首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three forms of the dimeric manganese superoxide dismutase (MnSOD) were isolated from aerobically grown Escherichia coli which contained 2 Mn, 1 Mn and 1 Fe, or 2 Fe, respectively. These are designated Mn2-MnSOD, Mn,Fe-MnSOD, and Fe2-MnSOD. Substitution of iron in place of manganese, eliminated catalytic activity, decreased the isoelectric point, and increased the native electrophoretic anodic mobility, although circular dichroism, high performance liquid chromatography gel exclusion chromatography, and sedimentation equilibrium revealed no gross changes in conformation. Moreover, replacement of iron by manganese restored enzymatic activity. Fe2-MnSOD and the iron-superoxide (FeSOD) of E. coli exhibit distinct optical absorption spectra. These data indicate that the active site environments of E. coli MnSOD and FeSOD must differ. They also indicate that competition between iron and manganese for nascent MnSOD polypeptide chains occurs in vivo, and copurification of these variably substituted MnSODs can explain the substoichiometric manganese contents and the variable specific activities which have been reported for this enzyme.  相似文献   

2.
3.
A manganese-containing superoxide dismutase (MnSOD) has been isolated from extracts of O2-induced Bacteroides fragilis. The enzyme, Mr 43,000, was a dimer composed of noncovalently associated subunits of equal size. A preparation whose specific activity was 1760 U/mg had 1.1 g-atoms Mn, 0.3 g-atoms Fe, and 0.2 g-atoms Zn per mol dimer. Exposing the enzyme to 5 M guanidinium chloride, 20 mM 8-hydroxyquinoline abolished enzymatic activity. Dialysis of the denatured apoprotein in buffer containing either Fe (NH4)2(SO4)2 or MnCl2 restored O2-. scavenging activity. The iron-reconstituted enzyme was inhibited 89% by 2 mM NaN3, similar to other Fe-containing superoxide dismutases. The Mn-reconstituted and native MnSOD were inhibited approximately 50% by 20 mM NaN3. Addition of ZnSO4 to dialysis buffer containing either the iron or manganese salt inhibited restoration of enzymatic activity to the denatured apoprotein. MnSOD migrated as a single protein band coincident with a single superoxide dismutase activity band in 7.5 or 10% acrylamide gels. Isoelectric focusing resulted in a major isozymic form with pI 5.3 and a minor form at pI 5.0. Mixtures of the MnSOD and the iron-containing superoxide (FeSOD), isolated from anaerobically maintained B. fragilis [E. M. Gregory and C. H. Dapper (1983) Arch. Biochem. Biophys. 220, 293-300], migrated as a single band on acrylamide gels and isoelectrically focused to a major protein band (pI 5.3) and a minor band at pI 5.0. The amino acid composition of MnSOD was virtually identical to that of the FeSOD. The data are consistent with synthesis of a single superoxide dismutase apoprotein capable of accepting either Mn or Fe to form the holoenzyme.  相似文献   

4.
C K Vance  A F Miller 《Biochemistry》2001,40(43):13079-13087
Fe and Mn are both entrained to the same chemical reaction in apparently superimposable superoxide dismutase (SOD) proteins. However, neither Fe-substituted MnSOD nor Mn-substituted FeSOD is active. We have proposed that the two SOD proteins must apply very different redox tuning to their respective metal ions and that tuning appropriate for one metal ion results in a reduction potential (E(m)) for the other metal ion that is either too low (Fe) or too high (Mn) [Vance and Miller (1998) J. Am. Chem. Soc. 120, 461-467]. We have demonstrated that this is true for Fe-substituted MnSOD from Escherichia coli and that this metal ion-protein combination retains the ability to reduce but not oxidize superoxide. We now demonstrate that the corollary is also true: Mn-substituted FeSOD [Mn(Fe)SOD] has a very high E(m). Specifically, we have measured the E(m) of E. coli MnSOD to be 290 mV vs NHE. We have generated Mn(Fe)SOD and find that Mn is bound in an environment similar to that of the native (Mn)SOD protein. However, the E(m) is greater than 960 mV vs NHE and much higher than MnSOD's E(m) of 290 mV. We propose that the different tuning stems from different hydrogen bonding between the proteins and a molecule of solvent that is coordinated to the metal ion in both cases. Because a proton is taken up by SOD upon reduction, the protein can exert very strong control over the E(m), by modulating the degree to which coordinated solvent is protonated, in both oxidation states. Thus, coordinated solvent molecules may have widespread significance as "adapters" by which proteins can control the reactivity of bound metal ions.  相似文献   

