首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deficiencies in brain serotonergic neurotransmission, which is in part associated with the alteration of brain serotonin (5-HT) receptors, have been proposed as part of a neurochemical imbalance in affective disorders, including depression. The drugs used for the treatment of these disorders generally act through and/or on the serotonergic system. Different animal models of depression have provided researchers with tools to obtain a better understanding of drug actions and possibilities to obtain insight into the neurochemical bases of these disorders. The measurements of the 5-HT1A and 5-HT1B receptor densities in a rat model of depression, Flinders sensitive line (FSL) rats, and comparisons with Sprague–Dawley (SPD) and Flinders resistant line (FRL) rats, are reported here. The receptor sites were quantified by autoradiography in more than 25 distinct brain regions known to have relatively large densities of respective sites. Some brain regions (e.g., dental gyrus, septal nucleus) were divided into several parts, according to previously known subdivisions, because of a substantial heterogeneity of these receptors. The densities in the FSL rats (“depressed” rats) were compared statistically to those in the SPD rats. In addition, comparisons were made to the densities in the FRL rats (rats not showing depressive symptoms). Comparisons were performed with the SPD and FRL rats because both of these strains have been used as control animals in studies of FSL rats. The results show that the densities of 5-HT1A receptors are not significantly different between the FSL and SPD rats, but they are significantly different from the FRL rats. 5-HT1A receptor density is significantly higher in the FRL rats than the SPD rats. The 5-HT1B receptors were significantly greater in the FSL rats than in either the SPD or FRL rats. In addition, the FRL rats have 5-HT1B receptor densities significantly lower in many brain regions than the SPD rats. The data presented here, in addition to previously reported differences in regional synthesis between these strains and the effect of acute citalopram on synthesis, suggest that SPD rats are likely a more appropriate control than FRL rats, when studies of FSL rats are performed with drugs acting directly or indirectly on, or through, the brain serotonergic system. However, comparisons, particularly of neurochemical and/or biological parameters in FRL rats, may reveal new insight into the alterations of 5-HT neurotransmission in this animal model of depression and possibly human depression, as well as the elevation of symptoms with treatments. The data also suggest that there could be a different fraction of 5-HT1A receptors in high and low affinity states in these strains, as well as the possibility of different intracellular signalling.  相似文献   

2.
The influence of citalopram on regional 5-hydroxytryptamine (serotonin, 5-HT) synthesis, one of the most important presynaptic parameters of serotonergic neurotransmission, was studied. Sprague–Dawley (SPD) rats were used as the controls, and Flinders Resistant Line (FRL) rats were used as auxiliary controls, to hopefully obtain a better understanding of the effects of citalopram on Flinders Sensitive Line (FSL; “depressed”) rats. Regional 5-HT synthesis was evaluated using a radiographic method with a labelled tryptophan analog tracer. In each strain of rats, the animals were treated with citalopram (10 mg/(kg day)) or saline for 14 days. The groups consisted of between fourteen and twenty rats. There were six groups of rats with citalopram (CIT) and saline (SAL) groups in each of the strains (SPD–SAL, SPD–CIT, FRL–SAL, FRL–CIT, FSL–SAL and FSL–CIT). A two-factor analysis of variance was used to evaluate the effect of the treatment c., SPD-SAL relative to SPD-CIT) followed by planned comparisons to evaluate the effect in each brain region. In addition, the planned comparison with appropriate contrast was used to evaluate a relative effects in SPD relative to FSL and FRL, and FSL relative to FRL groups. A statistical analysis was first performed in the a priori selected regions, because we had learned, from previous work, that it was possible to select the brain regions in which neurochemical variables had been altered by the disorder and subsequent antidepressant treatments. The results clearly show that citalopram treatment does not have an overall effect on synthesis in the control SPD rats; there was no significant (p > 0.05) difference between the SPD–SAL and SPD–CIT rats. In “depressed” FSL rats, citalopram produced a significant (p < 0.05) elevation of synthesis in seventeen out of thirty-four regions, with a significant (p < 0.05) reduction in the dorsal and median raphe. In the FRL rats, there was a significant (p < 0.05) elevation in the synthesis in twenty-two out of thirty-four brain regions, with a reduction in the dorsal raphe. In addition to these regions magnus raphe was different in the SPD and FSL groups, but it was on the statistical grounds identified as an outlier. There were significant changes produced in the FSL and FRL rats in thirteen out of seventeen a priori selected brain regions, while in the SPD rats, citalopram produced significant changes in only four out of seventeen a priori selected regions. The statistical evaluation also revealed that changes produced by citalopram in the FSL and FRL rats were significantly greater than those in the SPD rats and that there was no significant difference between the effect produced in the FSL and FRL rats. The presented results suggest that in “depressed” FSL rats, the antidepressant citalopram elevates 5-HT synthesis, which probably in part relates to the reported improved in behaviour with citalopram.  相似文献   

