首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study describes the effects of human recombinant IFN-alpha 2 on antibody production in vitro. Whereas the inclusion of IFN-alpha 2 in cultures for 7 days had a relatively minor effect on pokeweed mitogen (PWM)-induced antibody production, it resulted in a dose-related enhancement of a hapten-specific primary antibody response. Comparison of PWM and IFN-induced [3H]thymidine uptake indicated that the observed IFN activation was not polyclonal. Pretreatment of T cells with IFN for 1 hr before recombination with untreated autologous B lymphocytes increased the anti-TNP response four-fold, whereas similar pretreatment of B lymphocytes had no effect. Furthermore, 2000 R x-irradiation of T cells before coculture with autologous B lymphocytes and IFN abrogated the TNP-specific response. These results indicate that IFN modulates TNP-specific antibody production via a radiosensitive T-helper function. Further subfractionation by panning suggests that the enhancement is mediated by the Leu-3a+ helper/inducer T cell subset. Evidence that a 1-hr exposure to IFN was sufficient to modulate antibody production prompted the examination of T cells for possible receptor mechanisms. Scatchard analysis of 125I-IFN-alpha 2 binding revealed approximately 65 high affinity IFN receptors per cell with an apparent dissociation constant (Kd) of 4.4 X 10(-10) M. This paper is the first demonstration of the role of T cells in mediating the effects of recombinant IFN-alpha 2 on human primary antibody responses in vitro. These data further suggest that the observed modulation of hapten-specific antibody production in vitro by IFN may involve the binding of IFN to specific cellular receptors expressed by T lymphocytes.  相似文献   

2.
The expression of interferon-alpha (IFN-alpha) receptors was studied on a variety of human cells, using monoiodinated IFN-alpha 2 probes. Steady-state binding at 4 degrees C revealed a single class of non-interacting IFN receptor on peripheral blood lymphocytes, and tonsillar B lymphocytes, which are both known to be G0/G1 resting cell populations. The binding affinity of this class of receptor was found to be on the order of 5 X 10(-10) M, expressed as an apparent dissociation constant (Kd). However, cells proliferating either in culture or in vivo were found to express a heterogeneity in IFN-alpha 2 binding. Such binding could be objectively resolved (by a version of the LIGAND program of P. Munson) into a two-site receptor model. Hill plots of binding to proliferating cells indicated a negative cooperativity in the interaction of IFN and receptor. The high-affinity component, expressed on proliferating cells, typically exhibits a Kd of (1-10) X 10(-11) M, while the lower-affinity component indicates a Kd of (1-10) X 10(-9) M. Furthermore, the low-affinity component is apparently expressed on the order of 10-200 times the copy number, per cell, of the high-affinity site. Affinity-labeling experiments revealed that, in addition to the 140-160-kDa IFN-binding complex reported by others, both the proliferating and non-proliferating cell populations possess a novel IFN-binding component of 60 kDa.  相似文献   

3.
The Daudi line of human lymphoblastoid cells requires insulin and transferrin for growth in serum-free medium and is highly sensitive to the inhibitory effect of human leukocyte interferon (IFN-alpha) on cell proliferation. A variant subline of Daudi cells, which is resistant to the antiproliferative action of IFN-alpha, also has been grown in serum-free medium containing insulin and transferrin. The proliferation of IFN-sensitive and -resistant Daudi cells is dependent on the occupancy of insulin receptors, with optimal cell proliferation observed at high receptor occupancy (nearly 100%). No evidence was found for receptors for insulin-like growth factor I on Daudi cells. IFN treatment of IFN-sensitive cells decreased the capacity of the cells to bind 125I-insulin. The altered binding capacity was due to diminished specific, lower affinity insulin binding, as detected at high 125I-insulin concentrations. Higher affinity insulin binding was not altered by IFN. Insulin binding was also reduced in detergent-solubilized extracts from IFN-treated sensitive Daudi cells and the magnitude of the effect was comparable to that observed in intact cells. This indicates that the total number of insulin binding sites (surface + internal) is decreased in IFN-treated sensitive cells. Insulin binding to IFN-sensitive cells decreased linearly with time between 6 and 48 h from the addition of IFN. The effect on lower affinity insulin binding developed more rapidly than the inhibitory effect of IFN on cell proliferation. The insulin-binding capacity of Daudi cells resistant to the antiproliferative effect of IFN was unaffected by IFN, despite the fact that these cells contain as many cell surface IFN receptors as sensitive cells. These observations raise the possibility that lower affinity insulin binding is important in the growth-promoting actions of insulin.  相似文献   

