首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently constructed a 7000-rad porcine whole-genome radiation hybrid (RH) panel with the primary objective of integrating linkage maps of microsatellites with evolutionary conserved genes into one ordered map. In order to evaluate the resolution of this RH panel, we have now constructed a radiation hybrid map of the Chromosome (Chr) 15q2.3-q2.6 region containing the RN gene. This gene has large effects on glycogen content in muscle and meat quality. Ten microsatellites covering a region of 55 centiMorgans and eight genes (AE3, FN1, IGFBP5, INHA, IRS1, PAX3, TNP1, and VIL1) were placed on the Sscr15 RH map. All the genes, except IRS1, were mapped on the RH map between microsatellites located in 15q2.5. The relative order of AE3 and INHA was inverted on the porcine physical map in comparison with the mouse linkage map. The order of other genes already mapped in the mouse (FN1, IGFBP5, TNP1, VIL1, INHA/AE3, and PAX3) was identical in pigs. We found no clear difference between the gene order on pig Chr 15 and human Chr 2q. Received: 4 November 1998 / Accepted: 8 February 1999  相似文献   

2.
Seven new loci, casein alpha-S1 (CSN1S1), casein alpha-S2 (CSN1S2), casein beta (CSN2), the Hardy-Zuckerman 4 feline sarcoma viral (v-kit) oncogene homolog (KIT), albumin (ALB), phosphodiesterase cyclic GMP (rod receptor) beta polypeptide (PDEB), and complement component 1 (IF), were assigned to sheep Chromosome (Chr) 6 by Southern hybridization to a panel of chromosomally characterized sheep x hamster cell hybrids. By isotopic in situ hybridization, CSN2 was regionally localized to sheep Chr (OOV) 6q22–q31, anchoring this syntenic group of markers on to OOV6 and confirming its homology at a molecular and cytological level with cattle Chr 6. The assignment of these loci, from PDEB (located on human Chr 4p16.3) to IF (on HSA4q24–q25), and the observation that interleukin 2 (IL2, on HSA 4q26–q27) and tryptophan 2,3-dioxygenase (TDO2, on HSA4q31) are not located on OOV6, is further evidence of the close evolutionary relationship of sheep and cattle and the conserved synteny in these species of this extensive region of human Chr 4. On the basis of this conserved synteny, and the similar G- and Q-banding patterns of this chromosome in cattle and sheep, we propose that this sheep chromosome be numbered as 6, not 4 as recommended by ISCNDA (1990).  相似文献   

3.
A porcine 2-kb partial dipeptidylpeptidase IV (DPP4, EC 3.4.14.5) cDNA clone and a porcine 16-kb genomic fragment containing parts of the DPP4 gene were isolated, characterized, and used as probes to map the DPP4 gene to pig Chr (Chr) 15q21 by fluorescence in situ hybridization. A two-allele RFLP was revealed for the DPP4 gene. This polymorphism was utilized in a linkage test against the erythrocyte antigen G (EAG), previously assigned to Chr 15, and the microsatellite S0088, which is linked to EAG. The linkage analyses revealed significant evidence for linkage confirming the assignment of DPP4 to Chr 15.  相似文献   

4.
Four homeobox genes that belong to the four homeobox gene clusters known in mammals have been regionally assigned to four distinct porcine chromosomes in conserved regions between human and pig. HOXA11, HOXB6, HOXC8, and HOXD4 genes were mapped by radioactive in situ hybridization to porcine Chromosomes (Chrs) 18q21-24 (with a secondary signal in 16q14-21), 12p11-12, 5p11-12, and 15q22-23 respectively. Besides, we have also revealed the presence of a porcine homeobox (pig Hbx24) which, although showing DNA sequence homology with a mouse gene of HOXB cluster, was located on porcine Chr 3 (3p14-13) outside the Hox clusters. To support the identity of the homeobox gene clusters analyzed and in the light of the high sequence similarity among homeobox genes, we also localized markers known to be mapped near each Hox cluster in human. In this way, four genes were also mapped in pig: GAPD (5q12-21), GAD1 (15q21-22), INHBA (18q24), and IGFBP3 (18q24). Mapping of HOXA11, INHBA, and IGFBP3 on pig Chr 18 constitutes the first assignments of genes on this small chromosome. These new localizations extend the information on the conservation of four human chromosomal regions in the pig genome. Received: 7 August 1995 / Accepted: 16 October 1995  相似文献   