5.
Superoxide dismutase from the anaerobe Bacteroides fragilis has been purified to apparent homogeneity. The protein, Mr 42,000, is a dimer of equally sized subunits joined by noncovalent interactions. Metal analysis of the native enzyme revealed 1.8-1.9 g-atoms Fe, 0.2 g-atoms Zn, and less than 0.05 g-atoms Mn per mole dimer in a preparation whose specific activity was 1200 U/mg. Exposure of the enzyme to guanidinium chloride plus 8-hydroxyquinoline (T. Kirby, J. Blum, I. Kahane, and I. Fridovich, 1980, Arch. Biochem. Biophys. 201, 551-555) resulted in complete loss of enzymatic activity. Activity could be restored by dialysis of the denatured apoprotein against Tris buffer containing either ferrous ammonium sulfate or manganous chloride. The Fe-reconstituted enzyme was inhibited by 1 mM azide and inactivated by H2O2 in a manner similar to the native enzyme. Mn-reconstituted enzyme was inhibited by azide but resisted inactivation by H2O2 comparable to other purified manganese-containing superoxide dismutases. The manganese reconstituted protein contained approximately 1 gm-atom Mn/mol dimer. Zn ion potently inhibited reconstitution of the denatured apoprotein by either Mn or Fe and bound to the protein with a stoichiometry of 2-3 g-atoms/mol dimer.  相似文献   

6.
嗜水气单胞菌J-1株弹性蛋白酶的表达、纯化及特性分析   总被引:1,自引:0,他引:1  
孟喜龙  刘永杰  陆承平 《微生物学报》2009,49(12):1613-1620
摘要:【目的】表达、纯化嗜水气单胞菌J-1株弹性蛋白酶,并对弹性蛋白酶的性质进行分析。【方法】以pET-32a为表达载体将弹性蛋白酶基因ahyB转化至大肠杆菌BL21菌株中进行诱导表达,表达重组酶用His TaqNi2+亲和层析柱纯化并用6 mol/L盐酸胍进行复性;利用硫酸铵分级沉淀、阴离子交换层析和分子筛层析对嗜水气单胞菌培养上清液中的弹性蛋白酶进行纯化。将【结果】从嗜水气单胞菌培养上清液中获得的弹性蛋白酶原酶的最适pH 为8.5,而表达重组酶为 10.0;对热的稳定性,原酶高于表达酶。两种形式酶的性  相似文献   

7.
31P nuclear magnetic resonance spectra and enzymatic activities are compared for alkaline phosphatase (orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1) species with different zinc contents. The enzyme containing two Zn2+ per protein dimer exists in two forms; one, prepared by dialysis of native enzyme, has full enzymatic activity and a 31P magnetic resonance spectrum similar to but distinguishable from that of the native enzyme containing four or more Zn2+. The other form, prepared by restoring two Zn2+ to apoenzyme, has low enzymatic activity and a 31P magnetic resonance spectrum that indicates stoichiometric binding of phosphate, but otherwise altered properties. Reconstituted enzyme with four Zn2+ is similar to but distinguishable from native enzyme with four Zn2+. Chromatography on DEAE-cellulose can separate apoenzyme and enzyme containing two Zn2+ and suggests that the binding of a pair of Zn2+ is cooperative.  相似文献   

