首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In some vertebrates, a grave injury to the central nervous system (CNS) results in functional restoration, rather than in permanent incapacitation. Understanding how these animals mount a regenerative response by activating resident CNS stem cell populations is of critical importance in regenerative biology. Amphibians are of a particular interest in the field because the regenerative ability is present throughout life in urodele species, but in anuran species it is lost during development. Studying amphibians, who transition from a regenerative to a nonregenerative state, could give insight into the loss of ability to recover from CNS damage in mammals. Here, we highlight the current knowledge of spinal cord regeneration across vertebrates and identify commonalities and differences in spinal cord regeneration between amphibians.  相似文献   

2.
The reversal of cellular differentiation to form proliferating progenitor cells is a critical aspect of regenerative ability in the urodele amphibians. This process has been studied using skeletal muscle during limb or tail regeneration, or dorsal iris epithelium during lens regeneration. An unknown activity in serum triggers cell cycle re-entry from the differentiated state. Here we describe the biochemical properties and fractionation of this serum factor. The factor is a glycoprotein that associates with large molecular weight complexes. The purification and molecular identification of the serum factor represents an important avenue in understanding regenerative ability and dedifferentiation capacity on a molecular basis.  相似文献   

3.
Proopiomelanocortin (POMC) cDNAs were cloned and sequenced from brain extracts of two species of urodele amphibians: Amphiuma means and Necturus maculosus. Although the two species of urodele amphibians belong to separate families, and do not share a direct common ancestor, the level of primary sequence identity for the open reading of the POMC cDNAs was 90% at the amino acid level and 79% at the nucleotide level. It appears that the POMC gene in these urodele amphibians has been accumulating mutations at the amino acid level at a slower rate than the POMC gene in other sarcopterygian orders.  相似文献   

4.
Adult urodele amphibians possess extensive regenerative abilities, including lens, jaws, limbs, and tails. In this study, we examined the cellular events and time course of spinal cord regeneration in a species, Plethodon cinereus, that has the ability to autotomize its tail as an antipredator strategy. We propose that this species may have enhanced regenerative abilities as further coadaptations with this antipredator strategy. We examined the expression of nestin, vimentin, and glial fibrillary acidic protein (GFAP) after autotomy as markers of neural precursor cells and astroglia; we also traced the appearance of new neurons using 5‐bromo‐2′‐deoxyuridine/neuronal nuclei (BrdU/NeuN) double labeling. As expected, the regenerating ependymal tube was a major source of new neurons; however, the spinal cord cranial to the plane of autotomy showed significant mitotic activity, more extensive than what is reported for other urodeles that cannot autotomize their tails. In addition, this species shows upregulation of nestin, vimentin, and GFAP within days after tail autotomy; further, this expression is upregulated within the spinal cord cranial to the plane of autotomy, not just within the extending ependymal tube, as reported in other urodeles. We suggest that enhanced survival of the spinal cord cranial to autotomy allows this portion to participate in the enhanced recovery and regeneration of the spinal cord. J. Morphol. 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

5.
While urodele amphibians (newts and salamanders) can regenerate limbs as adults, other tetrapods (reptiles, birds and mammals) cannot and just undergo wound healing. In adult mammals such as mice and humans, the wound heals and a scar is formed after injury, while wound healing is completed without scarring in an embryonic mouse. Completion of regeneration and wound healing takes a long time in regenerative and non-regenerative limbs, respectively. However, it is the early steps that are critical for determining the extent of regenerative response after limb amputation, ranging from wound healing with scar formation, scar-free wound healing, hypomorphic limb regeneration to complete limb regeneration. In addition to the accumulation of information on gene expression during limb regeneration, functional analysis of signaling molecules has recently shown important roles of fibroblast growth factor (FGF), Wnt/beta-catenin and bone morphogenic protein (BMP)/Msx signaling. Here, the routine steps of wound healing/limb regeneration and signaling molecules specifically involved in limb regeneration are summarized. Regeneration of embryonic mouse digit tips and anuran amphibian (Xenopus) limbs shows intermediate regenerative responses between the two extremes, those of adult mammals (least regenerative) and urodele amphibians (more regenerative), providing a range of models to study the various abilities of limbs to regenerate.  相似文献   