3.
Alterations of serotonin (5-HT) levels and serotonergic transmission have been associated with depression. 5-HT synthesis is an important factor of serotonergic neurotransmission that may also be altered in depression. Many studies of the relationships between brain serotonergic functions and affective disorders have been performed in different animal models. In this study, brain regional 5-HT synthesis was examined using the alpha-[(14)C]methyl-L-tryptophan (alpha-MTrp) autoradiographic method in a genetic rat model of depression, Flinders Sensitive Line (FSL) rats, and was compared to both the Flinders Resistant Line (FRL) rats and the control Sprague-Dawley (SD) rats. The plasma concentration of free tryptophan in the FSL rats was not significantly different (p > 0.05; ANOVA and post-hoc Bonferroni correction) when compared to that of the FRL and SD rats. The FSL rats had significantly lower 5-HT synthesis (one sample two-tailed t-test on the ratio) than both the FRL and SD rats (the mean ratios were 0.78 +/- 0.12 and 0.73 +/- 0.15, respectively). Overall, the 5-HT synthesis in the FRL rats was not significantly different (p > 0.05) from that in the SD rats (one sample two-tailed t-test on the ratio and the mean ratio was 0.93 +/- 0.13). Studies of individual brain structures, such as the raphe nuclei and their many terminal areas, including the nucleus accumbens, cingulate and frontal cortex, hippocampus, amygdala, and thalamus revealed significant reductions (typically 25-50%) in 5-HT synthesis in the FSL rats compared to the non-depressive FRL and SD rats. These results suggest that significantly reduced 5-HT synthesis in the raphe nuclei and limbic areas in FSL rats may contribute to their depressive features.  相似文献   

4.
Abstract: Although alterations in serotonin levels and neurotransmission are associated with depressive disorders and effective antidepressant therapy, the exact cause of these disorders and the mode of action of anti-depressant drugs are poorly understood. In a genetic rat model of depression [Flinders sensitive line (FSL) rats], deviations from normal serotonin (5-HT) levels and metabolism in specific brain regions were determined. The levels of 5-HT and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA), in tissue punches of various brain regions were quantitated simultaneously with an HPLC apparatus coupled to an electrochemical detector. In the nucleus accumbens, prefrontal cortex, hippocampus, and hypothalamus of FSL rats, the levels of 5-HT and 5-HIAA were three- to eightfold higher than in control Sprague-Dawley rats. Significant differences in the levels of 5-HT and 5-HIAA in the striatum and raphe nucleus of the "depressed" and normal rats were not observed. After chronic treatment with the antidepressant desipramine (5 mg/kg/day for 18 days), the immobility score in a swim test, as a measure of a behavioral deficit, and 5-HT levels of the FSL rats became normalized, but these parameters in the control rats did not change. The [5-HIAA]/[5-HT] ratio was lower in the nucleus accumbens and hypothalamus of the FSL than in the control rats, and increased after desipramine treatment only in the nucleus accumbens of the FSL rats. These results indicate that the behavioral deficits expressed in the FSL model for depression correlate with increased 5-HT levels in specific limbic sites and suggest the FSL rats as a novel model for clarification of the molecular mechanism of clinically used antidepressant drugs.  相似文献   

