首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant mammalian glycoproteins produced by the baculovirus-insect cell expression system usually do not have structurally authentic glycans. One reason for this limitation is the virtual absence in insect cells of certain glycosyltransferases, which are required for the biosynthesis of complex, terminally sialylated glycoproteins by mammalian cells. In this study, we genetically transformed insect cells with mammalian beta 1,4-galactosyltransferase and alpha 2,6-sialyltransferase genes. This produced a new insect cell line that can express both genes, serve as hosts for baculovirus infection, and produce foreign glycoproteins with terminally sialylated N-glycans.  相似文献   

2.
This report describes novel baculovirus vectors designed to express mammalian beta1,4-galactosyltransferase and alpha2,6-sialyltransferase genes at early times after infection. Sf9 cells infected with these viral vectors, unlike cells infected with a wild-type baculovirus, produced a sialylated viral glycoprotein during the late phase of infection. Thus, the two mammalian glycosyltransferases encoded by these viral vectors are necessary and sufficient for sialylation of a foreign glycoprotein in insect cells under the conditions used in this study. While some of the new baculovirus vectors described in this study produced less, one produced wild-type levels of infectious budded virus progeny.  相似文献   

3.
The baculovirus-insect cell expression system is widely used to produce recombinant mammalian glycoproteins, but the glycosylated end products are rarely authentic. This is because insect cells are typically unable to produce glycoprotein glycans containing terminal sialic acid residues. In this study, we examined the influence of two mammalian glycosyltransferases on N-glycoprotein sialylation by the baculovirus-insect cell system. This was accomplished by using a novel baculovirus vector designed to express a mammalian alpha2,6-sialyltransferase early in infection and a new insect cell line stably transformed to constitutively express a mammalian beta1,4-galactosyltransferase. Various biochemical assays showed that a foreign glycoprotein was sialylated by this virus-host combination, but not by a control virus-host combination, which lacked the mammalian glycosyltransferase genes. Thus, this study demonstrates that the baculovirus-insect cell expression system can be metabolically engineered for N-glycoprotein sialylation by the addition of two mammalian glycosyltransferase genes.  相似文献   

4.
Baculovirus expression vectors are extensively used for the delivery of foreign genes and expression of recombinant proteins in insect and mammalian cells. Modified baculoviruses containing mammalian promoter elements (BacMam viruses) for an efficient transient and stable transduction of diverse mammalian cells ensure a high level of heterologous protein expression both in vitro and in vivo. Recombinant baculovirus vectors containing mammalian expression cassette with cytomegalovirus promoter, green or red fluorescent protein gene, SV40pA polyadenylation signal, and polylinker MCS were constructed for the delivery of genes encoding hepatitis C virus structural proteins into mammalian cells. In HEK293T and Huh7 cells, formation of glycoprotein complexes and HCV4ike particles was observed. A high efficiency of the baculovirus-medi-ated gene transfer and expression of the virus envelope proteins in mammalian cells was demonstrated using fluorescence, flow cytometry, and immunoblot techniques.  相似文献   

5.
Infection of BHK cells by Sindbis virus leads to rapid inhibition of host cell protein synthesis and cytopathic effects (CPE). We have been studying these events to determine whether the expression of a specific viral gene is required and, in the present study, have focused our attention on the role of the structural proteins--the capsid protein and the two membrane glycoproteins. We tested a variety of Sindbis viruses and Sindbis virus replicons (virus particles containing an RNA that is self-replicating but with some or all of the viral structural protein genes deleted) for their abilities to inhibit host cell protein synthesis and cause CPE in infected BHK cells. Our results show that shutoff of host cell protein synthesis occurred in infected BHK cells when no viral structural proteins were synthesized and also under conditions in which the level of the viral subgenomic RNA was too low to be detected. These results support the conclusion that the early steps in viral gene expression are the ones required for the inhibition of host cell protein synthesis in BHK cells. In contrast, the Sindbis viruses and Sindbis virus replicons were clearly distinguished by the time at which CPE became evident. Viruses that synthesized high levels of the two membrane glycoproteins on the surface of the infected cells caused a rapid (12 to 16 h postinfection) appearance of CPE, and those that did not synthesize the glycoprotein spikes showed delayed (30 to 40 h) CPE.  相似文献   