6.
Study of amphibian immunotoxicology is a growing area of research, but very little information is available on how environmental contaminants affect disease resistance in urodele amphibians. Urodele amphibians lack the more highly evolved aspects of the specific immune system that are present in anurans, birds, and mammals. Instead, these animals rely more heavily on innate defense mechanisms than do anurans to provide rapid, nonspecific protection from pathogens. Thus, it is prudent that immunotoxicologic research with urodele amphibians includes an evaluation of effects of contaminant exposure on nonspecific immunity. The objectives of this study were to measure the phagocytic and oxidative-burst activity of peritoneal neutrophils collected from a urodele, the tiger salamander (Ambystoma tigrinum), and to evaluate the use of these assays in immunotoxicologic research using urodele amphibians. Using tiger salamanders collected in August 2000, phagocytosis and oxidative-burst assays modified from mammalian protocols were conducted through October 2001. Results indicated that large numbers of peritoneal neutrophils for use in immunotoxicologic tests can be collected from salamanders injected with thioglycollate. Moreover, these neutrophils readily engulfed foreign material (phagocytic activity) and produced measurable amounts of hydrogen peroxide (oxidative-burst activity). Phagocytosis was effectively inhibited by incubating cells with sodium azide (P<0.001), and quantification of phagocytosis using flow cytometry was well correlated with manual counts (r=0.84, P<0.001). Dexamethasone treatment reduced phagocytic activity as measured by manual counts (P<0.02), suggesting that this test is useful for detecting alteration by immunosuppressive agents. In contrast, oxidative function was unaffected by dexamethasone treatment, and results from the oxidative-burst assay were generally less consistent than those from the phagocytosis assay. Based on these results, phagocytic activity of peritoneal neutrophils may be a useful endpoint in immunotoxicologic studies to evaluate the impact of environmental contaminants on innate defense mechanisms in urodele amphibians.  相似文献   

7.
Thrombin regulates S-phase re-entry by cultured newt myotubes.   总被引:3,自引:0,他引:3  
BACKGROUND: Adult urodele amphibians such as the newt have remarkable regenerative ability, and a critical aspect of this is the ability of differentiated cells to re-enter the cell cycle and lose their differentiated characteristics. Unlike mammalian myotubes, cultured newt myotubes are able to enter and traverse S phase, following serum stimulation, by a pathway leading to phosphorylation of the retinoblastoma protein. The extracellular regulation of this pathway is unknown. RESULTS: Like their mammalian counterparts, newt myotubes were refractory to mitogenic growth factors such as the platelet-derived growth factor (PDGF), which act on their mononucleate precursor cells. Cultured newt myotubes were activated to enter S phase by purified thrombin in the presence of subthreshold amounts of serum. The activation proceeded by an indirect mechanism in which thrombin cleaved components in serum to generate a ligand that acted directly on the myotubes. The ligand was identified as a second activity present in preparations of crude thrombin and that was active after removal of all thrombin activity. It induced newt myotubes to enter S phase in serum-free medium, and it acted on myotubes but not on the mononucleate precursor cells. Cultured mouse myotubes were refractory to this indirect mechanism of S-phase re-entry. CONCLUSIONS: These results provide a link between reversal of differentiation and the acute events of wound healing. The urodele myotube responds to a ligand generated downstream of thrombin activation and re-enters the cell cycle. Although this ligand can be generated in mammalian sera, the mammalian myotube is unresponsive. These results provide a model at the cellular level for the difference in regenerative ability between urodeles and mammals.  相似文献   

8.
Limb regeneration ability, which can be observed in amphibians, has been investigated as a representative phenomenon of organ regeneration. Recently, an alternative experimental system called the accessory limb model was developed to investigate early regulation of amphibian limb regeneration. The accessory limb model contributed to identification of limb regeneration inducers in urodele amphibians. Furthermore, the accessory limb model may be applied to other species to explore universality of regeneration mechanisms. This review aims to connect the insights recently gained to emboss universality of regeneration mechanisms among species. The defined molecules (BMP7 (or2) + FGF2 + FGF8) can transform skin wound healing to organ (limb) regeneration responses. The same molecules can initiate regeneration responses in some species.  相似文献   

9.
Urodele amphibians have remarkable organ regeneration capability, and their limb regeneration capability has been investigated as a representative phenomenon. In the early 19th century, nerves were reported to be an essential tissue for the successful induction of limb regeneration. Nerve substances that function in the induction of limb regeneration responses have long been sought. A new experimental system called the accessory limb model (ALM) has been established to identify the nerve factors. Skin wounding in urodele amphibians results in skin wound healing but never in limb induction. However, nerve deviation to the wounded skin induces limb formation in ALM. Thus, nerves can be considered to have the ability to transform skin wound healing to limb formation. In the present study, co-operative Bmp and Fgf application, instead of nerve deviation, to wounded skin transformed skin wound healing to limb formation in two urodele amphibians, axolotl (Ambystoma mexicanum) and newt (Pleurodeles waltl). Our findings demonstrate that defined factors can induce homeotic transformation in postembryonic bodies of urodele amphibians. The combination of Bmp and Fgf(s) may contribute to the development of novel treatments for organ regeneration.  相似文献   