4.
Minicells from Escherichia coli DS410 harboring cDNA for human interferon (IFN) alpha 1 or alpha 2 were metabolically labeled with [3H]leucine and the radioactive IFN was purified to homogeneity by immune precipitation with anti-IFN-alpha serum. These preparations of radioactive IFN-alpha 1 and -alpha 2 were used to study the binding on two human (FL and Daudi) and one bovine (MDBK) cell lines. IFN-alpha 2 specifically bound well to both human and bovine cells, while IFN-alpha 1 bound very poorly to human cells but well to bovine cells. Specific binding of radioactive IFN-alpha 2 to these cell lines was completely inhibited by not only nonradioactive IFN-alpha 2 but also IFN-alpha 1, and binding of IFN-alpha 1 to bovine cell was also competed by IFN-alpha 2 as well as IFN-alpha 1, indicating that the receptors for both IFNs are identical. However, 50-100-fold (on human cells) or 4-fold (on bovine cell) more nonradioactive IFN-alpha 1 than -alpha 2 was required to inhibit the binding of radioactive IFN-alpha 2 to the receptors. Scatchard analysis showed that IFN-alpha 1 and -alpha 2 bind to the receptors on human cells with an apparent Kd of greater than 6 X 10(-10) and 3 X 10(-11) M, respectively, while on bovine cells with a Kd of 4.2 X 10(-11) and 1.6 X 10(-11) M, respectively. These results show that the different target cell specificity of IFN-alpha 1 and -alpha 2 in regard to antiviral activity (Streuli, M., Hall, A., Boll, W., Stewart, W. E., II, Nagata, S., and Weissmann, C. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 2848-2852) is due to the different binding activity of IFN-alpha molecules to their common receptors.  相似文献   

5.
Recombinant human interferon gamma (rIFN-gamma) produced in Escherichia coli was labeled with 125I to study its binding to receptors of HeLa and lymphoblastoid cells. All the cell lines examined had receptors for rIFN-gamma, although the binding varied considerably among different cell lines. The binding of 125I-rIFN-gamma was competed up to 90% by the addition of unlabeled rIFN-gamma, although not by the addition of IFN-alpha or -beta. By adding increasing concentrations of unlabeled rIFN-gamma to binding assays containing a constant amount of 125I-rIFN-gamma, we determined a KD of 3.7 and 6.3 X 10(-10) M for its binding to Daudi and HeLa cells, respectively. About 13,000 receptors per cell were present in Daudi and 5,000 in HeLa cells. The Mr of the IFN-gamma/receptor complex was determined by cross-linking experiments to be about 125,000. This complex is smaller than the IFN-alpha/receptor complex that has a Mr of about 140,000. The rIFN-gamma receptor was down-regulated when HeLa cells were treated with this interferon, but not when these cells were treated with IFN-beta. These findings suggest that the receptors for IFN-alpha and -gamma differ in several characteristics. The turnover of the rIFN-gamma receptor was measured by inhibiting protein synthesis with cycloheximide and the half-life of this receptor was found to be 2 h. The unglycosylated rIFN-gamma was bound to cellular receptors with an affinity similar to that previously reported for natural IFN-gamma. The lymphoblastoid cell lines examined had high affinity receptors for rIFN-gamma, but did not respond to treatment with this IFN with an induction of the synthesis of the enzyme (2'-5')oligo(A) synthetase, whereas HeLa cells responded to rIFN-gamma. The reason for the lack of response of lymphoblastoid cells is presently unknown.  相似文献   

6.
The asialoglycoprotein receptor has been identified on a continuous human hepatoma cell line, HepG2. This receptor requires Ca2+ for ligand binding and is specific for asialoglycoprotein. There are approximately 150,000 ligand molecules bound/cell at 4 degrees C. These receptors represent a homogeneous population of high affinity binding sites with Kd = 7 X 10(-9) M. From the rate of 125I-ASOR binding at 4 degrees C, kon was 0.95 X 10(6) M-1 min-1. Uptake of 125I-ASOR at 37 degrees C was approximately 0.02 pmol/min/10(6) cells.  相似文献   