6.
The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) serves as an efficient viral vector, not only for abundant gene expression in insect cells, but also for gene delivery into mammalian cells. Lentivirus vectors pseudotyped with the baculovirus envelope glycoprotein GP64 have been shown to acquire more potent gene transduction than those with vesicular stomatitis virus (VSV) envelope glycoprotein G. However, there are conflicting hypotheses about the molecular mechanisms of the entry of AcMNPV. Moreover, the mechanisms of the entry of pseudotyped viruses bearing GP64 into mammalian cells are not well characterized. Determination of the entry mechanisms of AcMNPV and the pseudotyped viruses bearing GP64 is important for future development of viral vectors that can deliver genes into mammalian cells with greater efficiency and specificity. In this study, we generated three pseudotyped VSVs, NPVpv, VSVpv, and MLVpv, bearing envelope proteins of AcMNPV, VSV, and murine leukemia virus, respectively. Depletion of membrane cholesterol by treatment with methyl-β-cyclodextrin, which removes cholesterol from cellular membranes, inhibited GP64-mediated internalization in a dose-dependent manner but did not inhibit attachment to the cell surface. Treatment of cells with inhibitors or the expression of dominant-negative mutants for dynamin- and clathrin-mediated endocytosis abrogated the internalization of AcMNPV and NPVpv into mammalian cells, whereas inhibition of caveolin-mediated endocytosis did not. Furthermore, inhibition of macropinocytosis reduced GP64-mediated internalization. These results suggest that cholesterol in the plasma membrane, dynamin- and clathrin-dependent endocytosis, and macropinocytosis play crucial roles in the entry of viruses bearing baculovirus GP64 into mammalian cells.  相似文献   

7.
An improved baculovirus expression vector was developed to expedite screening and facilitate oligonucleotide-directed mutagenesis. This vector contained twin promoters derived from the P10 and polyhedrin genes of Autographica californica nuclear polyhedrosis virus. The P10 promoter directed the synthesis of beta-galactosidase, whereas the polyhedrin promoter controlled the synthesis of foreign gene products. These two genes recombined with wild-type virus genome to yield recombinants which were polyhedrin negative, produced the foreign gene product, and formed blue plaques when beta-galactosidase indicator was present in the agarose overlay. An origin of replication derived from M13 or f1 bacteriophage was also included in the plasmid to permit the synthesis of single-stranded DNA. This template DNA was used to introduce or delete sequences through the process of site-specific mutagenesis. The measles virus virion possesses a membrane envelope which contains two glycoproteins: the hemagglutinin (H) and membrane fusion (F) proteins. The H polypeptide has receptor-binding and hemagglutinating activity, whereas the F protein mediates virus penetration of the host cell, formation of syncytia, and hemolysis of erythrocytes. Genes for these two glycoproteins were inserted into the NheI cloning site of the modified expression vector described above. The vector and purified wild-type viral DNA were introduced into Sf9 insect cells by calcium phosphate precipitation. A mixture of wild-type and recombinant virus was generated and used to infect Sf9 cells, which were subsequently overlaid with agarose. After 3 days, 0.1 to 1% of the plaques became blue in the presence of beta-galactosidase indicator. At least 70% of these blue viral colonies contained the foreign gene of interest as determined by dot blot analysis. Recombinant virus was separated from contaminating wild-type virus through several rounds of plaque purification. Insect cells were then infected with the purified recombinants, and synthesis of H and F proteins were verified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by immunoblot detection and Coomassie blue staining. Glycosylation of the proteins appeared to be impaired somewhat, and the precursor to the F protein was not completely cleaved by the proteases present in insect host cells. On the other hand, both proteins appeared to be active in hemagglutination, hemolysis, and cell fusion assays. Levels of synthesis were in the order of 50 to 150 mg of protein per 10(8) cells.  相似文献   

