首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, the dose distribution of photon (6 MV) and electron (22 MeV) radiation in a water-phantom was compared with the frequency of apoptotic and micronucleated cells of two human cell lines (BEAS-2B normal bronchial epithelial cells and A549 lung cancer epithelial cells). Formation of micronuclei and apoptotic-like bodies was evaluated by the cytokinesis-block micronucleus test. Measurements were performed for five different phantom depths (3-20 cm). Irradiated cells were placed in a water-phantom in three variants: directly on the axis in the beam, under shielding (only in photon radiation) and outside the beam field. The results reveal a discrepancy between the distribution of physical dose at different depths of the water-phantom and biological effects. This discrepancy is of special significance in case of cells irradiated at a greater depth or placed outside the field and under shield during the exposure to radiation. The frequency of cytogenetic damage was higher than the expected value based on the physical dose received at different depths. Cells placed outside the beam axis were exposed to scattered radiation at very low doses, so we tested if bystander effects could have had a role in the observed discrepancy between physical radiation dose and biological response. We explored this question by use of a medium-transfer technique in which medium (ICM-irradiation conditioned medium) from irradiated cells was transferred to non-irradiated (bystander) cells. The results indicate that when cells were incubated in ICM transferred from cells irradiated at bigger depths or from cells exposed outside the radiation field, the number of apoptotic and micronucleated cells was similar to that after direct irradiation. This suggests that these damages are caused by factors released by irradiated cells into the medium rather than being induced directly in DNA by X-rays. Evaluation of biological effects of scattered radiation appears useful for clinical practice.  相似文献   

2.
The developing human embryo and fetus undergo very radiosensitive stages during the prenatal development. It is likely that the induction of low dose related effects such as bystander effects, the adaptive response, and genomic instability would have profound effects on embryonic and fetal development. In this paper, I review what has been reported on the induction of these three phenomena in exposed embryos and fetuses. All three phenomena have been shown to occur in murine embryonic or fetal cells and structures, although the induction of an adaptive response (and also likely the induction of bystander effects) are limited in terms of when during development they can be induced and the dose or dose-rate used to treat animals in utero. In contrast, genomic instability can be induced throughout development, and the effects of radiation exposure on genome instability can be observed for long times after irradiation including through pre- and postnatal development and into the next generation of mice. There are clearly strain-specific differences in the induction of these phenomena and all three can lead to long-term detrimental effects. This is true for the adaptive response as well. While induction of an adaptive response can make fetuses more resistant to some gross developmental defects induced by a subsequent high dose challenge with ionizing radiation, the long-term effects of this low dose exposure are detrimental. The negative effects of all three phenomena reflect the complexity of fetal development, a process where even small changes in the timing of gene expression or suppression can have dramatic effects on the pattern of biological events and the subsequent development of the mammalian organism.  相似文献   

3.
目的:研究肿瘤翻译控制蛋白(TCTP)在辐射诱导胶质瘤细胞旁效应中的作用及机制。方法:给予不同剂量的X射线照射U87、SHG44两种胶质瘤细胞,观察U87以及SHG44细胞的克隆形成率,并在给予最佳照射剂量后,通过Western Blot检测TCTP蛋白表达水平。将经过最佳X射线照射剂量的U87以及SHG44两种胶质瘤细胞与未经过辐射照射的细胞放在一起共培养,通过MTT实验检测胶质瘤细胞的增殖率,Western Blot检测共培养的胶质瘤细胞与经过辐射的胶质瘤细胞中Caspase3蛋白表达水平。结果:U87以及SHG44两种胶质瘤细胞的克隆形成率随着X射线照射剂量增加而显著性降低(P0.05),给予最佳X射线照射剂量后,与未经过X射辐射照射后的细胞相比,其TCTP蛋白表达水平明显升高(P0.05)。经过辐射照射与未经过辐射照射的胶质瘤细胞经过共培养后,与经过辐射的胶质瘤细胞相比,细胞的增殖率明显升高,同时共培养的胶质瘤细胞与经过辐射的胶质瘤细胞相比,Caspase3的蛋白表达明显降低(P0.05)。结论:TCTP的表达增高能够诱导未经过辐射的U87以及SHG44两种胶质瘤细胞的抗凋亡作用增强,其作用机制可能与Caspase3的表达降低有关。  相似文献   

