatment with high levels accelerated the visual senescence processes by ca 27 days, while for high UV-B and O3 alone, there was an acceleration by 14 and 21 days, respectively. UV-B and O3 in combination enhanced the negative effects compared with UV-B and O3 alone. The Pn and Fv/Fm results could be related to this acceleration process. The chamber effect was investigated by comparing the control plots with a plot without open-top chamber. The trees in the chambers showed a higher Pn and Fv/Fm and a 14-day delayed senescence compared to the trees outside, probably caused by higher temperatures, a more protected environment and altered conditions inside the chambers.  相似文献   

19.
Polychromatic response spectra for the induction of UV absorbing mycosporine-like amino acids (MAAs) were calculated after exposing small thalli of the red alga Chondrus crispus under various cut-off filters to natural solar radiation on the North Sea island Helgoland, Germany. The laboratory-grown specimens typically contain only traces of palythine and synthesise five different MAAs rapidly and in high concentrations after being transplanted into shallow water. The resulting qualitative and quantitative patterns of MAA induction differed markedly with respect to spectral distribution. Furthermore, the wavebands effective for MAA induction vary within the MAA. UV-B radiation had a negative effect on the accumulation of the major MAAs shinorine (λmax=334 nm) and palythine (λmax=320 nm), while short wavelength UV-A exhibits the highest quantum efficiency on their synthesis. In contrast, the synthesis of asterina-330 (λmax=330 nm), palythinol (λmax=332 nm) and palythene (λmax=360 nm) was mainly induced by UV-B radiation. Whether the synthesis of shinorine and palythine is induced by a photoreceptor with an absorption maximum in the short wavelength UV-A and whether a second photoreceptor absorbing UV-B radiation is responsible for the induction of asterina-330, palythinol and palythene remains to be studied.Our results show that C. crispus has a high capacity to adapt flexibly the qualitative and quantitative MAA concentration to the prevailing spectral distribution of irradiance. On one hand, this is regarded as an important aspect with respect to the acclimation of algae to increasing UV-B irradiance in the context of ongoing depletion of stratospheric ozone. On the other hand, the experiment demonstrates that UV-A irradiance is more important for the induction of the major MAAs shinorine and palythine than UV-B.  相似文献   

20.
Samples of the lichen H. physodes were collected from bark of living trees (pine, spruce, birch, alder, rowan, and willow); from the wood of these trees and of juniper; from bark of dead spruce, alder, and rowan trees; and from the moss Hypnum pallescens. Thalli of this lichen were placed onto medium with carboxylmethyl cellulose (CMC) (water being used as a control). Output of sugars was determined using the Nelson-Somogyi technique. Cellulosolytic activity of samples from the bark of pine and birch was higher than that of samples from the bark of spruce. In thalli of the lichen from wood, from moss, and from bark of living alder and rowan trees, the output of sugars on the medium with CMC was similar to that in the control. The cellulosolytic activity was revealed in samples from the lichen from bark of dead rowan and alder trees. In the lichen from spruce bark, the output of sugars on the medium with CMC was higher in samples from dead trees in comparison with living trees. The results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号