10.
Some urodele amphibians possess the capacity to regenerate their body parts, including the limbs and the lens of the eye. The molecular pathway(s) involved in urodele regeneration are largely unknown. We have previously suggested that complement may participate in limb regeneration in axolotls. To further define its role in the regenerative process, we have examined the pattern of distribution and spatiotemporal expression of two key components, C3 and C5, during limb and lens regeneration in the newt Notophthalmus viridescens. First, we have cloned newt cDNAs encoding C3 and C5 and have generated Abs specifically recognizing these molecules. Using these newt-specific probes, we have found by in situ hybridization and immunohistochemical analysis that these molecules are expressed during both limb and lens regeneration, but not in the normal limb and lens. The C3 and C5 proteins were expressed in a complementary fashion during limb regeneration, with C3 being expressed mainly in the blastema and C5 exclusively in the wound epithelium. Similarly, during the process of lens regeneration, C3 was detected in the iris and cornea, while C5 was present in the regenerating lens vesicle as well as the cornea. The distinct expression profile of complement proteins in regenerative tissues of the urodele lens and limb supports a nonimmunologic function of complement in tissue regeneration and constitutes the first systematic effort to dissect its involvement in regenerative processes of lower vertebrate species.  相似文献   

11.
We review key aspects of what is known about limb regeneration in urodele and anuran amphibians, with a focus on the early events of the process that lead to formation of the regeneration blastema. This includes the role of the nerves and wound epithelium, but also covers the inflammatory effects of the amputation trauma and their importance for regenerative growth. We propose that immunotolerance is important for limb regeneration and changes in its regulation may underlie the loss of regenerative capacity during anuran metamorphosis.  相似文献   

12.
Developmental aspects of spinal cord and limb regeneration   总被引:1,自引:1,他引:0  
The ability of birds and mammals to regenerate tissues is limited. By contrast, urodele amphibians can regenerate a variety of injured tissues such as intestine, cardiac muscle, lens and neural retina, as well as entire structures such as limbs, tail and lower jaw. This regenerative capacity is associated with the ability to form masses of mesenchyme cells (blastemas) that differentiate into the missing tissues or parts. Understanding the mechanisms that underlie blastema formation in urodeles will provide valuable tools with which to achieve the goal of stimulating regeneration in mammalian tissues that do not naturally regenerate. Here we discuss an example of tissue regeneration (spinal cord) and an example of epimorphic appendage regeneration (limb) in the axolotl Ambystoma mexicanum , emphasizing analysis of the processes that produce the regeneration blastema and of the tissue interactions and blastemal products that contribute to the regeneration-promoting environment.  相似文献   

13.
Adult urodele amphibians, such as the newt, can regenerate their limbs and various other structures. This is the result of the plasticity and reprogramming of residual differentiated cells, rather than the existence of a 'reserve-cell' mechanism. The recent demonstrations of plasticity in mouse myotubes should facilitate comparative studies of the pathways that underlie the regenerative response, as well as proposing new approaches to promote mammalian regeneration.  相似文献   

14.
Song F  Li B  Stocum DL 《Organogenesis》2010,6(3):141-150
The ability to regenerate bone across a critical size defect would be a marked clinical advance over current methods for dealing with such structural gaps. Here, we briefly review the development of limb bones and the mandible, the regeneration of urodele limbs after amputation, and present evidence that urodele and anuran amphibians represent a valuable research model for the study of segment defect regeneration in both limb bones and mandible.  相似文献   

15.
Deer antler regeneration: cells, concepts, and controversies   总被引:9,自引:0,他引:9  
The periodic replacement of antlers is an exceptional regenerative process in mammals, which in general are unable to regenerate complete body appendages. Antler regeneration has traditionally been viewed as an epimorphic process closely resembling limb regeneration in urodele amphibians, and the terminology of the latter process has also been applied to antler regeneration. More recent studies, however, showed that, unlike urodele limb regeneration, antler regeneration does not involve cell dedifferentiation and the formation of a blastema from these dedifferentiated cells. Rather, these studies suggest that antler regeneration is a stem-cell-based process that depends on the periodic activation of, presumably neural-crest-derived, periosteal stem cells of the distal pedicle. The evidence for this hypothesis is reviewed and as a result, a new concept of antler regeneration as a process of stem-cell-based epimorphic regeneration is proposed that does not involve cell dedifferentiation or transdifferentiation. Antler regeneration illustrates that extensive appendage regeneration in a postnatal mammal can be achieved by a developmental process that differs in several fundamental aspects from limb regeneration in urodeles.  相似文献   