8.
A mutant Escherichia coli lipopolysaccharide (LPS) lacking myristoyl fatty acid markedly stimulates the activity of manganese superoxide dismutase (MnSOD) without inducing tumor necrosis factor alpha (TNFalpha) production by human monocytes (Tian et al., 1998, Am J Physiol 275:C740.), suggesting that induction of MnSOD and TNFalpha by LPS are regulated through different signal transduction pathways. The protein tyrosine kinase (PTK)/mitogen-activated protein kinase (MAPK) pathway plays an important role in the LPS-induced TNFalpha production. In the current study, we determined the effects of PTK inhibitors, genistein and herbimycin A, on the induction of MnSOD and TNFalpha in human monocytes. Genistein (10 microg/ml) and herbimycin A (1 microg/ml) markedly inhibited LPS-induced protein tyrosine phosphorylation, phosphorylation and nuclear translocation of MAPK (p42 ERK, extracellular signal-regulated kinase), and increases in the steady state level of TNFalpha mRNA as well as TNFalpha production. In contrast, at similar concentrations, genistein and herbimycin A had no effect on the LPS-induced activation of nuclear factor kappaB (NFkappaB) and induction of MnSOD (mRNA and enzyme activity) in human monocytes. In addition, inhibition of NFkappaB activation by gliotoxin and pyrrodiline dithiocarbamate, inhibited LPS induction of TNFalpha and MnSOD mRNAs. These results suggest that (1) while PTK and MAPK are essential for the production of TNFalpha, they are not necessary for the induction of MnSOD by LPS, and (2) while activation of NFkappaB alone is insufficient for the induction of TNFalpha mRNA by LPS, it is necessary for the induction of TNFalpha as well as MnSOD mRNAs.  相似文献   

9.
Catechol O-methyltransferase (COMT) plays an important role in the inactivation of biologically active and toxic catechols. This enzyme is genetically polymorphic with a wild type and a variant form. Numerous epidemiological studies have shown that the variant form is associated with an increased risk of developing estrogen-associated cancers and a wide spectrum of mental disorders. There are seven cysteine residues in human S-COMT, all of which exist as free thiols and are susceptible to electrophilic attack and/or oxidative damage leading to enzyme inactivation. Here, the seven cysteine residues were systematically replaced by alanine residues by means of site-directed mutagenesis. The native forms and cysteine/alanine mutants were assayed for enzymatic activity, thermal stability, methylation regioselectivity, and reactivity of cysteine residues to thiol reagent. Our data showed that although there is only one encoding base difference between these two COMT forms, this difference might induce structural changes in the local area surrounding some cysteine residues, which might further contribute to the different roles they might play in enzymatic activity, and to the different susceptibility to enzyme inactivation.  相似文献   

10.
Point mutations of Cu,Zn-superoxide dismutase (SOD) have been linked to familial amyotrophic lateral sclerosis (FALS). We reported that the Swedish FALS Cu,Zn-SOD mutant, D90A, exhibited an enhanced hydroxyl radical-generating activity, while its dismutation activity was identical to that of the wild-type enzyme (Kim et al. 1998a; 1998b). Transgenic mice that express a mutant Cu,Zn-SOD, Gly93 --> Ala (G93A), have been shown to develop amyotrophic lateral sclerosis (ALS) symptoms. We cloned the cDNA for the FALS G93A mutant, overexpressed the protein in E. coli cells, purified the protein, and studied its enzymic activities. Our results showed that the G93A, the D90A, and the wild-type enzymes have identical dismutation activity. However, the hydroxyl radical-generating activity of the G93A mutant was enhanced relative to those of the D90A and the wild-type enzyme (wild-type < D90A < G93A). These higher free radical-generating activities of mutants facilitated the release of copper ions from their own molecules (wild-type < D90A < G93A). The released copper ions can enhance the Fenton-like reaction to produce hydroxyl radicals and play a major role in the oxidative damage of macromolecules. Thus, the FALS symptoms may be associated with the enhancements in both the free radical-generating activity and the releasing of copper ions from the mutant enzyme.  相似文献   

