首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《朊病毒》2013,7(4):269-276
Yeast have been extensively used to model aspects of protein folding diseases, yielding novel mechanistic insights and identifying promising candidate therapeutic targets. In particular, the neurodegenerative disorder Huntington disease (HD), which is caused by the abnormal expansion of a polyglutamine tract in the huntingtin (htt) protein, has been widely studied in yeast. This work has led to the identification of several promising therapeutic targets and compounds that have been validated in mammalian cells, Drosophila and rodent models of HD. Here we discuss the development of yeast models of mutant htt toxicity and misfolding, as well as the mechanistic insights gleaned from this simple model. The role of yeast prions in the toxicity/misfolding of mutant htt is also highlighted. Furthermore, we provide an overview of the application of HD yeast models in both genetic and chemical screens, and the fruitful results obtained from these approaches. Finally, we discuss the future of yeast in neurodegenerative research, in the context of HD and other diseases.  相似文献   

2.
Huntington disease (HD) is a neurodegenerative disorder caused by the expansion of a polyglutamine tract in the huntingtin (htt) protein. To uncover candidate therapeutic targets and networks involved in pathogenesis, we integrated gene expression profiling and functional genetic screening to identify genes critical for mutant htt toxicity in yeast. Using mRNA profiling, we have identified genes differentially expressed in wild-type yeast in response to mutant htt toxicity as well as in three toxicity suppressor strains: bna4Δ, mbf1Δ, and ume1Δ. BNA4 encodes the yeast homolog of kynurenine 3-monooxygenase, a promising drug target for HD. Intriguingly, despite playing diverse cellular roles, these three suppressors share common differentially expressed genes involved in stress response, translation elongation, and mitochondrial transport. We then systematically tested the ability of the differentially expressed genes to suppress mutant htt toxicity when overexpressed and have thereby identified 12 novel suppressors, including genes that play a role in stress response, Golgi to endosome transport, and rRNA processing. Integrating the mRNA profiling data and the genetic screening data, we have generated a robust network that shows enrichment in genes involved in rRNA processing and ribosome biogenesis. Strikingly, these observations implicate dysfunction of translation in the pathology of HD. Recent work has shown that regulation of translation is critical for life span extension in Drosophila and that manipulation of this process is protective in Parkinson disease models. In total, these observations suggest that pharmacological manipulation of translation may have therapeutic value in HD.  相似文献   

3.
4.

Background

Polyglutamine expansion is responsible for several neurodegenerative disorders, among which Huntington disease is the most well-known. Studies in the yeast model demonstrated that both aggregation and toxicity of a huntingtin (htt) protein with an expanded polyglutamine region strictly depend on the presence of the prion form of Rnq1 protein ([PIN +]), which has a glutamine/asparagine-rich domain.

Principal Findings

Here, we showed that aggregation and toxicity of mutant htt depended on [PIN +] only quantitatively: the presence of [PIN +] elevated the toxicity and the levels of htt detergent-insoluble polymers. In cells lacking [PIN +], toxicity of mutant htt was due to the polymerization and inactivation of the essential glutamine/asparagine-rich Sup35 protein and related inactivation of another essential protein, Sup45, most probably via its sequestration into Sup35 aggregates. However, inhibition of growth of [PIN +] cells depended on Sup35/Sup45 depletion only partially, suggesting that there are other sources of mutant htt toxicity in yeast.

Conclusions

The obtained data suggest that induced polymerization of essential glutamine/asparagine-rich proteins and related sequestration of other proteins which interact with these polymers represent an essential source of htt toxicity.  相似文献   

5.
The pathogenesis of Huntington disease (HD) is attributed to the misfolding of huntingtin (htt) caused by an expanded polyglutamine (polyQ) domain. Considerable effort has been devoted to identifying molecules that can prevent or reduce htt misfolding and the associated neuropathology. Although overexpression of chaperones is known to reduce htt cytotoxicity in cellular models, only modest protection is seen with Hsp70 overexpression in HD mouse models. Because the activity of Hsp70 is modulated by co-chaperones, an interesting issue is whether the in vivo effects of chaperones on polyQ protein toxicity are dependent on other modulators. In the present study, we focused on BAG1, a co-chaperone that interacts with Hsp70 and regulates its activity. Of htt mice expressing the N171-82Q mutant, we found that male N171-82Q mice show a greater deficit in rotarod performance than female N171-82Q mice. This sex-dependent motor deficit was improved by crossing N171-82Q mice with transgenic mice overexpressing BAG1 in neurons. Transgenic BAG1 also reduces the levels of mutant htt in synaptosomal fraction of male HD mice. Overexpression of BAG1 augmented the effects of Hsp70 by reducing aggregation of mutant htt in cultured cells and improving neurite outgrowth in htt-transfected PC12 cells. These findings suggest that the effects of chaperones on HD pathology are influenced by both their modulators and sex-dependent factors.  相似文献   

6.
Inclusion bodies of aggregated mutant huntingtin (htt) fragments are a neuropathological hallmark of Huntington disease (HD). The molecular chaperones Hsp70 and Hsp40 colocalize to inclusion bodies and are neuroprotective in HD animal models. How these chaperones suppress mutant htt toxicity is unclear but might involve direct effects on mutant htt misfolding and aggregation. Using size exclusion chromatography and atomic force microscopy, we found that mutant htt fragments assemble into soluble oligomeric species with a broad size distribution, some of which reacted with the conformation-specific antibody A11. Hsp70 associated with A11-reactive oligomers in an Hsp40- and ATP-dependent manner and inhibited their formation coincident with suppression of caspase 3 activity in PC12 cells. Thus, Hsp70 and Hsp40 (DNAJB1) dynamically target specific subsets of soluble oligomers in a classic ATP-dependent reaction cycle, supporting a pathogenic role for these structures in HD.  相似文献   

7.
The accumulation of protein aggregates in neurons appears to be a basic feature of neurodegenerative disease. In huntington disease (HD), a progressive and ultimately fatal neurodegenerative disorder caused by an expansion of the polyglutamine repeat within the protein huntingtin (Htt), the immediate proximal cause of disease is well understood. However, the cellular mechanisms which modulate the rate at which fragments of Htt containing polyglutamine accumulate in neurons is a central issue in the development of approaches to modulate the rate and extent of neuronal loss in this disease. We have recently found that Htt is phosphorylated by the kinase IKK on serine (s) 13, activating its phosphorylation on S16 and its acetylation and poly-SUMOylation, modifications that modulate its clearance by the proteasome and lysosome in cells.1 In the discussion here I suggest that Htt may have a normal function in the lysosomal mechanism of selective macroautophagy involved in its own degradation which may share some similarity with the yeast cytoplasm to vacuole targeting (Cvt) pathway. Pharmacologic activation of this pathway may be useful early in disease progression to treat HD and other neurodegenerative diseases characterized by the accumulation of disease proteins.Key words: Huntington disease, Huntingtin, polyglutamine, autophagy, IKKAn age-related reduction in protein clearance mechanisms has been implicated in the pathogenesis of neurodegenerative diseases including the polyglutamine (polyQ) repeat diseases, Alzheimer disease (AD), Parkinson disease (PD) and Amyotrophic Lateral Sclerosis (ALS). These diseases are each associated with the accumulation of insoluble protein aggregates in diseased neurons. Huntington Disease (HD), caused by an expansion of the polyQ repeat in the protein Huntingtin (Htt), is one such disease of aging in which mutant Htt inclusions form in striatal and cortical neurons as disease progresses. Clarification of the mechanisms of Htt clearance is paramount to finding therapeutic targets to treat HD that may be broadly useful in the treatment of these currently incurable neurodegenerative diseases.  相似文献   