4.
5.
ObjectiveThe purpose of this work is to evaluate the impact of optimization of magnification on performance parameters of the variable resolution X-ray (VRX) CT scanner.MethodsA realistic model based on an actual VRX CT scanner was implemented in the GATE Monte Carlo simulation platform. To evaluate the influence of system magnification, spatial resolution, field-of-view (FOV) and scatter-to-primary ratio of the scanner were estimated for both fixed and optimum object magnification at each detector rotation angle. Comparison and inference between these performance parameters were performed angle by angle to determine appropriate object position at each opening half angle.ResultsOptimization of magnification resulted in a trade-off between spatial resolution and FOV of the scanner at opening half angles of 90°–12°, where the spatial resolution increased up to 50% and the scatter-to-primary ratio decreased from 4.8% to 3.8% at a detector angle of about 90° for the same FOV and X-ray energy spectrum. The disadvantage of magnification optimization at these angles is the significant reduction of the FOV (up to 50%). Moreover, magnification optimization was definitely beneficial for opening half angles below 12° improving the spatial resolution from 7.5 cy/mm to 20 cy/mm. Meanwhile, the FOV increased by more than 50% at these angles.ConclusionIt can be concluded that optimization of magnification is essential for opening half angles below 12°. For opening half angles between 90° and 12°, the VRX CT scanner magnification should be set according to the desired spatial resolution and FOV.  相似文献   

6.
Radiation-induced bystander effects are various types of responses displayed by nonirradiated cells induced by signals transmitted from neighboring irradiated cells. This phenomenon has been well studied after ionizing radiation, but data on bystander effects after UV radiation are limited and so far have been reported mainly after UVA and UVB radiation. The studies described here were aimed at comparing the responses of human dermal fibroblasts exposed directly to UV (A, B, or C wavelength range) and searching for bystander effects induced in unexposed cells using a transwell co-incubation system. Cell survival and apoptosis were used as a measure of radiation effects. Additionally, induction of senescence in UV-exposed and bystander cells was evaluated. Reactive oxygen species (ROS), superoxide radical anions, and nitric oxide inside the cells and secretion of interleukins 6 and 8 (IL-6 and IL-8) into the medium were assayed and evaluated as potential mediators of bystander effects. All three regions of ultraviolet radiation induced bystander effects in unexposed cells, as shown by a diminution of survival and an increase in apoptosis, but the pattern of response to direct exposure and the bystander effects differed depending on the UV spectrum. Although UVA and UVB were more effective than UVC in generation of apoptosis in bystander cells, UVC induced senescence both in irradiated cells and in neighbors. The level of cellular ROS increased significantly shortly after UVA and UVB exposure, suggesting that the bystander effects may be mediated by ROS generated in cells by UV radiation. Interestingly, UVC was more effective at generation of ROS in bystanders than in directly exposed cells and induced a high yield of superoxide in exposed and bystander cells, which, however, was only weakly associated with impairment of mitochondrial membrane potential. Increasing concentration of IL-6 but not IL-8 after exposure to each of the three bands of UV points to its role as a mediator in the bystander effect. Nitric oxide appeared to play a minor role as a mediator of bystander effects in our experiments. The results demonstrating an increase in intracellular oxidation, not only in directly UV-exposed but also in neighboring cells, and generation of proinflammatory cytokines, processes entailing cell damage (decreased viability, apoptosis, senescence), suggest that all bands of UV radiation carry a potential hazard for human health, not only due to direct mechanisms, but also due to bystander effects.  相似文献   

7.
Although increasing evidence has suggested that the hMSH5 protein plays an important role in meiotic and mitotic DNA recombinational repair, its precise functions in recombination and DNA damage response are presently elusive. Here we show that the interaction between hMSH5 and c-Abl confers ionizing radiation (IR)-induced apoptotic response by promoting c-Abl activation and p73 accumulation, and these effects are greatly enhanced in cells expressing hMSH5P29S (i.e. the hMSH5 variant possessing a proline to serine change within the N-terminal (Px)5 dipeptide repeat). Our current study provides the first evidence that the (Px)5 dipeptide repeat plays an important role in modulating the interaction between hMSH5 and c-Abl and alteration of this dipeptide repeat in hMSH5P29S leads to increased IR sensitivity owing to enhanced caspase-3-mediated apoptosis. In addition, RNAi-mediated hMSH5 silencing leads to the reduction of apoptosis in IR-treated cells. In short, this study implicates a role for hMSH5 in DNA damage response involving c-Abl and p73, and suggests that mutations impairing this process could significantly affect normal cellular responses to anti-cancer treatments.  相似文献   