7.
R P Millar  A Garritsen  E Hazum 《Peptides》1982,3(5):789-792
Gonadotropin-releasing hormone (GnRH) binding sites in intact Leydig cells and in membrane preparations were investigated using 125I-labeled GnRH agonist and antagonist. Binding was saturable and involved a single class of high affinity sites. Intact Leydig cells and a membrane preparation had a higher affinity for GnRH agonist (Kd 3.0 +/- 1.7 X 10(-10) M) than for GnRH antagonist (Kd 10.0 +/- 1.8 X 10(-10) M). With anterior pituitary membranes the Kd was 2.8 +/- 0.7 X 10(-10) M for the agonist and 2.4 +/- 1.4 X 10(-10) M for the antagonist. The Kd for GnRH was similar for Leydig cells and the anterior pituitary. Chymotrypsin and trypsin digestion decreased receptor binding, but neuraminidase increased Leydig cell binding in contrast to the decrease in binding observed with pituitary receptors. The results suggest that the Leydig cell GnRH binding sites may differ from the pituitary receptor which may be related to structural differences in GnRH-like peptides recently described in extracts of rat testis.  相似文献   

8.
This report demonstrates that 125I-recombinant human interferon-gamma (125I-rHuIFN-gamma) binds to high-affinity specific receptors on human platelets. Scatchard analysis of binding data indicates the presence of homogeneous sites estimated in the order of 150 to 200, with an apparent equilibrium dissociation constant, Kd, of 2 X 10(-10) M. The binding of 125I-rHuIFN-gamma to platelet membrane was inhibited by unlabeled rHuIFN-gamma but not by unlabeled rHuIFN-alpha or unlabeled rHuIFN-beta. High affinity binding sites for HuIFN-alpha were not detectable. Cross-linking of 125I-rHuIFN-gamma to platelet membrane proteins with the use of a bifunctional agent (DSS) yielded a predominant complex of 100,000 +/- 5,000 daltons on SDS-PAGE autoradiography, which confirms the presence of specific receptors for IFN-gamma. Two faint bands of lower m.w., 70,000 and 90,000, could also be visualized. Cross-linking of 125I-rHuIFN-alpha to platelet surface could not be demonstrated by using the same procedures. This is the first time that a receptor for a lymphokine (IFN-gamma) has been demonstrated on human platelets. These findings are consistent with data already published, suggesting an interrelationship between IFN and platelet function.  相似文献   

9.
DNA sequences encoding the human epidermal growth factor (EGF) receptor and various EGF-receptor deletion mutants were transfected into chinese hamster ovary (CHO) cells devoid of endogenous EGF receptors. A functional human EGF-receptor is expressed on the surface of heterologous CHO cells with the following properties: it exhibits typical high affinity (10%; Kd = 3 X 10(-10) M) and low affinity (90%; Kd = 3 X 10(-9) M) binding sites for 125I-EGF; it is expressed as a polypeptide of 170,000 molecular weight with intrinsic protein tyrosine kinase activity. EGF stimulates the kinase activity leading to self-phosphorylation and to phosphorylation of exogenous substrate; 125I-EGF is rapidly internalized into the CHO cells by receptor mediated endocytosis and; EGF stimulates DNA synthesis in the cells expressing the human EGF-receptor. Deletion of 63 amino acids from the C-terminal end of EGF-receptor, which removes two autophosphorylation sites, abolishes the high affinity state of the receptor. Nevertheless, this receptor mutant is able to undergo endocytosis and to respond mitogenically to EGF to a similar extent as the "wild type" receptor. Further deletions from the cytoplasmic domain give rise to low affinity endocytosis-defective receptor mutants. Finally, deletion of the transmembrane domain of the human receptor yields an EGF-receptor ligand binding domain which is secreted from the cells.  相似文献   