8.
9.
Alphaviruses, including several emerging human pathogens, are a large family of mosquito-borne viruses with Sindbis virus being a prototypical member of the genus. The host factor requirements and receptors for entry of this class of viruses remain obscure. Using a Drosophila system, we identified the divalent metal ion transporter natural resistance-associated macrophage protein (NRAMP) as a host cell surface molecule required for Sindbis virus binding and entry into Drosophila cells. Consequently, flies mutant for dNRAMP were protected from virus infection. NRAMP2, the ubiquitously expressed vertebrate homolog, mediated binding and infection of Sindbis virus into mammalian cells, and murine cells deficient for NRAMP2 were nonpermissive to infection. Alphavirus glycoprotein chimeras demonstrated that the requirement for NRAMP2 is at the level of Sindbis virus entry. Given the conserved structure of alphavirus glycoproteins, and the widespread use of transporters for viral entry, other alphaviruses may use conserved multipass membrane proteins for infection.  相似文献   

10.
11.
Extracellular cleavage of virus envelope fusion glycoproteins by host cellular proteases is a prerequisite for the infectivity of mammalian and nonpathogenic avian influenza viruses, and Sendai virus. Here we report a protease present in the airway that, like tryptase Clara, can process influenza A virus haemagglutinin and Sendai virus envelope fusion glycoprotein. This protease was extracted from the membrane fraction of rat lungs, purified and then identified as a mini-plasmin. Mini-plasmin was distributed predominantly in the epithelial cells of the upward divisions of bronchioles and potentiated the replication of broad-spectrum influenza A viruses and Sendai virus, even that of the plasmin-insensitive influenza A virus strain. In comparison with plasmin, its increased hydrophobicity, leading to its higher local concentrations on membranes, and decreased molecular mass may enable mini-plasmin to gain ready access to the cleavage sites of various haemagglutinins and fusion glycoproteins after expression of these viral proteins on the cell surface. These findings suggest that mini-plasmin in the airway may play a pivotal role in the spread of viruses and their pathogenicity.  相似文献   

12.
Viral vectors have emerged as an important tool for manipulating gene expression in the adult mammalian brain. The adult brain is composed largely of nondividing cells, and therefore DNA viruses have become the vehicle of choice for neurobiologists interested in somatic gene transfer. Recombinant viral vectors based upon adenovirus or herpes simplex virus have been created in which a gene essential for viral replication is removed and a gene of interest is inserted in the viral genome. While this eliminates pathogenicity due to viral replication, retention of viral genes and continued expression of these genes may limit the potential of the current generation of vectors. Defective viral vectors represent a different approach, in which only viral recognition signals are used to allow packaging of foreign DNA into a viral coat while eliminating the possibility of viral gene expression within target cells. The defective HSV vector has been used to transfer genes into the adult rat brain. This vector has also been used for analysis of the preproenkephalin promoterin vivo,and important regions of this promoter have been identified using this technique. A modification ofin situPCR has been developed as an adjunctive tool for sensitively documenting the presence of vector DNA within target cells duringin vivopromoter studies. Finally, the adenoassociated virus vector has been used as the first fully defective DNA viral vector, which also eliminates any contamination by helper viruses. This vector can transfer genes into the mammalian brain and has shown significant behavioral recovery in a rodent model of Parkinson's disease. Future work will undoubtedly result in still more diverse and improved vectors; however, these studies have documented the importance of viral vectors to both basic neurobiology and the potential treatment of neurologic disease.  相似文献   