8.
Huntington disease (HD) is a neurodegenerative disorder caused by an expansion of a polyglutamine (polyQ) domain in the N-terminal region of huntingtin (htt). PolyQ expansion above 35–40 results in disease associated with htt aggregation into inclusion bodies. It has been hypothesized that expanded polyQ domains adopt multiple potentially toxic conformations that belong to different aggregation pathways. Here, we used atomic force microscopy to analyze the effect of a panel of anti-htt antibodies (MW1–MW5, MW7, MW8, and 3B5H10) on aggregate formation and the stability of a mutant htt-exon1 fragment. Two antibodies, MW7 (polyproline-specific) and 3B5H10 (polyQ-specific), completely inhibited fibril formation and disaggregated preformed fibrils, whereas other polyQ-specific antibodies had widely varying effects on aggregation. These results suggest that expanded polyQ domains adopt multiple conformations in solution that can be readily distinguished by monoclonal antibodies, which has important implications for understanding the structural basis for polyQ toxicity and the development of intrabody-based therapeutics for HD.Huntington disease (HD)5 is a fatal neurodegenerative disorder that is caused by an expansion of a polyglutamine (polyQ) domain in the protein huntingtin (htt), which leads to its aggregation into fibrils (1). HD is part of a growing group of diseases that are classified as “conformational diseases,” which include Alzheimer disease (AD), Parkinson disease (PD), the prion encephalopathies, and many more (24). The length of polyQ expansion in HD is tightly correlated with disease onset, and a critical threshold of 35–40 glutamine residues is required for disease manifestation (5). Biochemical and electron microscopic studies with htt fragments demonstrated that expanded polyQ repeats (>39) form detergent-insoluble aggregates that share characteristics with amyloid fibrils (68), and the formation of amyloid-like fibrils by polyQ was confirmed by studies with synthetic polyQ peptides (9). Collectively, these studies demonstrated a correlation between polyQ length and the kinetics of aggregation. This phenomenon has been recapitulated in cell-culture models that express htt fragments (1012). Although it is clear that proteins with expanded polyQ repeats assemble into fibrils in vitro, recent studies have reported that htt fragments can also assemble into spherical and annular oligomeric structures (1316) similar to those formed by Aβ and α-synuclein, which are implicated in AD and PD, respectively.While the major hallmark of HD is the formation of intranuclear and cytoplasmic inclusion bodies of aggregated htt (17), the role of these structures in the etiology of HD remains controversial. For instance, the onset of symptoms in a transgenic mouse model of HD follows the appearance of inclusion bodies (18), while other studies indicate that inclusion body formation may protect against toxicity by sequestering diffuse, soluble forms of htt (10, 19, 20). Based on the direct correlation between polyQ length, htt aggregation propensity, and toxicity (6), it has been hypothesized that the aggregation of htt may mediate neurodegeneration in HD. However, there is no clear consensus on the aggregate form(s) that underlie toxicity, and there likely exist bioactive, oligomeric aggregates undetectable by traditional biochemical and electron microscopic approaches whose formation precedes disease symptoms. Although identification of the one or more toxic species of htt that trigger neurodegeneration in HD remains elusive, such species might exist in a diffuse, mobile fraction rather than in inclusion bodies (19). A thioredoxin-polyQ fusion protein was recently reported to exhibit toxicity in a meta-stable, β-sheet-rich, monomeric conformation (21), suggesting that polyQ can adopt multiple monomeric conformations, only some of which may be toxic. Consistent with such a scenario, molecular dynamic simulations and fluorescence correlation spectroscopy experiments with synthetic polyQ peptides indicate that polyQ domains can adopt a heterogeneous collection of collapsed conformations that are in equilibrium before aggregation (2225).Although biochemical, biophysical, and computational approaches have yielded insight into the structures formed by polyQ in vitro, whether such structures form in vivo remains largely unknown. Indeed, determining the conformational state of any misfolded/aggregated protein in situ and/or in vivo remains a major technical challenge.Toward this goal, antibodies have been explored as a potentially powerful tool for detecting specific conformations or multimeric states of aggregated proteins in situ. Antibodies specific for amyloid fibrils often do not react with natively folded globular proteins from which they are derived, suggesting that such antibodies recognize a conformational epitope (26, 27). Several antibodies display conformation-dependent interactions with amyloids, aggregation intermediates, or natively folded precursor proteins. For example, there are antibodies specific for paired helical filaments of Tau (2831), of aggregated forms of Aβ ranging from dimers to fibrils (3234), and of native (35) or disease-related (36) forms of the prion protein. Antibodies have also been developed that are specific for common structural motifs associated with amyloid diseases, such as oligomers (37) and fibrils (38), independent of the peptide sequence of the amyloid forming protein from which they are derived, suggesting the potential for a common mechanism of aggregation and toxicity for these diseases.With regard to htt, several antibodies (MW1, MW2, MW3, MW4, MW5, IC2, and IF8), which are specific for polyQ repeats, stain Western blots of htt with expanded polyQ repeats much more strongly than htt with normal polyQ length (39, 40), suggesting that these antibodies may recognize abnormal polyQ conformations. Furthermore, these polyQ-specific antibodies have distinct staining patterns in immunohistochemical studies of brain tissue sections (39). In one study, the affinity and stoichiometry of MW1 binding to htt increased with polyQ length, suggesting a “linear lattice” model for polyQ (41). This model is supported by a crystal structure of polyQ bound to MW1, which showed that polyQ can adopt an extended, coil-like structure (42). However, an independent structural study showed that the anti-polyQ antibody 3B5H10 binds to a compact β-sheet-like structure of polyQ in a monomeric htt fragment.6 These results clearly indicate that polyQ domains can fold into at least two unique, stable, monomeric conformations and suggest that the “linear lattice” model is not generally applicable to all polyQ structures.Not only are antibodies useful for understanding what polyQ structures exist in situ, especially in the diffuse htt fraction of neurons, but antibodies and/or intrabodies may also have potential as therapeutic agents. For example, several studies showed that intrabodies reduce htt toxicity in cellular models (4449). Moreover, one intrabody (C4) slows htt aggregation and prolongs lifespan in a Drosophila model of HD (50, 51), while another (mEM48) ameliorates neurological symptoms in a mouse model of HD (48).Three of the antibodies examined in this study (MW1, MW2, and MW7) modulate htt-induced cell death when co-transfected as single-chain variable region fragment antibodies (scFvs) in 293 cells with htt exon 1 containing an expanded polyQ domain (46). In these studies MW1 and MW2, which bind to the polyQ repeat in htt, increased htt-induced toxicity and aggregation (46). Conversely, MW7, which binds to the polyproline (polyP) regions adjacent to the polyQ repeat in htt, decreased its aggregation and toxicity (46). Interestingly, MW7 has also been shown to increase the turnover of mutant htt in cultured cells and reduce its toxicity in corticostriatal brain slice explants (49).Given the difficulty in understanding which specie(s) of htt exist and mediate pathogenesis in the putative toxic diffuse fraction of neurons, we sought to rigorously characterize the conformational specificity of a panel of anti-htt antibodies, the best in situ probes currently available for distinguishing specie(s) of htt. We reasoned that if htt can adopt multiple conformations that mediate different aggregation pathways, then anti-htt antibodies should differentially alter htt aggregation pathways by stabilizing or sequestering the specific conformers or aggregates they recognize. We therefore examined the effects of various antibodies on mutant htt fragment fibril formation and stability by atomic force microscopy (AFM). Our results are consistent with the hypothesis that monoclonal antibodies recognize distinct conformational epitopes formed by polyQ in a mutant htt fragment.  相似文献   

