首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The new imidazole-coordinated chemotherapeutics with low epithelial toxicity (NICE) presented in this article feature innovative drugs that combine epithelial toxicity comparable with that of carboplatin with novel carrier ligands optimized for DNA interaction. Recent identification of the pivotal role of basolateral organic cation transporters (OCTs) in cisplatin nephrotoxicity by a new model system (electrical resistance breakdown assay) facilitated the search for substances with a favorable organotoxic profile. The assay uses the high transepithelial electrical resistance (TEER) of the C7-clone of Madin-Darby canine kidney (MDCK) cells and the exclusive basolateral expression of OCT2 in these cells. TEER and caspase-3 activity of MDCK-C7-cells grown on microfilter membranes were monitored in response to exposure of either the apical or basolateral plasma membrane to platinum complexes. The impact of complexes on cancer cell lines was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bomide tests. Effects of substituents on pharmacological properties of NICE were systematically investigated by introducing sterically demanding groups as well as electron-donating and electron-withdrawing groups. Derivatives of NICE showed different renal epithelial toxic profiles and effects on cancer cells. NICE were significantly less toxic than cis-or oxaliplatin. The chlorine substituted NICE had no effect on epithelial integrity but markedly cytotoxic activity against amelanotic melanoma cells. Together, side effect targeted screening for new anticancer drugs with the electrical resistance breakdown assay offers an interesting approach for identifying and investigating new compounds. NICE feature the first group of platinum-based cytostatics discovered by using this system for systematic screening of new chemotherapeutics with low renal epithelial toxicity.  相似文献   

2.
Platinum complex toxicity in cultured renal epithelia.   总被引:1,自引:0,他引:1  
BACKGROUND: Cisplatin is a potent antitumor drug but its clinical use is limited by nephrotoxic side effects. We have found recently, that nephrotoxicity of platinum complexes is related to basolateral organic cation transport. In this study, effects of cell culture conditions on platinum complex toxicity and organic cation transport were investigated by an in vitro system that utilizes the high TransEpithelial Electrical Resistance (TEER) of the C7-clone of the MDCK-(Madin-Darby-Canine-Kidney) cells. METHODS: TEER and caspase-3 activity of cells in microfilter membrane cups were measured after exposure of apical or basolateral membranes to 100 microM cis-, oxali-, or carboplatin. Caspase-3 activity after platinum complex exposure and uptake of the cation ASP+ (4-(4-(diethylamino)styryl)-N-methylpyridinium) of cells on filter membranes and impermeable supports (e.g. culture flasks) were compared. Atomic Force Microscopy (AFM) was used to depict morphometric differences between both culture conditions. RESULTS: In cells on filter membranes, cis-, oxali- and carboplatin induced loss of epithelial monolayer integrity by apoptosis via activation of caspase-3 to different extents. Basolateral application of platinum complexes enhanced toxicity dramatically and uptake of ASP+ from the basolateral side was higher than from the apical medium compartment. Intracellular accumulation of ASP+ was less distinct in cells grown on impermeable supports. Only cisplatin, the most lipophilic investigated complex, induced activation of caspase-3 in these cells. AFM disclosed more prominent cell-cell contacts in cells grown on filter membranes. CONCLUSION: We conclude that toxicity of hydrophilic substances can be underestimated in cells grown on solid supports, if basolateral transport mechanisms are involved. We suggest that unhindered access to basolateral transporters is responsible for higher levels of organic cation uptake and apoptosis in cells on filter membranes, even though more prominent cell-cell contacts indicate a better barrier function.  相似文献   