5.
Five chemokine genes, transforming growth factors alpha, beta 2 and 3 (TGFBA, TGFB-2, and TGFB-3), interleukin 8 (IL-8), and monocyte chemoattractant protein 2 (MCP-2), were mapped to porcine linkage groups on Chromosomes 3q, 10p, 7q, 8, and 12q, respectively. Restriction fragment length polymorphisms (RFLPs) for these genes were developed by Southern blot hybridization after digestion of porcine genomic DNA with BamHI and MspI (TGFBA), BamHI and PvuII (TGFB-2), HindIII (TGFB-3), BglII (IL-8), and PstI (MCP-2) and used to genotype the USDA-MARC Swine Reference Population pigs. Sufficient informative meioses, 61 (TGFBA), 58 (TGFB-2), 28 (TGFB-3), 38 (IL-8), and 156 (MCP-2), were available to pursue two-point pairwise linkage analysis with over 1,000 existing loci in the USDA-MARC genome database to establish initial linkage (LOD > 3). Multi-point analysis with CRIMAP determined the most likely order for each new marker. The assignment of the five chemokine genes in swine concurs with previous porcine/human chromosomal homologies based on results from ZOO-FISH and chromosomal painting experiments. These findings add five new informative Type I markers within a single gene family to the swine genome and may help us understand the genetic basis for disease resistance in livestock. Received: 14 July 1996 / Accepted: 9 November 1996  相似文献   

6.
Sheep x hamster cell hybrids containing sheep metacentric Chromosome (Chr) 2 were produced by fusing blood leukocytes from normal sheep with hamster auxotrophic Ade F-minus mutants. Cell clones that were isocitrate dehydrogenase 1 (IDH1) positive were cytogenetically characterized, confirming that they contained sheep Chr 2. The following loci were newly assigned by Southern hybridization to sheep Chr 2: lipoprotein lipase (LPL), glycoprotein-4-beta galactosyltransferase 2 (GGTB2), neurofilament light polypeptide (68 kDa; NEFL), surfactant-associated protein 2 (SFTP2), lymphocyte-specific protein tyrosine kinase (LCK), and nebulin (NEB). These new assignments and the in situ localization of gelsolin (GSN) to sheep Chr 2pter-p24 are consistent with the predicted homology of cattle Chr 8 (U18) with sheep Chr 2p, and of cattle Chr 2 (U17) with sheep 2q. In addition, the assignment by cell hybrid analysis of loci previously mapped to Chr 2 in sheep, viz., cholinergic receptor, nicotinic, delta polypeptide (CHRND), collagen type III alpha 1 (COL3A1), fibronectin 1 (FN1), isocitrate dehydrogenase (IDH1), and villin 1 (VIL1), confirmed the localization of sheep syntenic group U11 to this chromosome. By nutritional selection and complementation of the hamster auxotrophic Ade F mutation, the multifunctional enzyme locus phosphoribosylaminoimidazolecarboxamide formyltransferase (AICAR transformylase)/IMP cyclohydrolase (inosinicase) (provisionally given the symbol PRACFT) has also been newly assigned to sheep Chr 2. This report significantly extends the number of loci physically mapped to sheep Chr 2 and confirms its close homology with cattle Chrs 2 and 8.  相似文献   

7.
8.
To expand the mink map, we established a new panel consisting of 23 mink-mouse clones. On the basis of statistical criteria (Wijnen et al. 1977; Burgerhout 1978), we developed a computer program for choice of clones of the panel. Assignments of the following mink genes were achieved with the use of the hybrid panel: glyoxalase (GLO), Chromosome (Chr) 1; acetyl acylase (ACY), Chr 5; creatine phosphokinase B (CKBB), Chr 10; alcohol dehydrogenase-2 (subunit B) (ADH2), Chr 8. Using a series of clones carrying rearrangements involving mink Chr 1 and 8, we assigned the gene for ME1 to the short arm of Chr 1 and that for ADH2 to Chr 8, in the region 8p12-p24. Mapping results confirm the ones we previously obtained with a mink-Chinese hamster panel. However, by means of an improved electrophoretic technique, we revised the localization of the gene for purine nucleoside phosphorylase (NP), which has been thought to be on mink Chr 2. It is reassigned to mink Chr 10.  相似文献   