9.
The intricate complexity at the molecular and cellular levels of the processes leading to the development of amyloid proteinopathies is somehow counterbalanced by their common, universal structural basis. The later has fueled the quest for suitable model systems to study protein amyloidosis under quasi-physiological conditions in vitro and in simpler organisms in vivo. Yeast prions have provided several of such model systems, yielding invaluable insights on amyloid structure, dynamics and transmission. However, yeast prions, unlike mammalian PrP, do not elicit any proteinopathy. We have recently reported that engineering RepA-WH1, a bacterial DNA-toggled protein conformational switch (dWH1→mWH1) sharing some analogies with nucleic acid-promoted PrPC→PrPSc replication, enables control on protein amyloidogenesis in vitro. Furthermore, RepA-WH1 gives way to a non-infectious, vertically-transmissible (from mother to daughter cells) amyloid proteinopathy in Escherichia coli. RepA-WH1 amyloid aggregates efficiently promote aging in bacteria, which exhibit a drastic lengthening in generation time, a limited number of division cycles and reduced fitness. The RepA-WH1 prionoid opens a direct means to untangle the general pathway(s) for protein amyloidosis in a host with reduced genome and proteome.Key words: RepA-WH1, bacterial prionoid, synthetic prionoid, amyloid proteinopathy, aging in bacteriaThe development of suitable model systems for the study of the complex neurodegenerative and systemic human diseases caused by the aggregation of proteins into amyloid cross-β assemblies has been successfully attempted in different ways.1 From the point of view of the macromolecules involved, besides those proteins directly involved in amyloid diseases (Alzheimer''s β-amyloid and Tau, Creutzfeldt-Jakob''s PrP, Parkinson''s α-synuclein, Huntington''s huntingtin or β2-microglobulin in dialysis-related amyloidosis), an ever increasing number of disease-unrelated proteins can be forced to unfold, and subsequently assemble, as amyloids under extreme, non-physiological physicochemical conditions. Both kinds of model proteins have been crucial to establish our current understanding of the common molecular basis for protein amyloidogenesis.1 At the organisms side, although animal models, most notably mice, have returned invaluable information on protein amyloidosis, the complexity of the intricate regulatory and biochemical networks inherent to metazoans and their cultured cells, has hampered the outlining of a clear scenario on the mechanism(s) leading to cytotoxicity. Cytotoxicity can arise either from properties common to most amyloidogenic proteins, such as targeting of cell membranes by amyloid oligomers or co-aggregation of essential cell factors, or through pathways particular to each protein and its associated disease.2 The key to such a riddle relies on comprehensive systems biology analyses, but also on resorting to experimental models with their number of potential variables (proteins and their interactions) drastically reduced, but yet showing the same (cytotoxic) response.Since the discovery of the Ure2p/[URE3+] and Sup35p/[PSI+] prions in yeast, these (relatively) simple eukaryotic microorganisms have been instrumental in addressing the molecular basis for amyloid conformational templating, structural polymorphism and cell-to-cell transmissibility.35 However, two limitations to the applicability of yeast prions as universal models for amyloidosis are noteworthy: (1) the amyloidogenic sequence stretches in yeast prions are consistently Gln/Asn-rich, unlike most proteins involved in amyloid proteinopathies (which bear hydrophobic stretches) with the exception of the proteins involved in Huntington disease and in related ataxias; (2) even more importantly, while yeast prions are the epigenetic determinants of distinct, mildly advantageous phenotypes that improve adaptability to environmental challenges,6,7 they are not the causative agents of a proteinopathy in yeast albeit, when overexpressed, Sup35p/[PSI+] becomes detrimental for cell growth. Although this prion has recently been successfully propagated in Escherichia coli,8 it still does not behave as a proper pathogenic agent in this microorganism. Natural amyloids have also been described and characterized in bacteria such as E. coli (curli/CsgA)9 and Pseudomonas (FapC),10 but, invariantly, they are extracellularly secreted and functional in scaffolding cellular consortia such as biofilms. A case apart is posed by inclusion bodies, intracellular protein aggregates accumulated in bacterial cytoplasm upon heterologous expression of recombinant proteins, which exhibit some amyloid features11 but with a discrete detrimental effect on cell fitness.12,13  相似文献   

10.
11.
Protein misfolding is associated with many human diseases, including neurodegenerative diseases, such as Alzheimer disease, Parkinson disease and Huntington disease. Protein misfolding often results in the formation of intracellular or extracellular inclusions or aggregates. Even though deciphering the role of these aggregates has been the object of intense research activity, their role in protein misfolding diseases is unclear. Here, I discuss the implications of studies on polyglutamine aggregation and toxicity in yeast and other model organisms. These studies provide an excellent experimental and conceptual paradigm that contributes to understanding the differences between toxic and protective trajectories of protein misfolding. Future studies like the ones discussed here have the potential to transform basic concepts of protein misfolding in human diseases and may thus help to identify new therapeutic strategies for their treatment.Key words: polyglutamine proteins, neurodegeneration, aggresome, Huntington disease, yeast models  相似文献   