3.
Proteolytic cleavage of extracellular matrix (ECM) and disruption of tissue architecture are fundamental features of tumor cell invasion. The proteolytic activity is focused in close proximity to the tumor cells. Here, we describe the possibility to quantify local proteolytic activity in the microenvironment of larger cell populations by the electrical resistance breakdown assay. The assay utilizes the transepithelial electrical resistance (TEER) of an epithelial monolayer as a sensitive indicator of monolayer integrity and permeability. Local destruction of ECM by single tumor cells was demonstrated by a second assay, based on a fluorescent matrix coating on cover slides. Local digestion of the matrix results in a reduction of fluorescence. Primary cells derived from high and low grade brain tumors as well as established cell lines of malignant gliomas and non-neural tumors of different origin (melanoma, cervical carcinoma, and breast carcinoma) were compared. Differences in proteolytic activity between tumor entities were demonstrated in both assays. Primary cells of high grade gliomas and cell lines showed TEER breakdown and local matrix destruction, while low grade brain tumors lacked matrix disintegration and disruption of cell monolayers. Taken together, both assays are capable of demonstrating local proteolytic activity and thus are versatile tools for distinguishing high and low invasive tumor cells with a potential application as diagnostic and prognostic markers in clinical investigations. The advantage of the matrix digestion assay is the requirement of only very low tumor cell numbers, whereas measurement of TEER enables precise quantification of local proteolytic processes in large and even heterogeneous tumor cultures.  相似文献   

4.
5.
In cell culture, both endothelial and epithelial cell monolayers have been found to generate structurally similar tight junctional complexes, as assessed by thin complexes of the two cell types are, at least in part, responsible for the very different permeability characteristics of native endothelial and epithelial cell monolayers. The purpose of this work was to compare cultured endothelial and epithelial cells with respect to the function of their tight junctional complexes in regulating the movement of macromolecules and ions across the cell monolayers, and define functional parameters to characterize the tight junctional complexes. Bovine aorta endothelial cells and T84 colonic carcinoma epithelial cells were cultured on a microporous membrane support. The permeability coefficients of inulin, albumin, and insulin were determined with the cell monolayers and compared with the permeability coefficients obtained with 3T3-C2 fibroblasts, a cell line that does not generate tight junctions. Electrical resistance measurements across the monolayer-filter systems were also compared. The permeability coefficient of albumin across the endothelial cell monolayer compared favorably with other reported values. Likewise, the electrical resistance across the T84 cell monolayer was in good agreement with published values. Utilizing permeability coefficients for macromolecules as an index of tight junction function, we found that a distinction between a lack of tight junctions (fibroblasts), the presence of endothelial tight junctions, and the presence of epithelial tight junctions was readily made. However, when utilizing electrical resistance as an index of tight junction function, identical measurements were obtained with fibroblasts and endothelial cells. This indicates that more than one index of tight junction function is necessary to characterize the junctional complexes. Although structurally similar, epithelial cell and endothelial cell tight junctions perform very different functions, and, from our data, we conclude that the demonstration of tight junctional structures by electron microscopy is not relevant to the functional nature of the junction: structure does not imply function. A minimal assessment of tight junction function should rely on both the determination of the electrical resistance across the cell monolayer, and the determination of the permeability coefficients of selected macromolecules.  相似文献   

6.
Claudin-5 is a transmembrane protein reported to be primarily present in tight junctions of endothelia. Unexpectedly, we found expression of claudin-5 in HT-29/B6 cells, an epithelial cell line derived from human colon. Confocal microscopy showed colocalization of claudin-5 with occludin, indicating its presence in the tight junctions. By contrast, claudin-5 was absent in the human colonic cell line Caco-2 and in Madin-Darby canine kidney cells (MDCK sub-clones C7 and C11), an epithelial cell line derived from the collecting duct. To determine the contribution of claudin-5 to tight junctional permeability in cells of human origin, stable transfection of Caco-2 with FLAG-claudin-5 cDNA was performed. In addition, clone MDCK-C7 was transfected. Synthesis of the exogenous FLAG-claudin-5 was verified by Western blot analysis and confocal fluorescent imaging by employing FLAG-specific antibody. FLAG-claudin-5 was detected in transfected cells in colocalization with occludin, whereas cells transfected with the vector alone did not exhibit specific signals. Resistance measurements and mannitol fluxes after stable transfection with claudin-5 cDNA revealed a marked increase of barrier function in cells of low genuine transepithelial resistance (Caco-2). By contrast, no changes of barrier properties were detected in cells with a high transepithelial resistance (MDCK-C7) after stable transfection with claudin-5 cDNA. We conclude that claudin-5 is present in epithelial cells of colonic origin and that it contributes to some extent to the paracellular seal. Claudin-5 may thus be classified as a tight-junctional protein capable of contributing to the "sealing" of the tight junction.  相似文献   