8.
Bystander effects, whereby cells that are not directly exposed to ionizing radiation exhibit adverse biological effects, have been observed in a number of experimental systems. A novel stochastic model of the radiation-induced bystander effect is developed that takes account of spatial location, cell killing and repopulation. The ionizing radiation dose- and time-responses of this model are explored, and it is shown to exhibit pronounced downward curvature in the high dose-rate region, similar to that observed in many experimental systems, reviewed in the paper. It is also shown to predict the augmentation of effect after fractionated delivery of dose that has been observed in certain experimental systems. It is shown that the generally intractable solution of the full stochastic system can be considerably simplified by assumption of pairwise conditional dependence that varies exponentially over time.  相似文献   

9.
Radiation damage incurred by nuclear DNA is well documented and interest is increasing in the properties of 'bystander' factor(s) and their ability to induce radiation-like damage in cells never exposed to radiation. 'Bystander' and direct low-LET radiation effects on the mitochondria, and more particularly the mitochondrial genome are less well understood. In this study HPV-G cells (a human keratinocyte cell line derived from human neonatal foreskin transfected with the HPV-16 virus) were exposed to either gamma-radiation doses as low as 5 mGy and up to 5 Gy from a 60Co teletherapy unit, or to growth medium taken from similarly irradiated cells, i.e. irradiated cell conditioned medium (ICCM). Mutation and deletion analysis was performed on mitochondrial DNA (mtDNA) 4-96 h after exposure. Primers flanking the so-called mitochondrial 'common deletion' were employed to assess its possible induction. Single-strand conformation polymorphism (SSCP) analysis was conducted to identify induced point mutations. The relative mitochondrial number per cell was analysed by semi-quantitative PCR (sqPCR). Results indicate the induction of a relatively novel deletion in the mitochondrial genome as early as 12 h after direct exposure to doses as low as 0.5 Gy and 24 h after exposure to 0.5-Gy ICCM. SSCP analysis identified the induction of point mutations, in a non-consistent manner, in only the D-loop region of the mitochondrial genome and only in cells exposed to 5 Gy, and neither in cells exposed to lower doses of direct radiation nor in those exposed to ICCM. SqPCR also identified an increase in the number of mitochondria per cell after both exposure to low level gamma-radiation and ICCM, indicative of a possible mechanism to respond to mitochondrial stress by increasing the number of mitochondria per cell.  相似文献   

10.
The Herpes Simplex Virus thymidine kinase (HSV-tk) suicide gene/ganciclovir (GCV) approach has been used for the treatment of a variety of cancers. The purpose of the present study was to evaluate the cytotoxic effect of ganciclovir in oral squamous cancer cells, previously transfected with HSV-tk gene delivered by transferrin-associated complexes (Tf-lipoplexes), as well as to investigate the mechanisms involved in the bystander effect and in the process of cell death. The delivery of HSV-tk gene to the oral cancer cells, HSC-3 and SCC-7, mediated by Tf-lipoplexes followed by ganciclovir treatment resulted in essentially 100% cytotoxicity, the observed toxic effect being dependent both on GCV dose and incubation time. Cell death was shown to occur mainly by an apoptotic process. Different experimental approaches demonstrated that the observed cytotoxicity was mainly due to diffusion of the toxic agent into neighbouring, non-transfected cells, via gap junctions. Preliminary in vivo studies in a murine model for oral squamous cell carcinoma have shown a significant inhibition of tumor growth upon injection of Tf-lipoplexes carrying HSV-tk followed by intraperitonal injection of GCV, as compared to controls.  相似文献   

11.
The effects of dark -(Ev = 0 lux) and low-background radiation (BGR), where R < 1μRongen/h, on physicochemical properties (specific electrical conductivity, heat fusion, hydrogen peroxide (H2O2), and oxygen contents) of distilled water (DW) and physiological solution (PS) at 4°C and 18°C were studied. The incubation of DW and PS samples in dark and in low BGR (under dark) medium at 4°C and 18°C brings to changes of their physicochemical properties compared with DW and PS samples incubated in light and normal BGR condition (Ev = 500–550 lux and R = 17 μRoentgen/h). The observed changes of DW and PS properties depended on their initial temperature, density and ionic composition. It is suggested that water molecules dissociation and ions hydration are sensitive to illumination and BGR. Therefore, the cell-bathing medium can be considered as a messenger through which direct and non direct (by modulating of others factors-induced effects) influences of illumination and BGR on cell metabolism are realized.  相似文献   