12.
The accumulation of mutant protein in intracellular aggregates is a common feature of neurodegenerative disease. In Huntington disease, mutant huntingtin leads to inclusion body (IB) formation and neuronal toxicity. Impairment of the ubiquitin-proteasome system (UPS) has been implicated in IB formation and Huntington disease pathogenesis. However, IBs form asynchronously in only a subset of cells with mutant huntingtin, and the relationship between IB formation and UPS function has been difficult to elucidate. Here, we applied single-cell longitudinal acquisition and analysis to monitor mutant huntingtin IB formation, UPS function, and neuronal toxicity. We found that proteasome inhibition is toxic to striatal neurons in a dose-dependent fashion. Before IB formation, the UPS is more impaired in neurons that go on to form IBs than in those that do not. After forming IBs, impairment is lower in neurons with IBs than in those without. These findings suggest IBs are a protective cellular response to mutant protein mediated in part by improving intracellular protein degradation.Huntington disease (HD)4 is a progressive incurable neurodegenerative disorder caused by the expansion of a polyglutamine (polyQ) stretch in the N-terminal end of the huntingtin (htt) protein above a threshold length of ∼36 (1). The deposition of polyQ-expanded aggregated mutant htt in inclusion bodies (IBs) is a hallmark of HD, and IBs are found in human post-mortem samples, transgenic mouse brain, and cell-culture models (2). The accumulation of ubiquitinated proteins in IBs has implicated the ubiquitin-proteasome system (UPS) in the pathogenesis of HD, amyotrophic lateral sclerosis, Parkinson disease, and polyQ-mediated disorders (3).The UPS is a major pathway of intracellular protein degradation. After a series of three reactions, each catalyzed by a different set of enzymes, ubiquitin, a 76-amino acid polypeptide, forms an isopeptide bond with the amino group of lysine residues on substrate proteins. Several lysine residues within ubiquitin are sites for more ubiquitin additions. Once a protein accumulates four or more ubiquitins, it is efficiently targeted to the proteasome for degradation. The proteasome binds polyubiquitinated substrates and hydrolyzes ubiquitin isopeptide bonds, releasing ubiquitin moieties before degrading substrate proteins through chymotrypsin-like, trypsin-like, and post-glutamyl peptidase activities (3).Increased polyubiquitin levels and changes in ubiquitin linkages accompany the accumulation of UPS substrates in the brains of HD patients and transgenic mice and in cellular HD models (4). UPS substrates accumulate throughout the cell in polyQ models, even before IB formation (5, 6). This has added to the confusion over whether polyQ expansion leads to toxicity through direct impairment of proteasomal degradation. Proteasomes have been reported to cleave polyQ stretches efficiently (7), inefficiently (8), or essentially not at all (9). In vivo, polyQ-dependent degeneration occurs with no detectable proteasome inhibition (10, 11) or is tightly linked to it (12, 13). The inability of some studies to detect UPS impairment in HD models may be due to the limited sensitivity of conventional approaches to identify cell-to-cell variations in UPS function.The relationship between IB formation and UPS function has been difficult to determine. Protein turnover in cells with IBs is evidently reduced and accompanied by the accumulation of cellular proteins (1416); HEK293 cells containing mutant htt IBs have a greater degree of UPS impairment than those without IBs (5). Proteasome subunits and heat shock proteins colocalize with IBs, but it is unclear if this colocalization facilitates protein delivery or unfolding at the mouth of active proteasomes, or if it harms proteasome function by sequestering essential cellular machinery (18). Some IBs are relatively static (8, 25), but the proteins in others are dynamically exchanged with cytoplasmic and nuclear pools (19, 20).UPS function is critical to cellular homeostasis. Deletion of one of the two inducible polyubiquitin genes in mice leads to lower intracellular ubiquitin levels in germ cells and hypothalamic neurons. These same populations undergo cell-cycle arrest and hypothalamic neurodegeneration, respectively (22, 23). Cell lines expressing mutant huntingtin accumulate ubiquitinated proteins and undergo cell-cycle arrest in G2/M (5). In neurons, UPS impairment may lead to cell death through an accumulation of signals for apoptosis, a decrease in NF-κB signaling, sensitization to other toxic stimuli, remodeling of synapses, retraction of neurites, or other unidentified mechanisms (24). The effect of UPS impairment depends on cell type and cell cycle, and the relationship between UPS impairment and striatal neuronal survival is largely unknown.Diffuse species of mutant htt induce IB formation and neuronal death in a protein concentration-dependent manner (2). IB formation delays neuronal death, suggesting that IB formation helps neurons cope with toxic diffuse mutant htt. Whether the effect of IB formation on survival is mediated through UPS function has been difficult to determine. IB formation and neuronal death occur asynchronously in overlapping but distinct subsets of neurons that express mutant htt. The observation that IB formation is not required for UPS impairment also complicates population analysis (6, 26).To explore this problem, we applied single-cell analysis. We tracked single neurons over their entire lifetimes, gaining spatial and temporal resolution while simultaneously monitoring IB formation, UPS inhibition, and neuronal toxicity.  相似文献   