10.
Type beta transforming growth factor (beta TGF) purified from human platelets to homogeneity as judged by NH2-terminal amino acid sequence analysis has been labeled with 125I to characterize its interaction with cellular receptors. Binding of 125I-beta TGF to target cells is temperature- and time-dependent, specific, saturable, and reversible. About 1.6-1.9 X 10(4) binding sites/cell with high affinity for beta TGF (Kd = 5.6-7.8 X 10(-11) M and 9.1-14 X 10(-11) M, respectively) are found in NRK-49F and BALB/c 3T3 cells. beta TGF receptors do not appear to undergo acute down-regulation by the ligand. Specific binding of 125I-beta TGF has been observed in several human, rat, and mouse fibroblast lines and in some, but not all, tumor-derived cell lines examined. 125I-beta TGF has been cross-linked to intact cells and isolated membrane preparations using disuccinimidyl suberate. Cells and isolated membranes from human, rat, and mouse origin affinity labeled with 125I-beta TGF exhibit a major labeled species of approximately 280 kilodaltons that has the properties of high affinity and specificity expected from a physiologically relevant beta TGF receptor. Minor labeled species of 70-90 kilodaltons are also labeled by 125I-beta TGF, but they correspond to molecular species with low apparent affinity (Kd approximately 10(-8) M) for 125I-beta TGF.  相似文献   

11.
Treatment of lymphoblastoid cells with interferon decreases insulin binding   总被引:1,自引:0,他引:1  
Lymphoblastoid Daudi cells, which are highly sensitive to growth inhibition by interferon (IFN), can be grown in a defined serum-free medium containing insulin, transferrin, and albumin as the only proteins. We examined whether the growth inhibition by IFN could be in part due to a change in receptors for insulin or transferrin. Cells treated for at least 2 days with 100 units/ml of IFN-alpha 2 bound less 125I-insulin and after 3 days of treatment this binding was reduced by more than 50%. No change in the binding of 125I-transferrin was observed. Treatment with IFN of Raji cells, which are resistant to growth inhibition by IFN, resulted in a similar decrease in 125I-insulin binding. Growth inhibition of Daudi cells by serum deprivation had no effect on 125I-insulin binding. Therefore, the IFN-induced loss of insulin binding sites is not a consequence of growth inhibition.  相似文献   

12.
125I-Hemoglobin.haptoglobin injected intravenously into rats was incorporated into liver parenchymal cells as evidenced by a cell separation technique. A mixture of freshly isolated liver parenchymal and nonparenchymal cells failed to internalize and degrade the 125I-hemoglobin.haptoglobin added, although it retained the ability to bind the molecule. The liver parenchymal cells in primary culture also lacked the ability to degrade 125I-hemoglobin.haptoglobin, although they bound the molecule more extensively as compared with the freshly isolated liver cells. It was confirmed that the 125I-hemoglobin.haptoglobin which was bound to the freshly isolated liver parenchymal cells localized on the outer surface of liver plasma membranes. Scatchard plots revealed the existence of two binding sites for 125I-hemoglobin-haptoglobin on the isolated liver plasma membrane: an apparent high affinity binding site (Kd = 1.3 X 10(-7) M) and an apparent low affinity binding site (Kd = 4.0 X 10(-6) M) at 37 degrees C. In contrast, freshly isolated liver parenchymal cells had only an apparent low affinity binding site (Kd = 1.4 X 10(-6) M) at 37 degrees C. Impairment of the apparent high affinity binding site during the isolation procedure with collagenase seemed to be related to loss of the ability to internalize and degrade the 125I-hemoglobin.haptoglobin molecules into the freshly isolated liver parenchymal cells or liver parenchymal cells in primary culture.  相似文献   

13.
125I-Transferrin binding to lymphoblastoid K562 and Daudi cells markedly increased after exposure of the cells to culture conditions that stimulated proliferation. Treatment of these cells with interferon-alpha (IFN-alpha) resulted in concurrent inhibition of cell growth and of the rise in transferrin binding. Scatchard analyses revealed that IFN reduced the number of transferrin receptors without altering the binding constant. When 125I-transferrin binding was measured using permeabilized cells, the IFN-induced reduction of binding was comparable to that observed with intact cells, indicating that IFN diminished the total number of cellular transferrin receptors. We also found that addition of IFN-alpha to phytohemagglutinin-stimulated human lymphocytes inhibited the mitogen-induced enhancement of [3H]thymidine incorporation as well as surface binding of 125I-transferrin. Our findings suggest that the decrease in transferrin receptor expression on IFN-alpha-treated cells may be one of the mechanisms responsible for the antiproliferative action of IFN.  相似文献   