5.
Serotonin (5-HT) is crucial to normal reflex vagal modulation of heart rate (HR). Reduced baroreflex sensitivity [spontaneous baroreflex sensitivity (sBRS)] and HR variability (HRV) reflect impaired neural, particularly vagal, control of HR and are independently associated with depression. In conscious, telemetered Flinders-Sensitive Line (FSL) rats, a well-validated animal model of depression, we tested the hypothesis that cardiovascular regulatory abnormalities are present and associated with deficient serotonergic control of reflex cardiovagal function. In FSL rats and control Flinders-Resistant (FRL) and Sprague-Dawley (SD) rat strains, diurnal measurements of HR, arterial pressure (AP), activity, sBRS, and HRV were made. All strains had normal and similar diurnal variations in HR, AP, and activity. In FRL rats, HR was elevated, contributing to the reduced HRV and sBRS in this strain. In FSL rats, sBRS and high-frequency power HRV were reduced during the night, indicating reduced reflex cardiovagal activity. The ratio of low- to high-frequency bands of HRV was increased in FSL rats, suggesting a relative predominance of cardiac sympathetic and/or reflex activity compared with FRL and SD rats. These data show that conscious FSL rats have cardiovascular regulatory abnormalities similar to depressed humans. Acute changes in HR, AP, temperature, and sBRS in response to 8-hydroxy-2-(di-n-propylamino)tetralin, a 5-HT(1A), 5-HT(1B), and 5-HT(7) receptor agonist, were also determined. In FSL rats, despite inducing an exaggerated hypothermic effect, 8-hydroxy-2-(di-n-propylamino)tetralin did not decrease HR and AP or improve sBRS, suggesting impaired serotonergic neural control of cardiovagal activity. These data suggest that impaired serotonergic control of cardiac reflex function could be one mechanism linking reduced sBRS to increased cardiac risk in depression.  相似文献   

6.
The effects of acute and chronic administration of buspirone, a serotonin 5-HT1A agonist, on the 5-HT synthesis rates in various rat brain structures were investigated using alpha-[14C]methyl-L-tryptophan (alpha-[14C]MTrp) and an autoradiographic method. In the acute treatment study, buspirone (10 mg/kg) was injected subcutaneously 30 min before alpha-[14C]MTrp administration (30 microCi over 2 min) into a femoral vein. In the chronic treatment study, buspirone was given in a sustained fashion (10 mg/kg/day) for 14 days using an osmotic minipump implanted subcutaneously. Rats were killed 60 and 150 min after alpha-[14C]MTrp administration (two-time point method). A single dose of buspirone induced a significant decrease of 5-HT synthesis throughout the brain with the exception of the pineal body. However, the chronic treatment with buspirone did not induce significant differences in 5-HT synthesis in the brain. There was no significant difference in plasma free tryptophan concentration between any of the groups. The unaltered 5-HT synthesis rates in the chronic treatment study likely reflect a normalization of this parameter due to a desensitization of 5-HT1A autoreceptors on the cell body of 5-HT neurons, which has been previously shown to occur following long-term treatment with 5-HT1A agonists.  相似文献   

7.
8.
Acetylcholine receptors (AChR) are important in premotor and efferent control of autonomic function; however, the extent to which cardiovascular function is affected by genetic variations in AChR sensitivity is unknown. We assessed heart rate variability (HRV) and baroreflex sensitivity (BRS) in rats bred for resistance (FRL) or sensitivity (FSL) to cholinergic agents compared with Sprague-Dawley rats (SD), confirmed by using hypothermic responses evoked by the muscarinic agonist oxotremorine (0.2 mg/kg i.p.) (n > or = 9 rats/group). Arterial pressure, ECG, and splanchnic sympathetic (SNA) and phrenic (PNA) nerve activities were acquired under anesthesia (urethane 1.3 g/kg i.p.). HRV was assessed in time and frequency domains from short-term R-R interval data, and spontaneous heart rate BRS was obtained by using a sequence method at rest and after administration of atropine methylnitrate (mATR, 2 mg/kg i.v.). Heart rate and SNA baroreflex gains were assessed by using conventional pharmacological methods. FRL and FSL were normotensive but displayed elevated heart rates, reduced HRV and HF power, and spontaneous BRS compared with SD. mATR had no effect on these parameters in FRL or FSL, indicating reduced cardiovagal tone. FSL exhibited reduced PNA frequency, longer baroreflex latency, and reduced baroreflex gain of heart rate and SNA compared with FRL and SD, indicating in FSL dual impairment of cardiac and circulatory baroreflexes. These findings show that AChR resistance results in reduced cardiac muscarinic receptor function leading to cardiovagal insufficiency. In contrast, AChR sensitivity results in autonomic and respiratory abnormalities arising from alterations in central muscarinic and or other neurotransmitter receptors.  相似文献   