13.
Aggregation of proteins damaged by stress is often a causal factor of cell death. To prevent aggregation, eukaryotic cells rapidly degrade damaged proteins by engaging two types of proteasomes. The first type is the 26S proteasome (26SP) which is composed of a cylindrical proteolytic core—the 20S proteasome (20SP)—and one or two regulatory particles (RPs) that interact with ubiquitinated proteins. The second type is the free 20SP which mediates ubiquitin-independent proteolysis. We have recently shown that loss of RP function in Arabidopsis leads to an expected decrease in 26SP-dependent protein degradation and hypersensitivity to stresses that induce protein misfolding. Surprisingly, RP mutants have increased 20SP activity and tolerance to oxidative stress. This finding suggests that misfolded proteins carry one type of degradation signal that steers them to ubiquitination enzymes and the 26SP, while oxidatively damaged proteins carry another that guides them directly to the 20SP for degradation. Here we suggest that protein oxidation induces the formation of unstructured regions that serve as targeting signals for 20SP-dependent proteolysis.Key words: 20S proteasome, misfolded proteins, oxidized proteins, ubiquitin-independent proteolysis, unstructured regionsProteasomes are an essential component of the quality-control system that limits the accumulation of non-functional proteins in the cell.14 A protein can be rendered non-functional by mutations, translational and folding errors, and adverse conditions such as heat shock and oxidative stress. These proteins decrease the efficiency of metabolic pathways not only because of their loss of function, but also because of the deleterious gain-of-function effects generally known as proteotoxicity.14 Until recently, it was widely accepted that the detection and degradation of all non-functional proteins is initiated by their loss of native tertiary structure followed by misfolding. Misfolding is believed to expose hydrophobic regions that form interaction domains for chaperones, which are in turn bound to ubiquitin ligases that label the target for 26SP-dependent proteolysis.59 Thus, the degradation of proteins that have lost their native conformation was considered to be an ubiquitin (Ub)- and 26SP-dependent process (Fig. 1).Open in a separate windowFigure 1Model for the degradation of damaged proteins. (A) Stresses such as heat shock or the incorporation of amino acid analogues induce protein misfolding. If for example, a globular protein is misfolded, its hydrophobic core will be exposed to the cytoplasm. These hydrophobic regions can bind chaperones that either repair the misfolded protein or shuttle it to the ubiquitination enzymes and the 26SP. (B) Protein oxidation leads to a partial loss of secondary structure without disrupting the overall folding pattern of the protein, resulting in flexible, unstructured regions. These regions serve as degradation signals for the Ub-independent 20SP pathway.However, a number of studies have shown that the degradation of proteins damaged by oxidative stress follows another route: oxidized proteins are degraded by the 20SP in a Ub-independent manner.57,10 We have recently shown that this proteolysis pathway is important for oxidative stress tolerance in plants. Loss of function of the Arabidopsis RP subunits RPT2a, RPN10 and RPN12a reduces 26SP function and leads to an expected decrease in Ub-dependent proteolysis.1114 Unexpectedly, all three RP mutants have increased 20SP activity, which is probably caused by the stabilization of an activator of proteasome biogenesis that is normally degraded by the 26SP.11 This shift in proteasome activity leads to increased oxidized protein turnover and oxidative stress tolerance, but also to decreased tolerance to stresses that are known to cause protein misfolding.11 Thus, the 26SP in Arabidopsis is needed for the removal of misfolded proteins, and the 20SP is essential for the degradation of oxidized proteins.This differential degradation of damaged proteins implies that plant cells have distinct recognition mechanisms for misfolded and oxidized proteins, and that oxidation leads to the formation of a specific degradation signal that channels the oxidized proteins directly to the 20SP. Nevertheless, it has been suggested that the proteolysis of oxidized proteins also depends on misfolding and exposure of hydrophobic regions that serve as recognition sites for either the 20SP itself or for specific chaperonins that bind the 20SP.57,10,15 If the recognition of proteasomal targets is specific, then—according to the current theory—heat shock and oxidative stress would expose specific types of hydrophobic degradation signals in any cellular protein. These qualitatively different hydrophobic regions would lead either to ubiquitination and 26SP-dependent degradation or to a direct interaction with the 20SP. While we cannot exclude this, it is hard to envision how a random process such as misfolding would produce discernable degradation signals dependent on whether the denaturation was caused by heat shock or by oxidation. An alternative explanation is that the recognition of oxidized proteins does not depend on misfolding.How would oxidized proteins then be targeted to the 20SP? Today we know of some functional proteins that are degraded by the 20SP in a Ub-independent manner, and all these characterized 20SP targets have regions that lack secondary structure.10,16 The native unstructured regions or intrinsically disordered regions give conformational plasticity to a protein and allow it to form a complex with different partners.17,18 The unstructured regions are also thought to serve as initiation sites for proteolysis.19 These findings are a starting point for the “degradation by default” theory which states that many proteins in their native conformation contain unstructured regions that make them inherently unstable and target them to the Ub-independent 20SP pathway.10 Such proteins tend to be stabilized by forming complexes in which the unstructured regions are masked by other polypeptides. Since oxidized proteins are processed by the 20SP, their common degradation signal could also be an intrinsically disordered region (Fig. 1). Thus, protein oxidation—at least mild protein oxidation6—would lead to the formation of flexible peptide stretches (i.e., unstructured regions) rather than to protein misfolding (i.e., unfolding and non-native refolding that exposes otherwise sequestered hydrophobic residues). This hypothesis is supported by a study of the 20SP-dependent degradation of oxidized calmodulin (CaM).20 Oxidation of CaM leads to a significant increase in its 20SP-dependent and Ub-independent degradation. In vitro studies revealed a positive correlation between decreased secondary structure (i.e., increased flexibility) and proteolysis rate, and no correlation between changes in surface hydrophobicity and CaM stability.20There is another paradox concerning 20SP-dependent proteolysis of oxidized proteins. The 20SP is a barrel-shaped particle composed of two α and two β rings in an α7β7b7β7 configuration.21 Proteolytic activity is confined to the β rings and is broad range, so that it degrades any target into oligopeptides of 3–25 amino acids in length. To be degraded, targets must not only be recognized by the 20SP, but must also enter into the proteolytic chamber through a constriction in the α rings known as the α-annulus. In 26SP-dependent proteolysis, this entry point is opened by the action of a ring of AAA ATPases from the RP.21 However, this entrance gate of the free 20SP is closed and restricts random proteolysis. How then do oxidized proteins enter the proteolytic chamber? It has been shown that some natively unstructured proteins can open the gates possibly by acting as chaotropes and by causing subunit residues to become disordered.22 This then could also be the entry mechanism for oxidized proteins.In conclusion, analyses of Arabidopsis proteasome mutants with decreased Ub-dependent proteolysis reveals that the 20SP-dependent “degradation by the default” pathway is operational in plants and is important for oxidative stress tolerance. However, it remains to be shown whether indeed the unstructured regions, either innate or formed by the action of free radicals, guide proteins to the 20SP and specifically cause the opening of the α-annulus. The identities of native 20SP targets in plants also await further studies.  相似文献   

14.
Several neurodegenerative diseases, including Huntington disease (HD), are associated with aberrant folding and aggregation of polyglutamine (polyQ) expansion proteins. Here we established the zebrafish, Danio rerio, as a vertebrate HD model permitting the screening for chemical suppressors of polyQ aggregation and toxicity. Upon expression in zebrafish embryos, polyQ-expanded fragments of huntingtin (htt) accumulated in large SDS-insoluble inclusions, reproducing a key feature of HD pathology. Real time monitoring of inclusion formation in the living zebrafish indicated that inclusions grow by rapid incorporation of soluble htt species. Expression of mutant htt increased the frequency of embryos with abnormal morphology and the occurrence of apoptosis. Strikingly, apoptotic cells were largely devoid of visible aggregates, suggesting that soluble oligomeric precursors may instead be responsible for toxicity. As in nonvertebrate polyQ disease models, the molecular chaperones, Hsp40 and Hsp70, suppressed both polyQ aggregation and toxicity. Using the newly established zebrafish model, two compounds of the N'-benzylidene-benzohydrazide class directed against mammalian prion proved to be potent inhibitors of polyQ aggregation, consistent with a common structural mechanism of aggregation for prion and polyQ disease proteins.  相似文献   