13.
Human respiratory syncytial virus (HRSV) is released from the apical membrane of polarized epithelial cells. However, little is known about the processes of assembly and release of HRSV and which viral gene products are involved in the directional maturation of the virus. Based on previous studies showing that the fusion (F) glycoprotein contained an intrinsic apical sorting signal and that N- and O-linked glycans can act as apical targeting signals, we investigated whether the glycoproteins of HRSV were involved in its directional targeting and release. We generated recombinant viruses with each of the three glycoprotein genes deleted individually or in groups. Each deleted gene was replaced with a reporter gene to maintain wild-type levels of gene expression. The effects of deleting the glycoprotein genes on apical maturation and on targeting of individual proteins in polarized epithelial cells were examined by using biological, biochemical, and microscopic assays. The results of these studies showed that the HRSV glycoproteins are not required for apical maturation or release of the virus. Further, deletion of one or more of the glycoprotein genes did not affect the intracellular targeting of the remaining viral glycoproteins or the nucleocapsid protein to the apical membrane.  相似文献   

14.
昆虫杆状病毒应用于哺乳动物基因治疗的研究进展   总被引:5,自引:0,他引:5  
杆状病毒是一类宿主特异性的昆虫病毒。昆虫杆状病毒表达系统是一个高效的真核表达系统,被广泛用于在昆虫细胞或昆虫幼虫中生产外源蛋白质。杆状病毒不能感染哺乳动物,却可以进入不同物种和组织来源的多种哺乳动物细胞,并在合适的哺乳动物启动子控制下表达外源基因。杆状病毒在哺乳动物细胞中不能复制,对细胞没有毒性,加上杆状病毒本身具有基因组大、可操作性好等优点,作为哺乳动物基因治疗的载体,将治疗基因传递给哺乳动物细胞已受到了广泛关注。在此就杆状病毒作为基因治疗载体的最新研究进展进行了阐述并探讨其发展趋势。  相似文献   

15.
Baculovirus vector systems are extensively used for the expression of foreign gene products in insect and mammalian cells. New advances increase the possibilities and applications of the baculovirus expression system, which makes it possible to express multiple genes simultaneously within a single infected insect cell and to obtain multimeric proteins functionally similar to their natural analogs. Recombinant viruses with expression cassettes active in mammalian cells are used to deliver and express genes in mammalian cells in vitro and in vivo. Further improvement of the baculovirus expression system and its adaptation to specific target cells can open up a wide variety of applications. The review considers recent achievements in the use of modified baculoviruses to express recombinant proteins in eukaryotic cells, advantages and drawbacks of the baculovirus expression system, and ways to optimize the expression of recombinant proteins in both insect and mammalian cell lines.  相似文献   

16.
杆状病毒(Baculovirus)是一种以昆虫为唯一宿主的病毒, 可用做生物杀虫剂或作为表达载体在昆虫细胞中大量表达外源蛋白, 制备疫苗。研究发现, 在哺乳动物细胞中携带哺乳动物启动子的重组杆状病毒能启动下游外源基因的表达但病毒不能在哺乳动物细胞中增值, 对细胞毒性小, 转导成功的细胞可以稳定传代并有效表达外源基因, 哺乳动物细胞比昆虫细胞对蛋白质具有更好的翻译后修饰, 表达出的蛋白结构更接近天然蛋白。因此, 杆状病毒可作为一种新型的哺乳动物细胞基因转移载体, 用于表达外源基因及作为一种基因治疗载体, 具有巨大潜力, 日益受到人们的关注。本文对杆状病毒作为一种表达载体在哺乳动物细胞中表达的研究进展进行了综述。  相似文献   