9.

Background

The Flinders model is a validated genetic rat model of depression that exhibits a number of behavioural, neurochemical and pharmacological features consistent with those observed in human depression.

Principal Findings

In this study we have used genome-wide microarray expression profiling of the hippocampus and prefrontal/frontal cortex of Flinders Depression Sensitive (FSL) and control Flinders Depression Resistant (FRL) lines to understand molecular basis for the differences between the two lines. We profiled two independent cohorts of Flinders animals derived from the same colony six months apart, each cohort statistically powered to allow independent as well as combined analysis. Using this approach, we were able to validate using real-time-PCR a core set of gene expression differences that showed statistical significance in each of the temporally distinct cohorts, representing consistently maintained features of the model. Small but statistically significant increases were confirmed for cholinergic (chrm2, chrna7) and serotonergic receptors (Htr1a, Htr2a) in FSL rats consistent with known neurochemical changes in the model. Much larger gene changes were validated in a number of novel genes as exemplified by TMEM176A, which showed 35-fold enrichment in the cortex and 30-fold enrichment in hippocampus of FRL animals relative to FSL.

Conclusions

These data provide significant insights into the molecular differences underlying the Flinders model, and have potential relevance to broader depression research.  相似文献   

10.
L W Rogers  J Giordano 《Life sciences》1990,47(11):961-969
We have recently shown the serotonin 5-HT1A receptor agonist buspirone to produce analgesia in several pain tests in rats. As a 5-HT1A agonist, buspirone may change serotonergic (5-HT) tone to alter the balance of central monoaminergic (MA) systems that function in analgesia. MA-reuptake blocking drugs have been shown to produce analgesia, both when given alone and in combination with a variety of other agents, presumably via their action upon MA neurochemistry. The present study was undertaken to examine the effect of systemic administration of the 5-HT-reuptake blocker amitriptyline (AMI: 10 mg/kg), NE-reuptake blocker desipramine (DMI: 10 mg/kg) or DA-reuptake blocker GBR-12909 (7.5 mg/kg) on patterns of analgesia produced by buspirone (1-5 mg/kg) in thermal and mechanical pain tests in rats. Neither reuptake blocking agents or buspirone, when administered alone or in combination, produced overt changes in motor activity at the doses tested. AMI alone was not analgesic in either thermal or mechanical pain tests. In both assays, AMI reduced the analgesic action of buspirone, with greater effects seen in the thermal test. When administered alone, DMI produced significant analgesia against thermal and mechanical pain. DMI significantly attenuated the analgesic action of all doses of buspirone in both pain tests. Alone, GBR-12909 did not affect nociception in thermal or mechanical tests. GBR-12909 decreased buspirone-induced analgesia at all doses in the thermal test, while having no effect on buspirone-induced analgesia against mechanical pain. These results demonstrate that facilitation of 5-HT, NE and DA function with reuptake blocking drugs did not enhance the analgesic action of buspirone. These data indicate against the adjuvant use of reuptake blocking compounds and buspirone as analgesics. Furthermore, such findings may suggest other possible non-MA substrates of buspirone-induced analgesia.  相似文献   