12.
BackgroundRadiation recall dermatitis (RRD) is an inflammatory reaction in an area of the skin previously irradiated for cancer treatment. The reaction usually occurs following the administration of a cytotoxic drug. Manifestations range from mild to severe, resulting in tissue necrosis. It is treated with removal of the probable causative agent, daily dressings and surgical debridement of the necrotic area.Case presentationA 54-year-old woman had a previous diagnosis of intraductal carcinoma in situ, and had been submitted to lumpectomy and adjuvant radiotherapy and hormonal therapy. One year after surgery, sores suggestive of herpes zoster infection developed, and treatment with acyclovir was started. At the same time, there was the onset of pain and fever. In the skin area previously irradiated, there was breast hardening, skin infiltration and serosanguinolent discharge. An incisional biopsy was performed to rule out radioinduced sarcoma. The patient was treated with surgical debridement.ConclusionsThis case report describes acyclovir as a possible trigger of RRD, a rare condition that could have been mistaken for an eruption with other causes. In this case, the dermatitis reaction was confined to the previously irradiated area of the skin, which suggested radiation recall. A better understanding of the condition’s mechanism and about the possible joint effects of drugs and radiotherapy on the skin is necessary.  相似文献   

13.

1. 1. The purpose of this study was to investigate the effects of thermal radiation and wind on thermal responses at rest and during exercise in a cold environment.

2. 2. The experimental conditions were radiation and wind (R + W), no radiation and wind (W), radiation and no wind (R), no radiation and no wind (C).

3. 3. The air temperature was −5°C. Thermal radiation was 360 W/m2. Air velocities were 0.76, 1.73 and 2.8 m/s. Rectal and skin temperatures, heart rate and oxygen consumption were recorded. Thermal and comfort sensations were questioned.

4. 4. There are no significant effects of thermal radiation and wind on the physiological responses except the mean skin temperature. There are significant effects on the mean skin temperature (P < 0.01) and thermal sensation (P < 0.05).

Author Keywords: Thermal responses; wind; thermal radiation; exercise; cold environment  相似文献   


14.
Experiments designed to evaluate the synergistic production of clastogenic effects by ionizing radiation and 60 Hz magnetic fields were performed using human lymphocytes from peripheral blood. Following exposure to ionizing radiation, cells were cultured in 60 Hz magnetic fields having field strengths up to 1.4 mT. Cells exposed to both ionizing radiation and 60 Hz magnetic fields demonstrated an enhanced frequency of near tetraploid chromosome complements, a feature not observed following exposure to only ionizing radiation. The results are discussed in the context of a multiple-stage model of cellular transformation, employing both initiating and promoting agents. © 1993 Wiley-Liss. Inc.  相似文献   

15.
16.
Induction of apoptosis by ionizing radiation and CI-1033 in HuCCT-1 cells   总被引:1,自引:0,他引:1  
CI-1033 is a quinazoline-based HER family tyrosine kinase inhibitor that is currently being evaluated as a potential anticancer agent. The present study examines the molecular mechanism by which CI-1033 induces apoptosis either as a single agent or in combination with radiation. Although CI-1033 alone did not induce apoptosis, the simultaneous exposure of cells to CI-1033 and radiation induced significant levels of apoptosis. The sequential treatment of cells with CI-1033 followed by radiation induced an even greater effect with 62.6% of cells undergoing apoptosis but this enhanced effect was not seen if cells were treated first with radiation and then CI-1033. The combination treatment induces apoptosis of HuCCT-1 via upregulation of FasL and Bid cleavage. These data suggest that modulation of the Fas-FasL pathway and activation of Bid could be useful for increasing the anti-tumor effect of CI-1033 in this type of cancer.  相似文献   

17.
The possible mechanism(s) by which supplemental UV-B radiation alleviates the adverse effects of summer drought in Mediterranean pines (Petropoulou et al. 1995) were investigated with seedlings of Pinus pinea. Plants received ambient or ambient plus supplemental UV-B radiation (biologically equivalent to a 15% ozone depletion over Patras, 38.3° N, 29.1° E) and natural precipitation or additional irrigation. Treatments started on 1 February, 1994 and lasted up to the end of the dry period (29 September). In well-watered plants, UV-B radiation had no influence on photosystem II photochemical efficiency and biomass accumulation. Water stressed plants suffered from needle loss and reduced photosystem II photochemical efficiency during the summer. These symptoms, however, were less pronounced in plants receiving supplemental UV-B radiation, resulting in higher total biomass at plant harvest. Laboratory tests showed that enhanced UV-B radiation did not improve the tolerance of photosystem II against drought, high light, high temperature and oxidative stress. Enhanced UV-B radiation, however, improved the water economy of water stressed plants, as judged by measurements of needle relative water content. In addition, it caused an almost two-fold increase of cuticle thickness. No such UV-B radiation effects were observed in well-watered pines. The results indicate that the combination of water stress and UV-B radiation may trigger specific responses, enabling the plants to avoid excessive water loss and, thereby, maintain a more efficient photosynthetic apparatus during the summer. The extent of this apparently positive UV-B radiation effect would depend on the amount of summer precipitation. Abbreviations: DW – dry weight, Fv/Fm – ratio of variable to maximum fluorescence, A 300 – absorbance at 300 nm, PAR – photosynthetically active radiation, PS II – photosystem II, RWC – relative water content, TCA – trichloroacetic acid, UV-BBE – biologically effective ultraviolet-B radiation  相似文献   