14.
Monoiodinated radioligands of the homologous 36-amino acid peptides, neuropeptide Y (NPY) and peptide YY, were prepared by reverse phase high performance liquid chromatography with isocratic elution. [125I-Tyr1]- and [125I-Tyr36]monoiodoNPY bound equally well to a single class of high affinity binding sites on synaptosomal membranes prepared from porcine hippocampus (Kd = 1.0 X 10(-10) M) whereas iodine substitution in Tyr27, for example, partly interfered with the receptor binding. The receptors on the hippocampal membranes did not distinguish between neuropeptide Y and peptide YY either in their monoiodinated or in their unlabeled forms. Six out of twelve human neuroblastoma cell lines had high affinity binding sites for monoiodinated NPY ranging from 2 to 145 X 10(3) sites per cell. The NPY binding to three of the cell lines, SMS-MSN, SMS-KAN, and CHP-234 was of relatively high affinity (Kd = 1.3 to 6.1 X 10(-10) M), and, as in the hippocampal membranes, the long C-terminal fragment, NPY(13-36)peptide was also a relatively potent ligand for these receptors. Two other neuroblastoma cell lines, MC-IXC and CHP-212, expressed NPY receptors characterized by a lower affinity (Kd = 4.8 and 24.6 X 10(-9) M) and negligible cross-reactivity with the C-terminal fragment. It is concluded that monoiodinated radioligands of the tyrosine-rich neuropeptide Y can be prepared and that receptors for these ligands in two apparently different subtypes are found on a series of human neuroblastoma cell lines.  相似文献   

15.
Two species of insulin-like growth factor-I (IGF-I) receptors in human placenta have been delineated on the basis of their immunoreactivity with an autoantiserum (B-2) to the insulin receptor. When all the IGF-I binding sites in solubilized human placenta were assayed by polyethylene glycol precipitation, a curvilinear Scatchard plot was obtained which could be resolved into two single classes of binding sites: one immunoprecipitable by B-2 IgG and the other, nonimmunoprecipitable. The B-2 reactive sites bound IGF-I with lower affinity (Kd = 7.1 X 10(-10) M) than the B-2 nonreactive sites (Kd = 2.1 X 10(-10) M) and cross-reacted more readily with insulin, the IGF-I/insulin-binding potencies being congruent to 120 and congruent to 1100, respectively. Both receptor subtypes bound IGF-I with congruent to 30-fold higher affinity than multiplication-stimulating activity, and, after affinity cross-linking with 125I-IGF-I, migrated as specific reduced bands of Mr = 138,000 during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The subunit sizes of the B-2 reactive IGF-I receptor were similar to those of the insulin receptor. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 125I-labeled receptors immunoprecipitated by autoantiserum B-2 or autoantiserum B-10 (which recognizes only insulin receptors) revealed, in both cases, specific reduced bands of Mr = 130,000 and 90,000; the same bands were also seen after sequential precipitation with B-10 and B-2 antisera to enrich the proportion of IGF-I receptors recovered. The presence of two distinct binding and immunoreactive species of IGF-I receptors in human placenta raises the possibility that cell- or tissue-specific isotypes of the IGF-I receptor could mediate the different biological actions of IGF-I.  相似文献   

16.
Functional domains on the recombinant interferon-alpha 2 (rIFN-alpha 2) molecule, which are involved in antiviral and NK enhancing activities, have been defined by immunochemical mapping with MAb, and their relationship with the IFN cellular receptor binding site has been studied. With 20 different anti-IFN-alpha 2 MAb selected by their binding to 125I-labeled IFN and by immunoprecipitation of the 20 Kd IFN molecule, we have defined three spatially separated epitopes (designated as sites A, B, and C) and two partially overlapping antigenic determinants on the IFN-alpha 2 molecule. Functional relation of IFN-alpha 2 A, B, and C epitopes have been determined by assaying the effect of various anti-IFN MAb on IFN-mediated biologic activities. MAb directed to sites A and B neutralized the antiviral activity of IFN. Furthermore, the MAb specific for site B displayed a neutralizing potency threefold higher than MAb directed to site A. Site B was also involved in the enhancing activity of IFN on NK-mediated cell cytotoxicity, whereas site A was not. MAb directed to site C partially affected the IFN-boosted NK activity but did not neutralize the IFN antiviral activity. Inhibition studies of 125I-IFN binding to human U-937 myelomonocytic cells by anti-IFN MAb demonstrated that MAb directed to site B blocked different IFN biologic functions by preventing its binding to the cellular receptor, whereas MAb directed to sites A and C caused no inhibition and partial inhibition of this binding, respectively.  相似文献   