11.
It has been proposed that the desensitization of 5-HT1A (5-hydroxytryptamine; serotonin) receptors following chronic therapy with selective serotonin reuptake inhibitors (SSRIs) is necessary for their therapeutic efficacy. Stimulation of the 5-HT1A receptors decreases serotonin (5-HT) synthesis and release, but it is not clear if the receptors are fully desensitized following chronic SSRI treatment. The main objective of this study was evaluation of ability of 5-HT1A receptors to modulate 5-HT synthesis after 14-day paroxetine treatment. 5-HT1A receptor sensitivity following chronic administration of the SSRI paroxetine was assessed by the ability of an acute challenge with the 5-HT1A agonist, flesinoxan, to modulate 5-HT synthesis in the rat brain. The rates of 5-HT synthesis were measured using the α-[14C]methyl-l-tryptophan autoradiographic method. The rats were treated for 2 weeks with paroxetine (10 mg/(kg day), s.c., delivered by osmotic minipump). After this treatment, the rats received an acute challenge with flesinoxan (5 mg/kg, i.p.), while the control rats were injected with the vehicle. Forty minutes following the flesinoxan injection, the tracer, α-[14C]methyl-l-tryptophan, was injected over 2 min. 5-HT synthesis rates were calculated from autoradiographically measured tissue tracer concentrations and plasma time–activity curves. The results demonstrated that the acute flesinoxan challenge produced a significant decrease in 5-HT synthesis rates throughout the rat brain. The greatest decrease was observed in the ventral hippocampus, somatosensory cortex and the ascending serotonergic cell bodies. In comparison with data reported on an acute challenge with flesinoxan in naïve rats (rats without any other treatment), the results presented here suggest a greater effect of flesinoxan on synthesis reduction in rats chronically treated with paroxetine. The results also suggest that the 5-HT receptors were not fully desensitized by paroxetine treatment, and that the stimulation of 5-HT1A receptors with an agonist is still capable of reducing 5-HT synthesis.  相似文献   

12.
It has been proposed that the desensitization of 5-HT1A (5-hydroxytryptamine; serotonin) receptors following chronic therapy with selective serotonin reuptake inhibitors (SSRIs) is necessary for their therapeutic efficacy. Stimulation of the 5-HT1A receptors decreases serotonin (5-HT) synthesis and release, but it is not clear if the receptors are fully desensitized following chronic SSRI treatment. The main objective of this study was evaluation of ability of 5-HT1A receptors to modulate 5-HT synthesis after 14-day paroxetine treatment. 5-HT1A receptor sensitivity following chronic administration of the SSRI paroxetine was assessed by the ability of an acute challenge with the 5-HT1A agonist, flesinoxan, to modulate 5-HT synthesis in the rat brain. The rates of 5-HT synthesis were measured using the α-[14C]methyl-l-tryptophan autoradiographic method. The rats were treated for 2 weeks with paroxetine (10 mg/(kg day), s.c., delivered by osmotic minipump). After this treatment, the rats received an acute challenge with flesinoxan (5 mg/kg, i.p.), while the control rats were injected with the vehicle. Forty minutes following the flesinoxan injection, the tracer, α-[14C]methyl-l-tryptophan, was injected over 2 min. 5-HT synthesis rates were calculated from autoradiographically measured tissue tracer concentrations and plasma time–activity curves. The results demonstrated that the acute flesinoxan challenge produced a significant decrease in 5-HT synthesis rates throughout the rat brain. The greatest decrease was observed in the ventral hippocampus, somatosensory cortex and the ascending serotonergic cell bodies. In comparison with data reported on an acute challenge with flesinoxan in naïve rats (rats without any other treatment), the results presented here suggest a greater effect of flesinoxan on synthesis reduction in rats chronically treated with paroxetine. The results also suggest that the 5-HT receptors were not fully desensitized by paroxetine treatment, and that the stimulation of 5-HT1A receptors with an agonist is still capable of reducing 5-HT synthesis.  相似文献   