11.
Recent studies from this laboratory have demonstrated that human manganese superoxide dismutase (MnSOD) is a target for tyrosine nitration in several chronic inflammatory diseases including chronic organ rejection, arthritis, and tumorigenesis. Furthermore, we demonstrated that peroxynitrite (ONOO-) is the only known biological oxidant competent to inactivate enzymatic activity, nitrate critical tyrosine residues, and induce dityrosine formation in MnSOD. To elucidate the differential contributions of tyrosine nitration and oxidation during enzymatic inactivation, we now compare ONOO- treatment of native recombinant human MnSOD (WT-MnSOD) and a mutant, Y34F-MnSOD, in which tyrosine 34 (the residue most susceptible to ONOO--mediated nitration) was mutated to phenylalanine. Both WT-MnSOD (IC50 = 65 microM, 15 microM MnSOD) and Y34F-MnSOD (IC50 = 55 microM, 15 microM Y34F) displayed similar dose-dependent sensitivity to ONOO--mediated inactivation. Compared to WT-MnSOD, the Y34F-MnSOD mutant demonstrated significantly less efficient tyrosine nitration and enhanced formation of dityrosine following treatment with ONOO-. Collectively, these results suggest that complete inactivation of MnSOD by ONOO- can occur independent of the active site tyrosine residue and includes not only nitration of critical tyrosine residues but also tyrosine oxidation and subsequent formation of dityrosine.  相似文献   

12.
Cellobiase from Aspergillus niger was glycosylated by covalent coupling to cyanogen bromide activated dextran. The conjugated enzyme retained 62% of the original specific activity exhibited by the native cellobiase. The optimum pH as well as the pH stability of the conjugated form remain almost the same as for the native enzyme. Compared to the native enzyme, the conjugated form exhibited a higher optimal reaction temperature and energy of activation, a higher K(m) (Michaelis constant) and lower Vmax (maximal reaction rate), and improved thermal stability. The thermal deactivation of the native and conjugated cellobiase obeyed the first-order kinetics. The calculated half-life values of heat inactivation at 60, 70 and 80 degrees C was 10.7, 6.25, and 4.05 h, respectively, whereas at these temperatures the native enzyme was less stable (half-life of 3.5, 1.69, and 0.83 h, respectively). The deactivation rate constant at 80 degrees C for the conjugated cellobiase is about 7.9 x 10(-2) h-1, which is lower than that of the native enzyme (36.0 x 10(-2) h-1). The activation energy for denaturation of the native enzyme is about 10.58 kcal/mol, which is 7.25 kcal/mol lower than that of the conjugated enzyme. The effect of different surfactants and some metal ions on the activity of the conjugated cellobiase has been investigated.  相似文献   

13.
PEG-重组酵母尿酸酶结合物的基本特性研究   总被引:1,自引:0,他引:1  
重组Candida utilis尿酸酶由含PET-Uricase表达质粒的重组E.coli JM109(DE3)经乳糖诱导表达,菌体破碎后依次经过硫酸铵沉淀、阴离子交换层析和凝胶过滤层析可以获得纯度95%的重组尿酸酶。还原性SDS-PAGE和HPLC测得其亚基表观分子量和天然分子量分别约为33 kDa和130 kDa。获得的纯酶与20 kDa (mPEG)2 -Lys-NHS在特定的条件下反应合成PEG-重组酵母尿酸酶结合物,考察了重组酵母尿酸酶PEG化前后的基本性质,结果显示PEG化尿酸酶的最适pH为7.5,较修饰前下降了1个pH单位,酸碱稳定范围与修饰前类似,都在pH 6-10范围内稳定;修饰前后最适温度均为40℃,重组酵母尿酸酶的热稳定性和抗蛋白酶水解能力较PEG修饰前有较大提高;PEG化尿酸酶可保留修饰前酶活力的87.5%;在最适条件下,PEG-尿酸酶结合物的Km为3.57×10-5 mol/L,而修饰前测得的Km为3.91×10-5 mol/L。研究结果为深入探讨PEG化尿酸酶的结构与功能奠定了基础。  相似文献   