16.
《Organogenesis》2013,9(3):141-150
The ability to regenerate bone across a critical size defect would be a marked clinical advance over current methods for dealing with such structural gaps. Here, we briefly review the development of limb bones and the mandible, the regeneration of urodele limbs after amputation, and present evidence that urodele and anuran amphibians represent a valuable research model for the study of segment defect regeneration in both limb bones and mandible.  相似文献   

17.
A better understanding of the forces controlling cell growth will be essential for developing effective therapies in regenerative medicine and cancer. Historically, the literature has linked cancer and tissue regeneration—proposing regeneration as both the source of cancer and a method to inhibit tumorigenesis. This review discusses two powerful regeneration models, the vertebrate urodele amphibians and invertebrate planarians, in light of cancer regulation. Urodele limb and eye lens regeneration is described, as well as the planarian's emergence as a molecular and genetic model system in which recent insights begin to molecularly dissect cancer and regeneration in adult tissues.  相似文献   

18.
Why and how organisms differ in life‐history strategies across their range is a long‐standing topic of interest to evolutionary ecologists. Although many studies have addressed this issue for several life‐history traits, such as body size and clutch size, very few have been made for some others traits, including longevity. In the present study, we performed a comparative study aiming to develop general patterns of geographical variation in longevity of urodele and anuran amphibians using published information on demographic age derived from skeletochronology. We conducted within‐species meta‐analyses using datasets of two (ten urodele and 12 anuran species) and multiple (two urodele and nine anuran species) spatially‐separated populations and found that maturation, mean, and maximum age all increased with altitude but not with latitude in each sex of both amphibian groups. This geographical pattern held true across 33 urodele and 86 anuran species at common body sizes, independent of phylogeny. It is likely that metabolic rate, reproductive investment, and mortality risk, which are the key factors that affect longevity as suggested by ageing theory, vary systemically along altitudinal gradients but not along latitudinal gradients. The evolutionary causes behind these puzzling patterns deserve further investigation. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 623–632.  相似文献   

19.
Analyzing the relationships between the distribution of animal species and climatic variables is not only important for understanding which factors govern species distribution but also for improving our ability to predict future ecological responses to climate change. In the context of global climate change, amphibians are of particular interest because of their extreme sensitivity to the variation of temperature and precipitation regimes. We analyzed species–climate relationships for 17 amphibian species occurring in Italy using species distribution data at the 10 × 10 km resolution. A machine learning method, Random Forests, was used to model the distribution of amphibians in relation to a set of 18 climatic variables. The results showed that the variables which had the highest importance were those related to precipitation, indicating that precipitation is an important factor in determining amphibian distribution. Future projections showed a complex response of species distributions, emphasizing the potential severity of climate change on the distributions of amphibians in Italy. The species that will decrease the most are those occurring in mountainous and Mediterranean areas. Our results provide some preliminary information that could be useful for amphibian conservation, indicating if future conservation priorities for some species should be enhanced.  相似文献   

20.
Regeneration has long been the focus of scientific interest for its potential to restore lost, damaged, or aged tissues and organs. A wide range of regenerative studies have been conducted on different vertebrate and invertebrate model organisms. Annelids are known for their regenerative capacities, and because of their relatively complex organ systems, they are an ideal organism for regeneration study. Our present work focused on the freshwater annelid Aeolosoma viride, an asexually reproducing annelid capable of regenerating both anteriorly and posteriorly. Even though regenerative ability has been documented in this animal in previous studies, detailed characterization of the process is still unavailable. The objective of this study was to evaluate the regenerative ability of A. viride. We described the sequential morphological events during the process of regeneration, such as wound healing and the formation of blastema, mouth, and pygidium. In order to clarify the capacity and type of regeneration, we conducted a series of observations and experiments using a cell proliferation assay. Massive proliferation and the absence of cell migration indicated that the animal regenerates primarily through epimorphosis. Our study of the epimorphic regenerative process of A. viride provides a clearer picture of the evolutionary origin of regeneration in annelids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号