9.
Bovine × rodent somatic hybrid cells have been used to syntenically map three bovine genes homologous to loci on human Chromosome (Chr) 13. These three loci, fms-related tyrosine kinase gene (FLT), esterase D (ESD), and 5-hydroxytryptamine receptor 2 (HTR2; serotonin receptor subtype 2), were assigned to bovine Chr 12 (BTA12) with 91–95% concordance to the coagulation factor 10 (F10) locus. Along with a previously mapped BTA12 gene, retinoblastoma-1 (RB1), this conserved synteny group spans 178 cM on human Chr 13 (HSA13). Previous reports suggested homology between HSA13 and both BTA2 and BTA12. Results reported here extend the boundary of the HSA13-BTA12 comparative map, contradict the previous preliminary assignment of ESD to BTA2, and suggest instead that the q arm of HSA13 may be entirely conserved in BTA12. Received: 15 January 1996 / Accepted: 21 March 1996  相似文献   

10.
The three members of the mammalian fringe gene family, Manic fringe (Mfng), Radical fringe (Rfng), and Lunatic fringe (Lfng), were identified on the basis of their similarity to Drosophila fringe (fng) and their participation in the evolutionarily conserved Notch receptor signaling pathway. Fringe genes encode pioneer secretory proteins with weak similarity to glycosyltransferases. Both expression patterns and functional studies support an important role for Fringe genes in patterning during embryonic development and an association with cellular transformation. We have now further characterized the expression and determined the chromosomal localization and genomic structure of the mouse Mfng, Rfng, and Lfng genes; the genomic structure and conceptual open reading frame of the human RFNG gene; and the refined chromosomal localization of the three human fringe genes. The mouse Fringe genes are expressed in the embryo and in adult tissues. The mouse and human Fringe family members map to three different chromosomes in regions of conserved synteny: Mfng maps to mouse Chr 15, and MFNG maps to human Chr 22q13.1 in the region of two cancer-associated loci; Lfng maps to mouse Chr 5, and LFNG maps to human Chr 7p22; Rfng maps to mouse Chr 11, and RFNG maps to human Chr 17q25 in the minimal region for a familial psoriasis susceptibility locus. Characterization of the genomic loci of the Fringe gene family members reveals a conserved genomic organization of 8 exons. Comparative analysis of mammalian Fringe genomic organization suggests that the first exon is evolutionarily labile and that the Fringe genes have a genomic structure distinct from those of previously characterized glycosyltransferases. Received: 19 February 1999 / Accepted: 22 February 1999  相似文献   

11.
The adenylyl cyclases (AC) act as second messengers in regulatory processes in the central nervous system. They might be involved in the pathophysiology of diseases, but their biological function is unknown, except for AC type I, which has been implicated in learning and memory. We previously mapped the gene encoding AC I to human Chromosome (Chr) 7p12. In this study we report the mapping of the adenylyl cyclase genes type I–VI to mouse chromosomes by fluorescence in situ hybridization (FISH): Adcy1 to Chr 11A2, Adcy2 to 13C1, Adcy3 to 12A-B, Adcy4 to 14D3, Adcy5 to 16B5, and Adcy6 to 15F. We also confirmed previously reported mapping results of the corresponding human loci ADCY2, ADCY3, ADCY5, and ADCY6 to human chromosomes and, in addition, determined the chromosomal location of ADCY4 to human Chr 14q11.2. The mapping data confirm known areas of conservation between mouse and human chromosomes.  相似文献   

12.
Coincidence cloning is a technique that permits the isolation of sequences common to two independent sources of complex DNA, and this method has been used to isolate a set of probes from a region of porcine Chromosome (Chr) 6 containing the loci for glucosephosphate isomerase (GPI) and the skeletal muscle calcium release channel (CRC). Porcine DNA was specifically PCR-amplified from a pigxhamster hybrid cell line containing the centromere region (p1.2–q1.2) of pig Chr 6 and other pig chromosome fragments by use of a porcine SINE specific primer with an EcoRI site in the 5-end. Flow-sorted Chr 6 preparations were amplified with the same SINE primer, but with a SalI site in the 5-end. The products were digested with EcoRI and SalI respectively, combined, denatured, and reannealed. The heteroduplex molecules, containing both an EcoRI and a SalI cohensive end, were selected by cloning in SalI/EcoRI-digested pUC13. Approximately 40% of the primary clones contained a single SalI/EcoRI-insert, indicating that they are coincidence clones. The average insert size was 1.4 kb. Fluorescence in situ hybridization of a pool of 34 coincidence clones to pig chromosomes showed a preferential labeling of the centromere region and of the q2.5–q2.7 region of pig Chr 6. Nineteen coincidence clones were hybridized to SINE-PCR products from flow-sorted pig Chr 6 and to pigxrodent hybrid cell lines. Eighteen clones gave positive signals correlated with the GPI/CRC content of the source DNAs.  相似文献   