17.
Human immunodeficiency virus type 1 (HIV-1) has been shown to exhibit a specific basolateral release in polarized epithelial cells. Previous investigators have used vaccinia virus recombinants expressing HIV proteins to demonstrate that virus release is nonpolarized in the absence of viral envelope glycoproteins. In this study, we developed a transient expression system which allows the use of Madin-Darby canine kidney polarized epithelial cells directly grown on semipermeable membranes. This procedure allowed us to investigate polarized HIV viral budding following introduction of proviral DNA constructs. Expression of env gene products in trans demonstrated the ability to polarize env-negative viruses in a dose-dependent manner. The targeting signal for polarized virus release was shown to be present in the envelope gp41 transmembrane protein and absent from the gp120 portion of env. At least part of this signal is within the gp41 intracytoplasmic domain. Mutants of the p17gag matrix protein were shown to be nonpolarized only when unable to interact with the envelope glycoproteins. Together, these data are consistent with a model of polarized virus budding in which capsid proteins, lacking a targeting signal, are targeted for specific basolateral release via an interaction of p17 with the envelope glycoprotein containing the polarization signal in its intracytoplasmic domain.  相似文献   

18.
Many host cell surface proteins, including viral receptors, are incorporated into enveloped viruses. To address the functional significance of these host proteins, murine leukemia viruses containing the cellular receptors for Rous sarcoma virus (Tva) or ecotropic murine leukemia virus (MCAT-1) were produced. These receptor-pseudotyped viruses efficiently infect cells expressing the cognate viral envelope glycoproteins, with titers of up to 105 infectious units per milliliter for the Tva pseudotypes. Receptor and viral glycoprotein specificity and functional requirements are maintained, suggesting that receptor pseudotype infection recapitulates events of normal viral entry. The ability of the Tva and MCAT-1 pseudotypes to infect cells efficiently suggests that, in contrast to human immunodeficiency virus type 1 entry, neither of these retroviral receptors requires a coreceptor for membrane fusion. In addition, the ability of receptor pseudotypes to target infected cells suggests that they may be useful therapeutic reagents for directing infection of viral vectors. Receptor-pseudotyped viruses may be useful for identifying new viral receptors or for defining functional requirements of known receptors. Moreover, this work suggests that the production of receptor pseudotypes in vivo could provide a mechanism for expanded viral tropism with potential effects on the pathogenesis and evolution of the virus.  相似文献   

19.
The baculovirus vector systems has been extensively used for the expression of foreign gene products in insect and mammalian cells. New advances increase the possibilities and applications of the baculovirus expression system, which has the capability to express multiple genes simultaneously within a single infected insect cells and to use recombinant virus with mammalian cell-active expression cassettes to permit expression of recombinant proteins in mammalian cells in vitro and in vivo. Future investigations of the baculovirus expression system designed for specific target cells, can open wide variety of applications. This review summarizes the recent achievements in applications the baculovirus vector systems and optimization recombinant protein expression in both insect and mammalian cell lines.  相似文献   

20.
Sindbis and vesicular stomatitis viruses were grown in a line (termed 15B) of Chinese hamster ovary (CHO) cells that is deficient in a specific UDP-N-acetyl-glucosamine:glycoprotein N-acetylglucosaminyltransferase. Both viruses replicated normally in the cell line, but the glycoproteins of the released virus migrated faster on sodium didecyl sulfate-polyacrylamide gels than did glycoproteins of virus grown in parent CHO cells. Digestion of the viral glycoproteins with Pronase followed by gel filtration demonstrated that the glycoproteins with Pronase followed by gel filtration demonstrated that the glycopeptides of Sinbis-15B virus were much smaller than the glycopeptides of Sindbis-CHO virus. In addition, Sindbis-15B viral glycopeptides but not Sindbis-CHO viral glycopeptides contained terminal alpha-mannose residues as shown by their susceptibility to alpha-mannosidase digestion. These findings demonstrate that the oligosaccharide units of the glycoproteins of vesicular stomatitis and Sinbis viruses are altered when the viruses are grown in 15B cells. We conclude that the N-acetylglucosaminyltransferase that is missing in 15B cells normally participates in the biosynthesis of the oligosaccharide units of the viral glycoproteins, and in the absence of this enzyme incomplete oligosaccharide chanis are produced. Viruses released from 15B cells appear to retain full infectivity; Sindbis-15B virus, however, showed a significant decrease in hemagglutination titer compared with that of Sindbis-CHO virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号