15.
Olfactory floral signals are significant factors in plant-pollinator mutualisms. Recently, unusual fermentation odors have been described in the nectar and flowers of some species. Since yeasts are common inhabitants of many angiosperms nectars, this raises the possibility that nectar yeasts may act as causal agents of fermentation odors in flowers and, therefore, as possible intermediate agents in plant signaling to pollinators. A recent field study has reported that nectar yeasts were quite frequent in floral nectar across three different regions in Europe and America, where they reached high densities (up to 105 cells/mm3). Yeast incidence in floral nectar differed widely across plant host species in all sampling sites. A detailed study currently in progress on one of the species surveyed in that study (Helleborus foetidus, Ranunculaceae) has detected that, in addition to interespecific differences in yeast incidence, there is also a strong component of variance in yeast abundance that takes place at the subindividual level (among flowers of the same plant, among nectaries of the same flower). If yeast metabolism is eventually proved to contribute significantly to floral scent, then multilevel patchiness in the distribution of nectar yeasts (among species, among individuals within species, and among flowers and nectaries of the same individual) might contribute to concomitant multilevel variation in plant signaling and, eventually, also in pollination success, pollen flow and plant fitness.Key words: nectar, yeast, scent, plant-animal interaction, plant signalingPollinators forage on a wide range of flowers that differ in morphology, color, scent and quality and quantity of reward. The majority of these floral features are important visual and olfactory cues that are directly related to plant-pollinators signaling and the pollination process.112 Recently, the intriguing possibility has been raised that microbial communities (especially nectarivorous yeasts) inhabiting flowers could explain better than, or in addition to, plant physiology itself, certain floral features that participate in plant-pollinators signaling, like yeasty nectar or floral scent.13,14 However, some of these suggestions are based on circumstantial or indirect evidence indicative of the presence of microbes in flowers. For example, fermentation odors have been described in a number of Angiosperms,1416 in which different compounds found in nectar were not shared with any other floral parts.13 In addition, yeasty odors (ketones and shortchain alcohols) have only been observed in mature flowers that were already visited by pollinators and thus potentially contaminated with microbes, in contrast, for example, to the sesquiterpenes isolated in immature flowers that are also common in the foliage of many plants.14 Yeasty odors were found in species whose flowers are long-lived, produce large amounts of nectar, and are visited by flies and beetles, which are known to act as yeast vectors to flowers.1719 In spite of these plausible suggestions, studies indicating a potential role of microbes in the origin of floral scents generally have not looked directly for their presence or abundance in floral nectar, which clearly would provide critical empirical evidence in support of the hypothesis of microbial-mediated signaling in plant-pollinator interactions.That yeasts are common inhabitants of floral nectars was well known to microbiologists more than a century ago20,21 and has been recently corroborated by Herrera et al.22 This study was conducted at three widely separated areas, which differed greatly in ecological features and biogeographical affinities: two study sites were located in the Southern Iberian Peninsula, about 350 km apart, and one in Yucatán Peninsula, eastern Mexico. Floral nectar samples from 40, 63 and 37 species, belonging to 21, 23 and 21 families, were examined microscopically for yeast cells at these three areas. Yeasts occurred very frequently in floral nectar at all areas, as revealed by the high proportion of nectar samples that contained them (31.8%, 42.3% and 54.4%; samples from all species at each site combined). In addition to being quite frequent in nectar samples, yeast cells often reached extraordinarily high densities in floral nectar at the three areas, which reached roughly 4 × 105 cells/mm3. When plant species, rather than individual nectar samples, were considered as the units for analyses, Herrera et al.22 found wide variation among species in both the frequency of occurrence and the density of yeasts in nectar samples. A significant fraction of such variation was found to be correlated with differences in pollinator composition, a link between pollination ecology and floral nectar microbiology that has remained unexplored until now. Similar results showing high densities and frequency of occurrence of yeasts in nectar, and interespecific differences in these magnitudes related to variation in pollinator composition, have been also reported by de Vega et al.23 for 40 South African plant species, which further supports the generality of the phenomenon. In addition to interespecific differences in the prevalence of nectar yeasts, the data examined by Herrera et al.22 and de Vega et al.23 revealed also considerable intraespecific variability (i.e., among individuals plants of the same species), although this aspect of results was not explicitly considered in their studies.A study currently in progress has documented patterns of intraespecific variability in yeast occurrence in the nectaries of Helleborus foetidus (Ranunculaceae), a winter-flowering, bumble bee-pollinated perennial herb whose long-lived flowers last for roughly two weeks. Frequency of occurrence and cell density of yeasts in nectar were studied at six populations of this species from Sierra de Cazorla (SE Spain). Helleborus foetidus flowers have five separated horn-shaped nectaries hidden at the corolla base, each of which produces up to 5 µl of nectar. This enabled us to study patterns of yeast occurrence also at the within-flower level. At each population, total variance in yeast cell density on a per-nectary basis was partitioned into components due to differences between individual plants, flowers within plants and nectaries within flowers. We found extreme differences concerning the abundance and frequency of yeasts in H. foetidus nectar, the magnitude of intraespecific variation being similar or even greater than variation found in interespecific comparisons in the same study area (Pozo MI, et al. unpublished results). Our data suggest that temporal and spatial factors may explain differences regarding yeast abundance in H. foetidus nectar, and possibly other species as well. The largest component of intraespecific variance in yeast abundance occurred at the subindividual level, and was mainly accounted for by the variance between nectaries in the same flower (Fig. 1). This intraespecific variation in nectarivorous yeast incidence can have some important implications related to plant-pollinators interactions and, more specifically, to plant signaling, as outlined below.Open in a separate windowFigure 1Hierarchical dissection of variance in yeast abundance in single-nectary nectar samples of Helleborus foetidus. (A) Temporal patterns. Collection dates and plant, flower within plant and nectary within flower as hierarchical levels of variance analyzed. (B) Spatial patterns. Population, plant within populations and flower within plants as hierarchical levels of variance analyzed.Nectar-inhabiting yeasts modify certain flower characteristics linked to pollinator foraging behavior, such as nectar sugar composition and energetic value, by reducing total sugar concentration and altering the relative proportions of constituent sugars (sucrose, glucose and fructose) and the sucrose:hexose ratio.2326 Furthermore, as noted above, yeasts could be also implicated in floral volatiles emission.13,14 Consequently, yeast incidence (measured both by frequency and abundance of yeast cells in nectar samples) may have been modifying signaling cues which have been postulated to be intrinsic plant species-specific. Although an empirical connection between yeast presence and fermentation nectar odor is needed, the fact that nectarivorous yeast presence would be as variable as described by our studies could imply the same variability for plant species signaling aspects, along with potential consequences for pollinators, since variance was mainly accounted for by variation below individual plant level. For example, in H. foetidus study variance in yeast abundance occurs mainly at the single nectary, which matches with the smallest scale that is perceived by a foraging insect. The fact that nectar is an important floral reward that plays a decisive role in the establishment of plant-pollinator mutualisms, together with the recently confirmed ubiquity of nectarivorous yeasts which could be acting as parasites of such mutualisms, open up new and exciting avenues to explore their effect on pollination success and pollen flow2730 and finally on plant fitness.3135  相似文献   