13.
The genetic linkage map of sheep Chromosome (Chr) 6 has been extended to include 35 loci with the addition of 11 RFLP and 12 microsatellite loci. The sex-averaged linkage map now spans 154 cM from phosphodiesterase cyclic GMP beta polypeptide (PDE6B) to OarCP125, an anonymous sheep microsatellite. The male and female map lengths, at 180 cM and 132 cM respectively, did not differ significantly. The physical assignment of PDE6B to Chr 6q33-qter orientates the linkage map on sheep Chr 6 with PDE6B near the telomere and OarCP125 towards the centromere. The order and genetic distances between loci are similar for the sheep Chr 6 and cattle Chr 6 maps, except for the position of the casein genes. The sheep Chr 6 linkage map is also comparable to portions of human Chr 4, mouse Chrs 5 and 3, and pig Chr 8. The synteny between sheep Chr 6 and human Chr 4 has been extended from PDE6B (4p16.3) to epidermal growth factor (EGF, 4q25-q27). However, a region from platelet-derived growth factor receptor α polypeptide (PDGFRA) to bone morphogenetic protein 3 (BMP3), which spans 19 cM on sheep Chr 6, appears to be inverted with respect to the human and mouse loci. Other differences in the gene order between sheep, pig, and mouse suggest more complex rearrangements. Received: 16 August 1995 / Accepted: 12 December 1995  相似文献   

14.
Ornithine aminotransferase (OAT), a mitochondrial matrix enzyme, is deficient in patients with gyrate atrophy of the choroid and retina. In human, the OAT structural gene maps to Chromosome (Chr) 10q26 and several OAT-related sequences, some of which are known to be processed pseudogenes, which map to Xp11.3–11.21. Here, we report chromosomal localization in the mouse of the OAT gene and related sequences. Genomic DNA blot analysis of a well-characterized panel of Chinese hamster x mouse somatic cell hybrids using a human OAT probe revealed two murine loci, one on mouse Chr 7 and the other on Chr X. In addition, segregation of restriction fragment length polymorphisms (RFLPs) detected by the OAT probe in recombinant inbred (RI) strains detected a third locus on Chr 3 and positioned the X locus near Cf-8 and Rsvp. Progeny of an intersubspecific backcross were used to map the Chr 7 locus between Tyr and Int-2, near Cyp2e-1.  相似文献   

15.
We have mapped the gene encoding the murine RYK growth factor receptor protein tyrosine kinase by genetic linkage analysis with recombinant inbred strains of mouse. Two distinct Ryk loci (Ryk-1 and Ryk-2) were identified. Ryk-1 mapped to Chromosome (Chr) 9, whereas Ryk-2 mapped to Chr 12. A similar arrangement of RYK-related loci was previously determined in the human. Synteny has already been established between murine Chr 9 in the region of Ryk-1, and human chromosome 3q11–12, the location of the human RYK-1 gene. However, the Ryk-2/RYK-2 loci on murine Chr 12 and human chr 17p13.3 define a new region of synteny.  相似文献   

16.
Seven polymorphic markers identified by polymerase chain reaction (PCR) amplification, including markers for six genes—DRD1L (dopamine receptor, D1-like-2), GLUKA (glucokinase), PF4 (platelet factor 4), ALB (albumin), AFP (-fetoprotein), and BSP (bone sialoprotein)—and one anonymous locus (D14N52), were mapped to a single 67-cM linkage group with F2 intercross progeny of F344/N and LEW/N inbred rat strains. Two of these markers, ALB and AFP, have previously been assigned to rat Chromosome (Chr) 14, allowing assignment of this entire linkage group. Five of the markers—DRD1L, PF4, ALB, AFP, and PBSP—have been physically mapped to a large region of human Chr 4 encompassing the p arm and the q arm to band q28. Homologs of two of the markers, ALB and AFP, have been mapped to Chr 5 in the mouse. Comparison of human Chr 4 with the homologous regions on Chr 14 of the rat and Chr 5 of the mouse indicated that linkage conservation with human Chr 4 extends over a greater region in the rat than in the mouse. The markers described here were found to be highly polymorphic in twelve inbred strains (F344/N, LEW/N, ACI/N, BUF/N, BN/SsN, LOU/MN, MNR/N, MR/N, SHR/N, WBB1/N, WBB2/N, and WKY/N). These polymorphic markers should be useful in genetic linkage studies of important phenotypes in rats.  相似文献   