13.
Antidepressant treatments, including those that increase serotonin (5-HT) neurotransmission, require several weeks or months until the onset of the therapeutic effect in depressed patients. The negative feedback on 5-HT transmission exhibited by the 5-HT1A and 5-HT1B autoreceptors has been postulated as a possible delaying factor. The aim of the present study was to assess the effect of the acute and subchronic treatment with pindolol, a 5-HT1A/1B, β1 and β2 adrenoceptor antagonist, on 5-HT synthesis, one of the key parameters of 5-HT neurotransmission. Male Sprague–Dawley (SPD) rats (180–220 g) were treated with pindolol or an adequate volume of saline, administered either acutely (15 mg/kg i.p.; SPD-AC-SAL, SPD-AC-TR) or subchronically (15 mg/kg day i.p. for 7 days; SPD-SUBCHR-SAL, SPD-SUBCHR-TR). Thirty minutes following the single i.p. injection (acute experiment) or at the 8th day following the commencement of the subchronic treatment (subchronic experiment), 5-HT synthesis was measured using α-[14C]methyl-l-tryptophan autoradiography. The analysis of variance (ANOVA), followed by the Benjamini–Hochberg correction for multiple comparisons, revealed: (1) a significant increase of 5-HT synthesis in the SPD-AC-TR rats, relative to the SPD-AC-SAL rats in all brain regions examined except the substantia nigra – pars reticularis, dorsal subiculum, inferior olive, raphe magnus and raphe obscurus and (2) a significant increase of 5-HT synthesis in the SPD-SUBCHR-TR rats, relative to the SPD-SUBCHR-SAL rats in all brain regions except the median raphe, hypothalamus and raphe pontine. On the basis of these results, we hypothesized that the antagonism of the 5-HT1A/1B receptors prevents the negative feedback mediated by these receptors on 5-HT synthesis, resulting in a persistent increase of 5-HT synthesis. The results accord with clinical reports on the utility of pindolol in the augmentation of antidepressant treatment.  相似文献   

14.
Antidepressant treatments, including those that increase serotonin (5-HT) neurotransmission, require several weeks or months until the onset of the therapeutic effect in depressed patients. The negative feedback on 5-HT transmission exhibited by the 5-HT1A and 5-HT1B autoreceptors has been postulated as a possible delaying factor. The aim of the present study was to assess the effect of the acute and subchronic treatment with pindolol, a 5-HT1A/1B, β1 and β2 adrenoceptor antagonist, on 5-HT synthesis, one of the key parameters of 5-HT neurotransmission. Male Sprague–Dawley (SPD) rats (180–220 g) were treated with pindolol or an adequate volume of saline, administered either acutely (15 mg/kg i.p.; SPD-AC-SAL, SPD-AC-TR) or subchronically (15 mg/kg day i.p. for 7 days; SPD-SUBCHR-SAL, SPD-SUBCHR-TR). Thirty minutes following the single i.p. injection (acute experiment) or at the 8th day following the commencement of the subchronic treatment (subchronic experiment), 5-HT synthesis was measured using α-[14C]methyl-l-tryptophan autoradiography. The analysis of variance (ANOVA), followed by the Benjamini–Hochberg correction for multiple comparisons, revealed: (1) a significant increase of 5-HT synthesis in the SPD-AC-TR rats, relative to the SPD-AC-SAL rats in all brain regions examined except the substantia nigra – pars reticularis, dorsal subiculum, inferior olive, raphe magnus and raphe obscurus and (2) a significant increase of 5-HT synthesis in the SPD-SUBCHR-TR rats, relative to the SPD-SUBCHR-SAL rats in all brain regions except the median raphe, hypothalamus and raphe pontine. On the basis of these results, we hypothesized that the antagonism of the 5-HT1A/1B receptors prevents the negative feedback mediated by these receptors on 5-HT synthesis, resulting in a persistent increase of 5-HT synthesis. The results accord with clinical reports on the utility of pindolol in the augmentation of antidepressant treatment.  相似文献   

15.
Depression may be associated with impaired membrane PUFA composition, especially decreased n-3 PUFA. This assumption has not been tested at the level of brain tissue. Moreover, most studies were confounded by dietary variability. We examined the FA composition of selected brain areas in an animal model of depression, the Flinders Sensitive Line (FSL) rat, and compared the findings with those in controls fed identical diets. In all brain regions studied, the concentration of arachidonic acid (AA) was significantly higher in the FSL rats: in the hypothalamus by 21%, in the nucleus accumbens by 24%, in the prefrontal cortex by 31%, and in the striatum by 23%. No significant differences were observed for n-3 PUFA or for the saturated and monounsaturated FAs. Our results confirm the existence of altered brain PUFA composition in an animal model of depression. The finding of increased AA, an n-6 PUFA, rather than decreased n-3 PUFA, emphasizes the importance of both PUFA families in the pathophysiological processes underlying depression. The FSL rat is a useful tool for further elucidation of the FA disturbances in depression.  相似文献   