7.
The aim of this study was to determine the influence of cisplatin and novel dinuclear platinum(II) complexes on the electrical properties of the membrane and the level of lipid peroxidation in the human breast cancer cell lines MDA-MB-231 and MCF-7. The basal electrical surface properties of cells are known. Changes in cell function may affect these surface properties, and those changes can be detected by electrokinetic measurements. The surface charge density of the breast cancer cell lines MDA-MB-231 and MCF-7 were measured as a function of pH. A four-component equilibrium model was used to describe the interaction between the solution ions and the breast cancer cell surface. The experimental and the theoretical charge variation curves of the breast cancer cells at pH 2.5–9 were in agreement. Measurements of the cellular malondialdehyde levels with high performance liquid chromatography were used to determine the extent of lipid peroxidation. The acid and base functional group concentrations and average association constants with hydroxyl ions were smaller in breast cancer cell membranes treated with cisplatin or novel dinuclear platinum(II) complexes compared with untreated cancer cells, and the average association constants with hydrogen ions were higher. The levels of lipid peroxidation products in breast cancer cells treated with cisplatin or novel dinuclear platinum(II) complexes were also higher than in untreated cancer cells.  相似文献   

8.
During certain developmental processes, as well as during tumor progression, polarized epithelial cells integrated within multicellular structures convert into scattered, freely migrating fibroblast-like cells. Despite the biological and clinical importance of this phenomenon, the intracellular biochemical cascades that control the switch between the epithelial and mesenchymal phenotypes have not been elucidated. Using Madin-Darby canine kidney (MDCK) cells (clone C7) as a model system, we have assessed the potential role of the mitogen-activated protein kinase (MAPK)/ extracellular signal-regulated kinase (ERK) cascade in the modulation of epithelial plasticity. When grown in three-dimensional collagen gels, MDCK-C7 cells form spherical cysts composed of polarized epithelial cells circumscribing a central lumen. This morphogenetic behavior is profoundly subverted in MDCK-C7 cells expressing a constitutively active MAPK/ERK kinase 1 (caMEK1) mutant (C7-caMEK1 cells). When suspended in collagen gels, C7-caMEK1 cells assume an elongated fibroblastoid shape and are unable to generate multicellular cysts. In addition, when seeded onto the surface of a collagen gel, C7-caMEK1 cells penetrate extensively into the underlying matrix, unlike wild-type and mock-transfected MDCK-C7 cells, which remain confined to the surface of the gel. Similar changes in morphogenetic and invasive properties are observed in MDCK-C7F cells, a nontransfected, stably dedifferentiated derivative of MDCK-C7 cells that expresses substantially increased ERK2 activity. Both C7-caMEK1 and MDCK-C7F cells but not wild-type or mock-transfected MDCK-C7 cells express activated M(r) 72,000 gelatinase A [matrix metalloproteinase (MMP)-2] as well as elevated levels of membrane type-1 MMP. Synthetic MMP inhibitors as well as recombinant tissue inhibitor of metalloproteinases 2 and 3 suppress the invasion of collagen gels and restore the capacity of C7-caMEK1 cells to form cysts, thereby implicating the membrane type-1 MMP/MMP-2 proteolytic system in epithelial cell invasiveness and loss of multicellular organization. Taken together, our data demonstrate that increased activity of the MEK1-ERK2 signaling module in MDCK-C7 cells is associated with failure of morphogenesis and expression of a highly invasive phenotype. Sustained activation of the MAPK cascade therefore results in the destabilization of the three-dimensional architecture and the conversion of polarized epithelial cells into migrating mesenchymal-like cells.  相似文献   