17.
The expression of interferon (IFN) receptors was studied on freshly isolated human lymphocytes from normal donors. Highly enriched populations of small resting T lymphocytes and large granular lymphocytes (LGL) were found to constitutively express high-affinity receptors for IFN-alpha and IFN-gamma. Both types of lymphocytes also had lower-affinity IFN-alpha binding sites. T lymphocytes had a mean of 230 IFN-alpha and 520 IFN-gamma high-affinity receptors per cell, whereas LGL had 520 IFN-alpha and 760 IFN-gamma receptors. However, because LGL were larger than the T lymphocytes, the IFN receptor density was similar on the two types of lymphocytes. The affinity of binding was similar on the two types of normal lymphocytes and on the cultured lymphoblastoid cell line Daudi. The number of IFN receptors per cell and the affinities of the IFN-receptor interactions varied little among the normal donors. Both the freshly isolated normal lymphocytes and the cultured cell line Daudi had separate receptors for type I (alpha and beta) and type II (gamma) IFN. Taken together, our data indicate that two types of freshly isolated normal lymphocytes constitutively express IFN receptors that are similar to those present on the lymphoblastoid cell line Daudi derived from a patient with Burkitt's lymphoma.  相似文献   

18.
Two transmembrane polypeptides, IFNAR and IFN-alpha/Beta R, were previously identified as essential components of the type I interferon (IFN) receptor, but their interrelationship and role in ligand binding were not clear. To study these issues, we stably expressed and characterized the two polypeptides in host murine cells. In human cells, native IFN-alpha/beta R is a 102-kDa protein but upon reduction only a 51-kDa protein is detected. In host murine cells human IFN-alpha/beta R was expressed as a 51-kDa protein. Host cells expressing IFN-alpha/beta R bound IFN-alpha 2 with a high affinity (Kd of 3.6 nM), whereas cells expressing IFNAR exhibited no ligand binding. Upon coexpression of IFNAR and the 51-kDa IFN-alpha/beta R, the affinity for IFN-alpha 2 was increased 10-fold, approaching that of the native receptor. We show by cross-linking that both the cloned (51-kDa) and native (102-kDa) IFN-alpha/beta R bind IFN-alpha 2 to form an intermediate product, while IFNAR associates with this product to form a ternary complex. Hence, IFNAR and IFN-alpha/beta R are components of a common type I IFN receptor, cooperating in ligand binding. Ligand-induced association of IFNAR and IFN-alpha/beta R probably triggers transmembrane signaling.  相似文献   

19.
Xenopus ectodermal cells have previously been shown to respond to acidic and basic FGF by differentiating into mesodermal tissue. In the present study, ectodermal explants from Xenopus blastulae were shown to have high affinity binding sites for 125I-aFGF (Kd = 1.4 X 10(-10) M). The total number of sites, determined by Scatchard analysis, was 3 X 10(8) per explant (surface area of approximately 1 mm2). Two putative receptors of relative molecular mass 130,000 and 140,000 were identified by chemical crosslinking to 125I-aFGF. Both acidic and basic FGF, but not TGF beta 2, could compete for affinity labelling of these bands. The receptor density at the cell surface parallels the developmental competence of Xenopus animal pole cells to respond to FGF. Receptors are present at highest density in the marginal zone but are not restricted to cells in this region.  相似文献   

20.
The action of alpha interferon (IFN-alpha) is initiated by its binding to a specific cell-surface glycoprotein, the IFN-alpha receptor, which is not well characterized. IFN-alpha A was reacted with an 125I-labeled, cleavable, heterobifunctional reagent. The derivatized IFN-alpha A was bound to human Daudi cells and photoactivated, forming a covalent IFN/receptor complex of apparent molecular weight 130,000-140,000 by SDS-polyacrylamide gel electrophoresis. Cleavage of the complex produced a new 125I-labeled 110 kDa band, representing the 125I-labeled IFN-alpha receptor free of IFN-alpha. This result provides a better estimate of the apparent molecular weight of the IFN-alpha receptor, and also provides a tool for tracking the migration of the free receptor in SDS-polyacrylamide gel electrophoresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号