16.
The olfactory bulbectomized (OBX) rat is considered to be a good model of the pathology of human depression and also of the functional actions of antidepressant drug therapy. It has been proposed that antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) can be accelerated by blocking 5-HT1A/B autoreceptors with pindolol. The underlying mechanism is thought to involve acute unrestricting of 5-HT release and, consequently, relatively enhanced 5-HT turnover throughout the forebrain serotonergic networks. The effect of this combination on 5-HT turnover in sham operated or OBX rats can be assessed at the level of 5-HT synthesis, a very important presynaptic step in serotonergic neurotransmission, using the α-[14C]methyl-l-tryptophan autoradiography method. In sham rats, acute citalopram (20 mg/kg) treatment increased synthesis at almost all serotonergic terminal regions but slightly decreased synthesis at serotonergic cell body regions (i.e. dorsal and median (not significant) raphe; ~16%). Combining pindolol (10 mg/kg) with citalopram further increased synthesis at many regions in sham rats (relative to treatment with only citalopram). In OBX rats, citalopram decreased synthesis at a few terminal regions and greatly decreased synthesis at the dorsal and median raphe (~45%; relative to OBX rats treated with saline). Combining pindolol with citalopram greatly increased synthesis at almost all regions in OBX rats (relative to treatment with only citalopram). These results suggest that acute citalopram effects result in elevated terminal 5-HT synthesis, but these effects are restrained by 5-HT1A/B autoreceptor feedback to different degrees in sham and OBX rats. Moreover, 5-HT1A/B autoreceptor feedback is stronger in OBX rats and may underlie the delay of SSRI effects in OBX rats and, correspondingly, in human depression. Pindolol acceleration and augmentation of SSRI antidepressant therapy for human depression may be mediated by attenuation of 5-HT1A/B autoreceptor feedback, permitting unhindered SSRI effects on serotonergic terminals.  相似文献   

17.
中枢阿片神经系统对焦虑情绪的调控作用及其机制探讨   总被引:19,自引:0,他引:19  
吗啡依赖大鼠自发戒断后其主动接触时间和突期舔水次数均显著减少,并可被5-HT1A受体激动丁螺环酮和色氨酸羟化酸抑制剂对氯苯丙氨酸所对抗。纳曲酮也可使上述两指标降低,并可被吗啡和PCPA所拮抗、被5-羟色氨酸所增强。  相似文献   

18.
5-HT1A receptor agonists display anxiolytic and anti-depressant properties in clinical studies. In this study, we used the α-[14C]methyl-l-tryptophan (α-MTrp) autoradiographic method to evaluate the effects of the 5-HT1A agonist, flesinoxan, on regional 5-HT synthesis in the rat brain, following acute or a 14-day continuous treatment. In the first series of experiments, flesinoxan (5 mg/kg; i.p.) was administered 40 min before the α-MTrp. It resulted in a significant increase of the arterial blood oxygen partial pressure (pO2) and a reduction of the regional rate of 5-HT synthesis throughout the brain, with the exception of a few regions (medial geniculate body and thalamus). In the second series of experiments, flesinoxan (5 mg/kg day) was administered for 14 days, using an osmotic minipump implanted subcutaneously. When compared to rats treated with saline, there was an overall significant (p < 0.05) reduction in the synthesis (one-sample two-tailed t-test). However, there was no significant influence on the 5-HT synthesis rate in the dorsal and median raphe nuclei and the majority of their projection areas. A significant (p < 0.05) reduction was observed in the nucleus raphe magnus, medial caudate, ventral thalamus, amygdala, ventral tegmental area, medial forebrain bundle, nucleus accumbens, medial anterior olfactory nucleus and superior olive. The unaltered 5-HT synthesis rates in a large majority of regions following the 14-day treatment of flesinoxan may reflect the normalization (implies to not be different from salne treated control) of synthesis due to a desensitization of 5-HT1A autoreceptors on the cell body of 5-HT neurons as well as at postsynaptic sites, which is known to occur following long-term treatment with 5-HT1A agonists. It is of some importance to note that the normalization of the synthesis occurred in the majority of the brain limbic structures, the brain areas implicated in affective disorders and the corresponding successful treatments, as well as in the cortical regions, which are implicated in mood. However, there were some terminal regions (e.g., accumbens, anterior olfactory, lateral thalamus, raphe magnus and obscurus) in which the chronic flesinoxan treatment resulted in a significant reduction of synthesis, suggesting that there was not a full desensitization across the brain of the receptors controlling 5-HT synthesis.  相似文献   