9.
Oxidative stress in the small intestinal epithelium is a major cause of barrier malfunction and failure to regenerate. This study presents a functional in vitro model using the porcine small intestinal epithelial cell line IPEC-J2 to examine the effects of oxidative stress and to estimate the antioxidant and regenerative potential of Trolox, ascorbic acid and glutathione monoethyl ester. Hydrogen peroxide and diethyl maleate affected the tight junction (zona occludens-1) distribution, significantly increased intracellular oxidative stress (CM-H2DCFDA) and decreased the monolayer integrity (transepithelial electrical resistance and FD-4 permeability), viability (neutral red) and wound healing capacity (scratch assay). Trolox (2 mM) and 1 mM ascorbic acid pre-treatment significantly reduced intracellular oxidative stress, increased wound healing capacity and reduced FD-4 permeability in oxidatively stressed IPEC-J2 cell monolayers. All antioxidant pre-treatments increased transepithelial electrical resistance and viability only in diethyl maleate-treated cells. Glutathione monoethyl ester (10 mM) pre-treatment significantly decreased intracellular oxidative stress and monolayer permeability only in diethyl maleate-treated cells. These data demonstrate that the IPEC-J2 oxidative stress model is a valuable tool to screen antioxidants before validation in piglets.  相似文献   

10.
Intrinsic or acquired resistance to cisplatin in cancer cells remains a major obstacle to successful chemotherapy. The clinically relevant genetic and molecular mechanisms of resistance have not yet been identified. Cisplatin-resistant (CP-r) human KB epidermoid carcinoma cell lines (HeLa) resistant to varying levels of cisplatin after single and multiple selection steps are cross-resistant to other platinum compounds and to methotrexate. Intraspecies hybrids of the sensitive and KB CP-r cells were fused with HeLa D98(OR) CP-s, hypoxanthine-aminopterin-thymidine (HAT) sensitive, ouabain resistant, to determine whether cisplatin resistance is dominant or recessive. Cell-cell hybridization between the sensitive cells and single-step or two-step KB CP-r cells both indicated codominance of cisplatin resistance compared to hybrids between sensitive cell lines (D98(OR)xKB). The hybrids between sensitive cell lines (D98xKB) and a single-step CP-r KB cell line (D98xKB-CP.5) also were cross-resistant to carboplatin and methotrexate. In addition, the relatively slower growth rate of CP-r cells appears to be dominant. In the two-step CP-r KB cell line, KB-CP1, resistance is no more dominant than in the single-step CP-r KB cell line, KB-CP.5, suggesting that one of the two steps of resistance in KB-CP1 may not be dominant. These dominance data suggest that it might be possible to identify one or more genes responsible for cisplatin resistance by gene transfer from a resistant cell line to a sensitive cell line.  相似文献   

11.
Although chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting side effect of platinum drugs, the mechanisms of this toxicity remain unknown. Previous work in our laboratory suggests that cisplatin-induced CIPN is secondary to DNA damage which is susceptible to base excision repair (BER). To further examine this hypothesis, we studied the effects of cisplatin, oxaliplatin, and carboplatin on cell survival, DNA damage, ROS production, and functional endpoints in rat sensory neurons in culture in the absence or presence of reduced expression of the BER protein AP endonuclease/redox factor-1 (APE1). Using an in situ model of peptidergic sensory neuron function, we examined the effects of the platinum drugs on hind limb capsaicin-evoked vasodilatation. Exposing sensory neurons in culture to the three platinum drugs caused a concentration-dependent increase in apoptosis and cell death, although the concentrations of carboplatin were 10 fold higher than cisplatin. As previously observed with cisplatin, oxaliplatin and carboplatin also increased DNA damage as indicated by an increase in phospho-H2AX and reduced the capsaicin-evoked release of CGRP from neuronal cultures. Both cisplatin and oxaliplatin increased the production of ROS as well as 8-oxoguanine DNA adduct levels, whereas carboplatin did not. Reducing levels of APE1 in neuronal cultures augmented the cisplatin and oxaliplatin induced toxicity, but did not alter the effects of carboplatin. Using an in vivo model, systemic injection of cisplatin (3 mg/kg), oxaliplatin (3 mg/kg), or carboplatin (30 mg/kg) once a week for three weeks caused a decrease in capsaicin-evoked vasodilatation, which was delayed in onset. The effects of cisplatin on capsaicin-evoked vasodilatation were attenuated by chronic administration of E3330, a redox inhibitor of APE1 that serendipitously enhances APE1 DNA repair activity in sensory neurons. These outcomes support the importance of the BER pathway, and particularly APE1, in sensory neuropathy caused by cisplatin and oxaliplatin, but not carboplatin and suggest that augmenting DNA repair could be a therapeutic target for CIPN.  相似文献   