16.
Boron toxicity is an important disorder that can limit plant growth on soils of arid and semi arid environments throughout the world. Although there are several reports about the combined effect of salinity and boron toxicity on plant growth and yield, there is no consensus about the experimental results. A general antagonistic relationship between boron excess and salinity has been observed, however the mechanisms for this interaction is not clear and several options can be discussed. In addition, there is no information, concerning the interaction between boron toxicity and salinity with respect to water transport and aquaporins function in the plants. We recently documented in the highly boron- and salt-tolerant the ecotype of Zea mays L. amylacea from Lluta valley in Northern Chile that under salt stress, the activity of specific membrane components can be influenced directly by boron, regulating the water uptake and water transport through the functions of certain aquaporin isoforms.Key words: aquaporins, boron, salinity, water relations, Zea maysHigh concentrations of boron are often associated to saline soils in semi arid and/or arid climates and frequently crops are exposed to both stresses simultaneously.1 As there is no a unique plant response to combination of salinity and boron toxicity, several mechanisms has been proposed to explain the experimental results. Some reports showed no additive effects of boron and salinity on shoot weight of different cultivars suggesting independent of the interaction.25 However, additive effects69 have been also proposed and the interaction of boron and salinity declined the rate of germination and limited growth in maize and sorghum plants.10 No explanation is currently available for these contradictory observations. Recently, the Abbot method has been applied to characterize the combined effect of boron and salinity at toxic levels in pepper plants, observing mainly an antagonistic relationship regarding growth and yield.11 Antagonism between salinity and boron may be the result of decreased toxicity of boron in the presence of NaCl, reduced toxicity of NaCl in the presence of boron, or both together. Letey et al.,12 have reported that increased soil salinity may also reduce boron movement to the broccoli plants and hence result in a reduction of boron toxicity symptoms. Reduction of boron accumulation in leaves in the presence of salinity has been also reported for melon,5 tomato8 jack pine13 and grapesvines14 and could be the result of the reduced rates of transpiration in plants where boron is transported via xylem as consequence of the osmotic effect of the salt. On the other hand, it has been observed that concentration of Na+ in leaves decreased with increasing addition of boron to the soil, probably due to the inhibition in root growth and reduction in root density caused by the boron treatment.15 Grieve and Poss7 found in wheat plants that the Cl content in the leaves was reduced when boron was increased. Similar results were reported in pepper plants suggesting that boron could reduce Cl toxicity.11 Also, in our recent report although a nutrient imbalance resulted from the effect of salinity or boron alone, a general optimisation was observed when both treatments were applied together.16Under saline conditions, an optimal water balance is important in order to maintain the plant homeostasis and aquaporins may be one of the mechanisms involved under environmental and developmental changes.1719 However, there is no information concerning plant water uptake and transport in response to combined excess boron and salinity.It has been reported that, at high external B concentrations, considerable B transport occurs through the plasma membrane aquaporins, and a specific membrane intrinsic protein (MIP) has been described.20 Thus boron uptake across the plasma membrane, by permeation through the lipid membrane and aquaporins, may be greatly influenced by the plant tolerance to salinity, through the associated changes in root hydraulic conductivity. Wimmer et al.,21 showed that salinity could interact with boron toxicity by a combined effect on boron and water uptake. In addition, we reported that the reduction of aquaporin functionality in NaCl-exposed plants could induce the reduction of plant boron concentration, producing a beneficial effect.22Recently, we showed in a tolerant ecotype of maize a different pattern for PIP1 and PIP2 protein content under the application of excess of boron in combination with salinity, suggesting a differential aquaporin response in this cultivar and pointed out the complexity of the interaction.16 These results were in consonance with the previous observation that different aquaporin isoforms may represent a response to environmental changes.18,19,23 Thus, we concluded that the activity of specific membrane components can be influenced by boron under salt stress regulating the functions of certain aquaporin isoforms as possible components of the salinity tolerance mechanism. However, although a fine water transport control through the aquaporins could be necessary in order to reduce the accumulation of toxic boron levels in the tissues, the contribution of each isoform to water transport through the plasma membrane under boron-salinity combination must be elucidated.  相似文献   

17.
Protein misfolding and overloaded proteostasis networks underlie a range of neurodegenerative diseases. No cures exist for these diseases, but developing effective therapeutic agents targeting the toxic, misfolded protein species in disease is one promising strategy. AAA+ (ATPases associated with diverse cellular activities) protein translocases, which naturally unfold and translocate substrate proteins, could be potent therapeutic agents to disassemble toxic protein conformers in neurodegenerative disease. Here, we discuss repurposing AAA+ protein translocases Hsp104 and proteasome-activating nucleotidase (PAN) to alleviate the toxicity from protein misfolding in neurodegenerative disease. Hsp104 effectively protects various animal models from neurodegeneration underpinned by protein misfolding, and enhanced Hsp104 variants strongly counter neurodegenerative disease-associated protein misfolding toxicity in yeast, Caenorhabditis elegans, and mammalian cells. Similarly, a recently engineered PAN variant (PANet) mitigates photoreceptor degeneration instigated by protein misfolding in a mouse model of retinopathy. Further study and engineering of AAA+ translocases like Hsp104 and PAN will reveal promising agents to combat protein misfolding toxicity in neurodegenerative disease.  相似文献   

18.
Huntington's disease (HD) is a fatal neurodegenerative disorder caused by expansion of a polyglutamine tract in the huntingtin protein (htt) that mediates formation of intracellular protein aggregates. In the brains of HD patients and HD transgenic mice, accumulation of protein aggregates has been causally linked to lesions in axo-dendritic and synaptic compartments. Here we show that dendritic spines - sites of synaptogenesis - are lost in the proximity of htt aggregates because of functional defects in local endosomal recycling mediated by the Rab11 protein. Impaired exit from recycling endosomes (RE) and association of endocytosed protein with intracellular structures containing htt aggregates was demonstrated in cultured hippocampal neurons cells expressing a mutant htt fragment. Dendrites in hippocampal neurons became dystrophic around enlarged amphisome-like structures positive for Rab11, LC3 and mutant htt aggregates. Furthermore, Rab11 overexpression rescues neurodegeneration and dramatically extends lifespan in a Drosophila model of HD. Our findings are consistent with the model that mutant htt aggregation increases local autophagic activity, thereby sequestering Rab11 and diverting spine-forming cargo from RE into enlarged amphisomes. This mechanism may contribute to the toxicity caused by protein misfolding found in a number of neurodegenerative diseases.  相似文献   

19.

BACKGROUND

Huntington’s Disease (HD) is an autosomal dominant neurodegenerative disease causing severe neurodegeneration of the striatum as well as marked cognitive and motor disabilities. Excitotoxicity, caused by overstimulation of NMDA receptors (NMDARs) has been shown to have a key role in the neuropathogenesis of HD, suggesting that targeting NMDAR-dependent signaling may be an effective clinical approach for HD. However, broad NMDAR antagonists are generally poor therapeutics in clinical practice. It has been suggested that GluN2A-containing, synaptically located NMDARs activate cell survival signaling pathways, while GluN2B-containing, primarily extrasynaptic NMDARs trigger cell death signaling. A better approach to development of effective therapeutics for HD may be to target, specifically, the cell-death specific pathways associated with extrasynaptic GluN2B NMDAR activation, while maintaining or potentiating the cellsurvival activity of GluN2A-NMDARs.

OBJECTIVE

This review outlines the role of NMDAR-mediated excitotoxicity in HD and overviews current efforts to develop better therapeutics for HD where NMDAR excitotoxicity is the target.

METHODS

A systematic review process was conducted using the PubMed search engine focusing on research conducted in the past 5-10 years. 235 articles were consulted for the review, with key search terms including “Huntington’s Disease,” “excitotoxicity,” “NMDAR” and “therapeutics.”

RESULTS

A wide range of NMDAR excitotoxicity-based targets for HD were identified and reviewed, including targeting NMDARs directly by blocking GluN2B, extrasynaptic NMDARs and/or potentiating GluN2A, synaptic NMDARs, targeting glutamate release or uptake, or targeting specific downstream cell-death signaling of NMDARs.