18.
Reduced thiols (e.g., cysteine) are important in the maintenance of lymphocyte cell viability and growth. L1210 monocytic leukaemia cells were known to have a limited ability to uptake cystine, and they require cysteine for cell growth. L1210 cells underwent apoptosis when cultured without thiol-bearing and dithiol-cleaving compounds, adding thiols suppressed the apoptosis and promoted cell growth. A specific inhibitor of interleukin-1 -converting enzyme (ICE)-like and CPP32-like proteases could suppress L1210 cell apoptosis induced by thiol deprivation. The cell lysates of apoptotic L1210 cells exhibited protease activity that could cleave DEVD-AMC, but not YVAD-AMC, and so CPP32-like proteases, but not ICE-like proteases, were activated and participated in apoptosis. The addition of thiols could suppress CPP32-like protease activation. Although the cell death-suppressor bcl-2-family proteins (bcl-2 and bcl-XL) were recently found to suppress the activation of CPP32-like proteases, the expression levels of death-suppressor bcl-2-family proteins did not change when thiols were added. These results suggest that reduced thiols maintain L1210 cell survival by inhibiting the activation of CPP32-like proteases without changing the anti-apoptotic bcl-2-family protein expression.  相似文献   

19.
Accurate estimation of radiation use efficiency (RUE) is essential in modeling plant productivity, but little information on RUE is available for dry grassland. To quantify the RUE, aboveground biomass (AGB) and photosynthetically active radiation intercepted by plants (IPAR) were measured under different conditions of soil water and air temperature in a Mongolian field for 2 years. A wide range of RUE (0.23–1.06 g AGB/MJ IPAR) was found in negative association with variations in soil water and low temperature stresses. Compared with the temperature stress, the water stress was a strong down-regulator on RUE, verifying that drought is the major concern on radiation utilization in the study area. The maximum RUE was then found to be 2.34±0.16 g AGB/MJ IPAR by excluding the effects of water and temperature stresses. This study is one of the few assessments on RUE for natural grasslands under various levels of seasonally varying water and temperature conditions.  相似文献   

20.
Elevated seawater temperatures have long been accepted as the principal stressor causing the loss of symbiotic algae in corals and other invertebrates with algal symbionts (i.e., bleaching). A secondary factor associated with coral bleaching is solar irradiance, both its visible (PAR: 400–700 nm) and ultraviolet (UVR: 290–400 nm) portions of the spectrum. Here we examined the synergistic role of solar radiation on thermally induced stress and subsequent bleaching in a common Caribbean coral, Montastraea faveolata. Active fluorescent measurements show that steady-state quantum yields of photosystem II (PSII) fluorescence in the zooxanthellae are markedly depressed when exposed to high solar radiation and elevated temperatures, and the concentration of D1 protein is significantly lower in high light when compared to low light treatments under the same thermal stress. Both photosynthetic pigments and mycosporine-like amino acids (MAAs) are also depressed after experimental exposure to high solar radiation and thermal stress. Host DNA damage is exacerbated under high light conditions and is correlated with the expression of the cell cycle gene p 53, a cellular gatekeeper that modulates the fate of damaged cells between DNA repair processes and apoptotic pathways. These markers of cellular stress in the host and zooxanthellae have in common their response to the enhanced production of reactive oxygen species during exposure to high irradiances of solar radiation and elevated temperatures. Taking these results and previously published data into consideration, we conclude that thermal stress during exposure to high irradiances of solar radiation, or irradiances higher than the current photoacclimatization state, causes damage to both photochemistry and carbon fixation at the same time in zooxanthellae, while DNA damage, apoptosis, or necrosis are occurring in the host tissues of symbiotic cnidarians.Abbreviations PSII Functional absorption cross-section for PSII - Fo, Fm Minimum and maximum yields of chlorophyll a fluorescence measured after dark acclimation (relative units) - Fv Variable fluorescence after dark acclimation (=Fm–Fo), dimensionless - Fv/Fm Maximum quantum yield of photochemistry in PSII measured after dark acclimation, dimensionless - F, Fm Steady-state and maximum yields of chlorophyll a fluorescence measured under ambient light (relative units) - F/Fm Quantum yield of photochemistry in PSII measured at steady state under ambient light Communicated by R.C. Carpenter  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号