12.
Carboplatin, an analogue of "classical" cis-diamminedichloridoplatinum(II) (cisplatin), is a widely used second-generation platinum anticancer drug. Cytotoxicity of cisplatin and carboplatin is mediated by platinum-DNA adducts. Markedly higher concentrations of carboplatin are required, and the rate of adduct formation is considerably slower. The reduced toxic effects in tumor cells and a more acceptable side-effect profile are attributable to the lower reactivity of carboplatin with nucleophiles, since the cyclobutanedicarboxylate ligand is a poorer leaving group than the chlorides in cisplatin. Recently, platinum complexes were shown to be particularly attractive as potential photochemotherapeutic anticancer agents. Selective photoactivation of platinum complexes by irradiation of cancer cells may avoid enhancement of toxic side-effects, but may increase toxicity selectively in cancer cells and extend the application of photoactivatable platinum complexes to resistant cells and to a wider range of cancer types. Therefore, it was of interest to examine whether carboplatin can be affected by irradiation with light to the extent that its DNA binding and cytotoxic properties are altered. We have found that carboplatin is converted to species capable of enhanced DNA binding by UVA irradiation and consequently its toxicity in cancer cells is markedly enhanced. Recent advances in laser and fiber-optic technologies make it possible to irradiate also internal organs with light of highly defined intensity and wavelength. Thus, carboplatin is a candidate for use in photoactivated cancer chemotherapy.  相似文献   

13.
Three cancerostatic platinum compounds (CPCs) including cisplatin, carboplatin and oxaliplatin are complexes of Pt and classified as probable carcinogenic compounds to humans. This study aimed to perform health risk assessment of platinum cytotoxic drugs for drinking water by developing a sensitive analytical method in the water resource of Qom Province in the central part of Iran. Concentrations of the platinum drugs were determined, including 052 ± 0.2 µg/L for cisplatin, 0.94 ± 0.36 µg/L for carboplatin and 0.27 ± 0.16 µg/L for oxaliplatin in influent samples, and 0.24 ± 0.07 µg/L for cisplatin, 0.28 ± 0.05 µg/L for carboplatin and 0.11 ± 0.01 µg/L for oxaliplatin in effluent samples. The results indicated that in all the well water samples related to the groundwater, the concentration of the platinum-based compounds was lower than the calculated limits of quantification (LOQ); the concentration of cisplatin, carboplatin and oxaliplatin across the samples in the station of drinking water distribution was also below the limits of detection (LOD). The resulting margin of exposure (MOE) is lower than one (MOE < 1) for the three groups including children, pregnant women and lactation women related to cisplatin and carboplatin was determined through exposure to raw and untreated drinking water. Further research is recommended to be conducted in this area, particularly environmental fate of metabolites and transformation products.  相似文献   