14.
Chemical analysis of the ferredoxin-dependent native form (Mr = 85,000) of spinach nitrite reductase has demonstrated a siroheme content that approaches 2 mol of siroheme/mol of enzyme. A widely studied modified (Mr = 61,000) form of nitrite reductase, that has lost much of the native enzyme's ability to use ferredoxin as an electron donor, contains approximately 1 mol of siroheme/mol of enzyme. Quantitation of the high spin ferri-siroheme EPR signals and of nitrite-binding sites of the two preparations confirmed that the native enzyme's siroheme content is approximately twice that of the modified enzyme. Plots of nitrite and cyanide binding to the native enzyme versus ligand concentration are sigmoidal, with Hill coefficients of 1.6-1.8 and 2.3-2.8, respectively. Plots of enzyme activity versus nitrite concentration for the native enzyme are sigmoidal with a Hill coefficient of 2.4. Cyanide inhibition of enzymatic activity was shown to be not competitive. Addition of cyanide to the native enzyme resulted in a diminution of the high spin ferri-siroheme EPR signal and produced EPR signals with g values of 2.71, 2.33, and 1.49 due to low spin ferri-siroheme.  相似文献   

15.
本文研究了用海藻酸钙包埋法制备含谷氨酸脱羧酶固定化细胞的方法以及研究了制备的条件和影响其制备的因素。该法具有包埋细胞活力回收高,方法简便等优点。比较研究了固定化细胞和自然细胞谷氨酸脱羧酶的一些生物化学性质。其中固定化细胞最适pH和pH稳定性增加,最适温度及热稳定性下降;表观米氏常数增大;二价金属离子Zn~(++)、Cu~(++)、Mg~(++)、Fe~(++),Sr~(++)程度不同的抑制酶活性,Ca~(++)激活固定化细胞酶活性,EDTA无抑制作用。对固定化细胞和自然细胞酶活力活化的研究中发现这两种细胞经蒸馏水保温处理后酶活性都上升,且自然细胞酶活的上升较固定化细胞大;而用底物溶液处理后,自然细胞无变化,固定化细胞酶活下降。  相似文献   

16.
Numerous biopharmaceuticals and other recombinant biotechnology products are made in prokaryotic hosts. However, bacterial production of native, biologically active eukaryotic proteins is rarely possible for disulfide-bonded and/or multisubunit proteins. We previously described the production of soluble, native disulfide-bonded dimeric proteins in the Escherichia coli cytoplasm (Miele et al., 1990; Mantile et al., 1993). Native, biologically active proteins with up to six disulfide bonds have been produced with our expression system (Garces et al., 1997). However, plasmid instability during induction limited its usefulness. We now report the stable, high-level expression of soluble, disulfide-bonded human uteroglobin without antibiotic selection. We designed a new vector containing a multifunctional stabilization region that confers complete plasmid stability and increased protein yields without copy number increases. Recombinant expression remains fully inducible after long-term continuous culture in nonselective liquid medium (at least 260 generations). This system may significantly expand the applications of bacterial expression to recombinant production of soluble, bioactive proteins for biochemical studies and biopharmaceutical/industrial purposes. As a result of the very broad activity spectrum of the stabilization region we selected, its use could be extended to bacterial hosts other than enterobacteria.  相似文献   

17.
Incubation of an NAD+-dependent succinic semialdehyde dehydrogenase from bovine brain with 4-dimethylaminoazobenzene-4-iodoacetamide (DABIA) resulted in a time-dependent loss of enzymatic activity. This inactivation followed pseudo first-order kinetics with a second-order rate constant of 168 m(-1).min(-1). The spectrum of DABIA-labeled enzyme showed a characteristic peak of the DABIA alkylated sulfhydryl group chromophore at 436 nm, which was absent from the spectrum of the native enzyme. A linear relationship was observed between DABIA binding and the loss of enzyme activity, which extrapolates to a stoichiometry of 8.0 mol DABIA derivatives per mol enzyme tetramer. This inactivation was prevented by preincubating the enzyme with substrate, succinic semialdehyde, but not by preincubating with coenzyme NAD+. After tryptic digestion of the enzyme modified with DABIA, two peptides absorbing at 436 nm were isolated by reverse-phase HPLC. The amino acid sequences of the DABIA-labeled peptides were VCSNQFLVQR and EVGEAICTDPLVSK, respectively. These sites are identical to the putative active site sequences of other brain succinic semialdehyde dehydrogenases. These results suggest that the catalytic function of succinic semialdehyde dehydrogenase is inhibited by the specific binding of DABIA to a cysteine residue at or near its active site.  相似文献   