CONCLUSION

The current review identifies NMDAR-mediated excitotoxicity as a key player in HD pathogenesis and points to various excitotoxicity-focused targets as potential future preventative therapeutics for HD.
  相似文献   

20.
Hormones typically serve as long distance signaling molecules. To reach their site of action, hormones need to be transported from the sites of synthesis. Many plant hormones are mobile, thus requiring specific transport systems for the export from their source cells as well as subsequent import into target cells. Hormone transport in general is still poorly understood. Auxin is probably the most intensively studied plant hormone concerning transport in the moment. To advance our understanding of hormone transport we need two principal data sets: information on the properties of the transport systems including substrate specificity and kinetics, and we need to identify candidate genes for the respective transporters. Physiological transport data can provide an important basis for identifying and characterizing candidate transporters and to define their in vivo role. A recent publication in Plant Physiology highlights how kinetic and specificity studies may help to identify cytokinin transporters.1Key words: kinetin, zeatin, adenine, phytohormone, transportBy definition, hormones are compounds that interact at low concentrations with cellular receptors to modulate signal transduction pathways. A comparison of the chemical structures of animal and plant hormones suggests potential common origins. Peptide hormones are found in both kingdoms and share common processing mechanisms (e.g., TRH, vasopressin and kinins in animals; systemins, phytosulfokines, self incompatibility peptides in plants).2,3 Steroid hormones derived from cholesterol such as testosterone, cortisol and calcitriol regulate development in mammals; the steroid hormone brassinolide is essential for plant development.4 Glutamate can serve as metabolite and signal in both plants and animals.5,6 Finally, lipid and phospholipid-derived signaling compounds such as linoleic acid and arachidonic acid also function in both plants and animals; with phospholipid-derived prostaglandins and eicosanoids bearing similarities to the plant defense compound jasmonic acid.7Other signaling compounds present in animals have yet to be shown to function in plants, e.g., glycoprotein hormones such as luteinizing hormone, follicle-stimulating hormone or thyroid-stimulating hormone have been not been described to exist in plants.8 Compounds structurally similar to animal amine-derived hormones derived from tyrosine and tryptophan (such as catecholamines and thyroxine) are also present in plants, but appear to function primarily in herbivore defense.9The best characterized, and arguably most important plant hormones, bear little similarity to animal hormones and are mechanistically distinct. These include auxins, cytokinins, gibberellins, abscisic acid, ethylene and an apparent carotenoid-derivative, the MAX-dependent regulator of auxin signaling.10,11 Arguably, the stress response compound salicylic acid, which functions in stress, wounding and defense responses could also be considered a plant hormone.12Hormonal signaling mechanisms can be categorized as autocrine (acting at the site of biosynthesis), paracrine (acting in adjacent or proximal cells), and endocrine (acting in cells distal to the site of production). In both, plants and animals, paracrine and endocrine hormone action is mediated and influenced by multiple long distance delivery systems. Hormones move primarily through the circulatory system in animals, but, in plants, are mobilized by transpiration and source-sink flows, which can be directed by chemisomotically-driven cellular uptake and efflux. However, the mechanisms driving uptake and efflux at the cellular level, as well as the proteins that mediate this movement, are surprisingly similar in plants and animals, despite the dissimilarities of plant and animal cell structure (central vacuoles, cell walls and H+ versus K+/Na2+ in/out gradients).Surprisingly little is known about plant hormone transport. Most hormones have autocrine activity, but in order to act at a distance or to even act on adjacent cells they must be transported across membranes. The existence of cellular export and import mechanisms are suggested by the presence of multiple hormones in the phloem sap13,14 and the well documented polar long distance movement of auxin.15 Brassinosteroid receptors have been demonstrated as integral plasma membrane proteins which receive the hormone signal from outside the cell.16 This suggests a need for the hormone to first move into the apoplasm after biosynthesis. However, until recently, only the cellular auxin transport mechanisms mediated by the AUX/LAX, PIN and AtABCB/PGP proteins has been well characterized (reviewed in ref. 17).The study of these transporters has benefited from the use of plant, yeast and animal expression systems to characterize the proteins involved. Analyses of auxin transport proteins have capitalized on earlier suppression cloning and radiotracer uptake studies used successfully to characterize ion and metabolite transporters in yeast.1821 In cases where yeast systems have proven intractable for analysis of auxin transport proteins, heterologous systems based on mammalian cell systems have proven to be highly effective for radiotracer uptake studies.1823 Xenopus oocyte expression has been successfully utilized to characterize the AUX/LAX family of auxin influx symporters.24,25 Plant cell culture systems have also been used to characterize transport proteins. This can however be problematic when endogenous substrates are metabolized by the cells, as is the case with IAA in tobacco BY-2 and Arabidopsis cell cultures.19 It is also difficult to assess the function of plant proteins in undifferentiated cell cultures, which may differ from the native function in phloem or xylem parenchyma cells.A recent article describes the use of a heterologous expression system based on the fission yeast S. pombe to express and characterize the PIN1 auxin efflux protein after knock-out of the endogenous yeast PIN-like gene AEL1.21 Previously, PIN1 had only been functionally expressed in plant cell systems and was nonfunctional when expressed in baker''s yeast or mammalian cells.19,22 This report suggests that PIN1, interacts synergistically with the AtABCB19/PGP19 auxin efflux transporter, but appears to also mediate auxin efflux on its own, consistent with the distant phylogenetic similarity of the auxin efflux transporter protein family to major facilitator proteins.Subsequent work in the Murphy lab has shown that S. pombe can be used for comparisons of all known auxin transporters in a single system in which all ABC transporters and a solitary AUX1-like gene had been knocked out (Yang and Murphy, unpublished). This system also allows for the more detailed analyses of substrate specificity, transport kinetics and coupling mechanisms (primary and secondary active transport, uniport, cotransport antiport) necessary for functional assignment of auxin transport proteins. This system may also provide an attractive alternative to baker''s yeast when functional expression of a plant protein in Saccharomyces cerevisiae proves unsuccessful.Similar efforts are required for characterizing the transport of all other plant hormones including cytokinin. Arabidopsis transporters mediating both trans-zeatin and adenine uptake had been identified using yeast as an expression system.26 Recently, the Schulz and Frommer labs provided a reference data set for trans-zeatin uptake by characterizing radiolabeled trans-zeatin uptake in Arabidopsis cell cultures.1 The data show that the uptake kinetics of trans-zeatin are multiphasic, indicating the presence of both low- and high-affinity transport systems. The protonophore CCCP is an effective inhibitor of cytokinin uptake, consistent with H+-mediated uptake. Other physiologically active cytokinins such as isopentenyladenine and benzylaminopurine are effective competitors of trans-zeatin uptake, whereas allantoin had no inhibitory effect. Adenine competes for zeatin uptake indicating that degradation products of cytokinin oxidases can be transported by the same systems. Comparison of adenine and trans-zeatin uptake in Arabidopsis seedlings reveals similar uptake kinetics. Kinetic properties as well as substrate specificity determined in cell cultures are compatible with the hypothesis that members of the plant-specific PUP transporter family may play a role in adenine transport to scavenge extracellular adenine. In addition, the findings are also compatible with the hypothesis that this class of transporters may be involved at least in low affinity (µM range) cytokinin uptake. PUPs are encoded by a large gene family of 21 members, so it is conceivable that other members of the family may be involved in high affinity transport. Systematic analyses of single knock outs in Arabidopsis and combinations thereof my help to shed more light on the role of PUPs in cytokinin transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号