14.
Although platinum‐based drugs are widely used chemotherapeutics for cancer treatment, the determinants of tumor cell responsiveness remain poorly understood. We show that the loss of subunits LRRC8A and LRRC8D of the heteromeric LRRC8 volume‐regulated anion channels (VRACs) increased resistance to clinically relevant cisplatin/carboplatin concentrations. Under isotonic conditions, about 50% of cisplatin uptake depended on LRRC8A and LRRC8D, but neither on LRRC8C nor on LRRC8E. Cell swelling strongly enhanced LRRC8‐dependent cisplatin uptake, bolstering the notion that cisplatin enters cells through VRAC. LRRC8A disruption also suppressed drug‐induced apoptosis independently from drug uptake, possibly by impairing VRAC‐dependent apoptotic cell volume decrease. Hence, by mediating cisplatin uptake and facilitating apoptosis, VRAC plays a dual role in the cellular drug response. Incorporation of the LRRC8D subunit into VRAC substantially increased its permeability for cisplatin and the cellular osmolyte taurine, indicating that LRRC8 proteins form the channel pore. Our work suggests that LRRC8D‐containing VRACs are crucial for cell volume regulation by an important organic osmolyte and may influence cisplatin/carboplatin responsiveness of tumors.  相似文献   

15.
Tight junctions between brain microvessel endothelial cells (BMECs) maintain the blood-brain barrier. Barrier breakdown is associated with brain tumors and central nervous system diseases. Tumor cell-secreted vascular endothelial growth factor (VEGF) increases microvasculature permeability in vivo and is correlated with the induction of clinically severe brain tumor edema. Here we investigated the permeability-increasing effect and tight junction formation of VEGF. By measuring [(14)C]sucrose flux and transendothelial electrical resistance (TER) across BMEC monolayer cultures, we found that VEGF increased sucrose permeability and decreased TER. VEGF also caused a loss of occludin and ZO-1 from the endothelial cell junctions and changed the staining pattern of the cell boundary. Western blot analysis of BMEC lysates revealed that the level of occludin but not of ZO-1 was lowered by VEGF treatment. These results suggest that VEGF increases BMEC monolayer permeability by reducing occludin expression and disrupting ZO-1 and occludin organization, which leads to tight junction disassembly. Occludin and ZO-1 appear to be downstream effectors of the VEGF signaling pathway.  相似文献   

16.
Cellular uptake of a drug is one of the most important factors influencing its pharmacodynamics and pharmacokinetics. Our laboratory has previously studied platinum uptake following cisplatin, carboplatin and oxaliplatin treatment at sub-lethal doses of selected tumour cell lines. Here we report on the influence of temperature on dose-dependent antiproliferative effects, cellular uptake and DNA platination of these platinum-based drugs tested on MCF-7 human mammary carcinoma cell line. Inductively coupled plasma-mass spectrometry (ICP-MS) technique has been chosen to perform Pt determinations on cells treated with drug concentrations similar with those usually found in vivo in human plasma. The high sensitivity and analytical rapidity of this technique made possible to carry out a very large amount of Pt determinations (about 300) necessary for this study. Hyperthermia (43 degrees C) proved a synergistic effect with cisplatin on cell growth inhibition, while only an additive effect was demonstrated for carboplatin and oxaliplatin. This behaviour might be explained by the higher DNA platination ratio between data at 43 and 37 degrees C of cisplatin with respect to those of carboplatin and oxaliplatin.  相似文献   

17.
The use of platinum complexes for the therapy of breast cancer is an emerging new treatment modality. To gain insight into the mechanisms underlying cisplatin resistance in breast cancer, we used estrogen receptor-positive MCF-7 cells as a model system. We generated cisplatin-resistant MCF-7 cells and determined the functional status of epidermal growth factor receptor (EGFR), MAPK, and AKT signaling pathways by phosphoreceptor tyrosine kinase and phospho-MAPK arrays. The cisplatin-resistant MCF-7 cells are characterized by increased EGFR phosphorylation, high levels of AKT1 kinase activity, and ERK1 phosphorylation. In contrast, the JNK and p38 MAPK modules of the MAPK signaling pathway were inactive. These conditions were associated with inactivation of the p53 pathway and increased BCL-2 expression. We investigated the expression of genes encoding the ligands for the ERBB signaling cascade and found a selective up-regulation of amphiregulin expression, which occurred at later stages of cisplatin resistance development. Amphiregulin is a specific ligand of the EGFR (ERBB1) and a potent mitogen for epithelial cells. After exposure to cisplatin, the resistant MCF-7 cells secreted amphiregulin protein over extended periods of time, and knockdown of amphiregulin expression by specific short interfering RNA resulted in a nearly complete reversion of the resistant phenotype. To demonstrate the generality and importance of our findings, we examined amphiregulin expression and cisplatin resistance in a variety of human breast cancer cell lines and found a highly significant correlation. In contrast, amphiregulin levels did not significantly correlate with cisplatin resistance in a panel of lung cancer cell lines. We have thus identified a novel function of amphiregulin for cisplatin resistance in human breast cancer cells.  相似文献   