19.
Antinociceptive effect of the antimigraine drug sumatriptan (5-HT1A agonist) was studied against acetic acid-induced writhing in mice. Sumatriptan produced the effect in a dose-dependent manner (1, 5, 10 and 20 mg/kg, s.c.). Naloxone (1 mg/kg i.p.) an opiate antagonist failed to reverse sumatriptan-induced antinociception. Cholinomimetic physostigmine (0.05 mg/kg, i.p.) potentiated and the muscarinic antagonist atropine (5 mg/kg, i.p.) blocked the antinociceptive effect of sumatriptan, respectively. The antinociceptive effect of sumatriptan was compared with an another 5-HT agonist (5-HT1A) buspirone which also produced antinociception. Like sumatriptan-analgesia, the buspirone response was also potentiated by physostigmine in atropine sensitive way. Further, buspirone potentiated the analgesic effect of sumatriptan. These observations suggest that 5-HT1A agonists produce antinociception possibly by modulating central cholinergic activity.  相似文献   

20.
5-HT(1A) receptor agonists display anxiolytic and anti-depressant properties in clinical studies. In this study, we used the alpha-[(14)C]methyl-l-tryptophan (alpha-MTrp) autoradiographic method to evaluate the effects of the 5-HT(1A) agonist, flesinoxan, on regional 5-HT synthesis in the rat brain, following acute or a 14-day continuous treatment. In the first series of experiments, flesinoxan (5mg/kg; i.p.) was administered 40min before the alpha-MTrp. It resulted in a significant increase of the arterial blood oxygen partial pressure (pO(2)) and a reduction of the regional rate of 5-HT synthesis throughout the brain, with the exception of a few regions (medial geniculate body and thalamus). In the second series of experiments, flesinoxan (5mg/kgday) was administered for 14 days, using an osmotic minipump implanted subcutaneously. When compared to rats treated with saline, there was an overall significant (p<0.05) reduction in the synthesis (one-sample two-tailed t-test). However, there was no significant influence on the 5-HT synthesis rate in the dorsal and median raphe nuclei and the majority of their projection areas. A significant (p<0.05) reduction was observed in the nucleus raphe magnus, medial caudate, ventral thalamus, amygdala, ventral tegmental area, medial forebrain bundle, nucleus accumbens, medial anterior olfactory nucleus and superior olive. The unaltered 5-HT synthesis rates in a large majority of regions following the 14-day treatment of flesinoxan may reflect the normalization (implies to not be different from salne treated control) of synthesis due to a desensitization of 5-HT(1A) autoreceptors on the cell body of 5-HT neurons as well as at postsynaptic sites, which is known to occur following long-term treatment with 5-HT(1A) agonists. It is of some importance to note that the normalization of the synthesis occurred in the majority of the brain limbic structures, the brain areas implicated in affective disorders and the corresponding successful treatments, as well as in the cortical regions, which are implicated in mood. However, there were some terminal regions (e.g., accumbens, anterior olfactory, lateral thalamus, raphe magnus and obscurus) in which the chronic flesinoxan treatment resulted in a significant reduction of synthesis, suggesting that there was not a full desensitization across the brain of the receptors controlling 5-HT synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号