17.
Using both chromosomal in situ hybridization and molecular techniques, we report the genetic localization of the gene coding for the alpha 1 subunit of the skeletal slow Ca2+ current channel/DHP receptor gene (Cchl1a3) on human Chromosome (Chr) 1 (1q31–1q32 region) and on mouse Chr 1 region (F-G). On the basis of single-strand conformation polymorphism (SSCP-PCR) analysis in an interspecific backcross, we have determined that the Cchl1a3=mdg (muscular dysgenesis) locus is very closely linked to the myogenin (Myog) locus.  相似文献   

18.
We have obtained a partial cDNA and three BAC clones for the porcine insulin-like growth factor binding protein 1 gene (IGFBP-1). Results of fluorescence in situ and radiation hybrid (RH) mapping assigned this gene to porcine chromosome (SSC) 18q24-qter. We found two types of polymerase chain reaction–restriction-fragment-length polymorphisms (PCR–RFLP) in intron 2 by using FokI and AluI.  相似文献   

19.
Comparative mapping data suggested that the dominant white coat color in pigs may be due to a mutation in KIT which encodes the mast/stem cell growth factor receptor. We report here that dominant white pigs lack melanocytes in the skin, as would be anticipated for a KIT mutation. We found a complete association between the dominant white mutation and a duplication of the KIT gene, or part of it, in samples of unrelated pigs representing six different breeds. The duplication was revealed by single strand conformation polymorphism (SSCP) analysis and subsequent sequence analysis showing that white pigs transmitted two nonallelic KIT sequences. Quantitative Southern blot and quantitative PCR analysis, as well as fluorescence in situ hybridization (FISH) analysis, confirmed the presence of a gene duplication in white pigs. FISH analyses showed that KIT and the very closely linked gene encoding the platelet-derived growth factor receptor (PDGFRA) are both located on the short arm of Chromosome (Chr) 8 at band 8p12. The result revealed an extremely low rate of recombination in the centromeric region of this chromosome, since the closely linked (0.5 cM) serum albumin (ALB) locus has previously been in situ mapped to the long arm (8q12). Pig Chr 8 shares extensive conserved synteny with human Chr 4, but the gene order is rearranged. Received: 22 March 1996 / Accepted: 24 June 1996  相似文献   

20.
The Escherichia coli F18 receptor locus (ECF18R) has been genetically mapped to the halothane linkage group on porcine Chromosome (Chr) 6. In an attempt to obtain candidate genes for this locus, we isolated 5 cosmids containing the α(1,2)fucosyltransferase genes FUT1, FUT2, and the pseudogene FUT2P from a porcine genomic library. Mapping by fluorescence in situ hybridization placed all these clones in band q11 of porcine Chr 6 (SSC6q11). Sequence analysis of the cosmids resulted in the characterization of an open reading frame (ORF), 1098 bp in length, that is 82.3% identical to the human FUT1 sequence; a second ORF, 1023 bp in length, 85% identical to the human FUT2 sequence; and a third FUT-like sequence thought to be a pseudogene. The FUT1 and FUT2 loci therefore seem to be the porcine equivalents of the human blood group H and Secretor loci. Direct sequencing of the two ORFs in swine being either susceptible or resistant to adhesion and colonization by F18 fimbriated Escherichia coli (ECF18) revealed two polymorphisms at bp 307 (M307) and bp 857 (M857) of the FUT1 ORF. Analysis of these mutations in 34 Swiss Landrace families with 221 progeny showed close linkage with the locus controlling resistance and susceptibility to E. coli F18 adhesion and colonization in the small intestine (ECF18R), and with the locus of the blood group inhibitor S. A high linkage disequilibrium of M307ECF18R in Large White pigs makes the M307 mutation a good marker for marker-assisted selection of E. coli F18 adhesion-resistant animals in this breed. Whether the FUT1 or possibly the FUT2 gene products are involved in the synthesis of carbohydrate structures responsible for bacterial adhesion remains to be determined. Received: 17 February 1997 / Accepted: 30 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号