18.
Platinum‐based drugs such as cisplatin and carboplatin are on the WHO model list of essential medicines, as highly effective chemotherapeutic drugs for the treatment of various solid tumors. These drugs react with purine residues in DNA, thereby causing DNA damage, inhibition of cell division, and eventually cell death. However, the mechanisms whereby platinum‐based drugs enter cancer cells remained poorly understood. In this issue, Planells‐Cases et al ( 2015 ) provide evidence that cells take up cisplatin and carboplatin via volume‐regulated anion channels (VRACs), more specifically VRACs composed of LRRC8A and LRRC8D subunits.  相似文献   

19.
The discovery and development of new platinum-containing anticancer drugs have represented an integral part of anticancer drug development at the Institute of Cancer Research, Sutton, over almost 20 years. As part of a collaboration with chemists at Johnson Matthey, later AnorMED, four major new classes of platinum drug have been discovered, three of which have entered clinical trial. Earlier studies led to the clinical development of the less toxic analogue carboplatin and JM216, the first orally administerable platinum drug. In recent years, the focus has been on two lead complexes designed to overcome the major mechanisms of tumour resistance to cisplatin: JM335 (trans-ammine (cyclohexylaminedichlorodihydroxo) platinum(IV)), an active trans platinum complex; and ZD0473 (cis-amminedichloro(2-methylpyridine) platinum(II)), a sterically hindered complex shown to be less reactive towards thiol-containing molecules than cisplatin. JM335 shows some circumvention of acquired cisplatin resistance in vitro and exhibits unique cellular pharmacological properties in comparison to cisplatin or its cis-isomer in terms gene-specific repair of adducts on DNA and the rate of induction of apoptosis. ZD0473 is now in phase I clinical trial. Myelosuppression is the dose-limiting toxicity at a dose of 130 mg/m2 given i.v. every 3 weeks and there has been evidence of antitumour activity. ZD0473-resistant human ovarian carcinoma cell lines have been established in vitro. Some mechanisms of resistance common to those described for cisplatin (decreased drug uptake, increased glutathione) have been observed plus, in one cell line, increased BCL2 levels and loss of the DNA mismatch repair protein MLH1.  相似文献   

20.
A series of alkylglycosides has been evaluated on human cell lines to determine its ability to open cellular tight junctions. Alkylglycosides were applied to cell monolayers; the resulting change in resistance was determined by transepithelial electrical resistance measurements. Change in resistance across cell monolayers is an indieation of tight junction activation, whereas subsequent increase in resistance signifies monolayer recovery. Of the 13 alkylglycosides tested, 4 caused irreversible solubilization of cell membranes, 5 allowed a partial recovery of the monolayer after a relatively rapid reduction in resistance, and 4 induced a decrease in resistance with more complete cell recovery. Alkylglycosides allowing extensive cell recovery after removal may indieate tight junctions activity dominance over membrane fluidity Repeated application of alkylglycosides for 6 hours lowered resistance across cells, which returned to near-normal values after a recovery period of 48 hours. A model dye was transported across the cell monolayer only in the presence of an alkylglycoside, although recovery of cells was incomplete. Activity of the alkylglycosides was unrelated to either the carbon chain length or to the carbohydrate moiety. A direct correlation was established between the concentration of applied alkylglycoside and reduction in resistance over a constant time period. Dodecylmaltoside and oetylglucoside were found to be optimal in decreasing resistance at low concentrations and allowing significant recovery of cells. Therefore these 2 alkylglycosides may be useful in facilitating drug transport across biological membranes. Published: October 19, 2001.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号