18.
S M Janes  J P Klinman 《Biochemistry》1991,30(18):4599-4605
Recent evidence has shown that the active site cofactor in bovine serum amine oxidase (BSAO) is 2,4,5-trihydroxyphenylalanine or 6-hydroxydopa [Janes et al. (1990) Science 248, 981]. However, much ambiguity remains regarding the mechanism of the enzymatic reaction. Conflicting data exist for both the number of functional active sites in the dimeric enzyme and for the oxygen dependence of product release. To resolve these questions, a new method has been developed for the purification of BSAO which leads to the isolation of specific activity greater than or equal to 0.4 unit/mg of enzyme in 2-3 weeks. This highly active enzyme has been used to quantitate both aldehyde and ammonia release in the reductive half-reaction. Anaerobic incubation of enzyme and substrate resulted in the production of 2 mol of aldehyde/mol of enzyme, indicating the presence of a cofactor at each enzyme subunit. As anticipated for an aminotransferase reaction, no ammonia release was detected under comparable conditions. Active site titration of enzyme samples of varying specific activity with phenylhydrazine extrapolates to 1 mol of inhibitor/mol of enzyme subunit for BSAO of specific activity = 0.48 unit/mg. These findings contrast with numerous, previous reports of only one functional cofactor per enzyme dimer in copper amine oxidases.  相似文献   

19.
An enzyme capable of the oxidation of hydroxylamine to nitrite was isolated from the obligate methylotroph Methylococcus capsulatus Bath. The absorption spectra in cell extracts, electron paramagnetic resonance spectra, molecular weight, covalent attachment of heme group to polypeptide, and enzymatic activities suggest that the enzyme is similar to cytochrome P-460, a novel iron-containing protein previously observed only in Nitrosomonas europaea. The native and subunit molecular masses of the M. capsulatus Bath protein were 38,900 and 16,390 Da, respectively; the isoelectric point was 6.98. The enzyme has approximately one iron and one copper atom per subunit. The electron paramagnetic resonance spectrum of the protein showed evidence for a high-spin ferric heme. In contrast to the enzyme from N. europaea, a 13-nm blue shift in the soret band of the ferrocytochrome (463 nm in cell extracts to 450 nm in the final sample) occurred during purification. The amino acid composition and N-terminal amino acid sequence of the enzyme from M. capsulatus Bath was similar but not identical to those of cytochrome P-460 of N. europaea. In cell extracts, the identity of the biological electron acceptor is as yet unestablished. Cytochrome c-555 is able to accept electrons from cytochrome P-460, although the purified enzyme required phenazine methosulfate for maximum hydroxylamine oxidation activity (specific activity, 366 mol of O2 per s per mol of enzyme). Hydroxylamine oxidation rates were stimulated approximately 2-fold by 1 mM cyanide and 1.5-fold by 0.1 mM 8-hydroxyquinoline.  相似文献   

20.
《Free radical research》2013,47(1):335-348
The light absorption spectral properties of recornbinant human MnSOD. which contains an N-terminal additional methionyl residue, were investigated as a function of pH in the range 4.5–10.5. Whereas the extinction coefficient, ?M at the UV maximum (282 nm) was essentially independent of pH, the ?M values of the visible spectrum maximum (482 nm) displayed a bell-shaped dependence with a plateau between pH 6.5 and B. Those spectral changes were reversible and the enzymatic activity was not affected by exposure to buffered solutions at 25°C in the pH range 5–10.5. The stability of MnSOD was determined between 25 and 60°C at two different pH: 6.5 and 8.2. The enzyme was found to be considerably more stable at pH 6.5 than at pH 8.2, both toward aggregation and degradation. The gel permeation properties of MnSOD were investigated: the enzyme is a tetramer, with a subunit of 22.2 kD; however. it elutes from a Superose 12 column (Pharmacia) with an apparent molecular weight of ~60kD. Under dissociative conditions (such as guanidine-HCI). molecular weights corresponding to the dimer and monomer could also be demonstrated. It thus appears that the tetramer adopts a non-globular shape. which causes the deviation from the Stokes radius corresponding to its molecular weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号