首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Succinate-ubiquinone oxidoreductase (SdhCDAB, complex II) from Escherichia coli is a four-subunit membrane-bound respiratory complex that catalyzes ubiquinone reduction by succinate. In the E. coli enzyme, heme b(556) is ligated between SdhC His(84) and SdhD His(71). Contrary to a previous report (Vibat, C. R. T., Cecchini, G., Nakamura, K., Kita, K., and Gennis, R. B. (1998) Biochemistry 37, 4148-4159), we demonstrate the presence of heme in both SdhC H84L and SdhD H71Q mutants of SdhCDAB. EPR spectroscopy reveals the presence of low spin heme in the SdhC H84L (g(z) = 2.92) mutant and high spin heme in the SdhD H71Q mutant (g = 6.0). The presence of low spin heme in the SdhC H84L mutant suggests that the heme b(556) is able to pick up another ligand from the protein. CO binds to the reduced form of the mutants, indicating that it is able to displace one of the ligands to the low spin heme of the SdhC H84L mutant. The g = 2.92 signal of the SdhC H84L mutant titrates with a redox potential at pH 7.0 (E(m)(,7)) of approximately +15 mV, whereas the g = 6.0 signal of the SdhD H71Q mutant titrates with an E(m)(,7) of approximately -100 mV. The quinone site inhibitor pentachlorophenol perturbs the heme optical spectrum of the wild-type and SdhD H71Q mutant enzymes but not the SdhC H84L mutant. This finding suggests that the latter residue also plays an important role in defining the quinone binding site of the enzyme. The SdhC H84L mutation also results in a significant increase in the K(m) and a decrease in the k(cat) for ubiquinone-1, whereas the SdhD H71Q mutant has little effect on these parameters. Overall, these data indicate that SdhC His(84) has an important role in defining the interaction of SdhCDAB with both quinones and heme b(556).  相似文献   

2.
We have examined the role of the quinone-binding (Q(P)) site of Escherichia coli succinate:ubiquinone oxidoreductase (succinate dehydrogenase) in heme reduction and reoxidation during enzyme turnover. The SdhCDAB electron transfer pathway leads from a cytosolically localized flavin adenine dinucleotide cofactor to a Q(P) site located within the membrane-intrinsic domain of the enzyme. The Q(P) site is sandwiched between the [3Fe-4S] cluster of the SdhB subunit and the heme b(556) that is coordinated by His residues from the SdhC and SdhD subunits. The intercenter distances between the cluster, heme, and Q(P) site are all within the theoretical 14 A limit proposed for kinetically competent intercenter electron transfer. Using EPR spectroscopy, we have demonstrated that the Q(P) site of SdhCDAB stabilized a ubisemiquinone radical intermediate during enzyme turnover. Potentiometric titrations indicate that this species has an E(m,8) of approximately 60 mV and a stability constant (K(STAB)) of approximately 1.0. Mutants of the following conserved Q(P) site residues, SdhC-S27, SdhC-R31, and SdhD-D82, have severe consequences on enzyme function. Mutation of the conserved SdhD-Y83 suggested to hydrogen bond to the ubiquinone cofactor had a less severe but still significant effect on function. In addition to loss of overall catalysis, these mutants also affect the rate of succinate-dependent heme reduction, indicating that the Q(P) site is an essential stepping stone on the electron transfer pathway from the [3Fe-4S] cluster to the heme. Furthermore, the mutations result in the elimination of EPR-visible ubisemiquinone during potentiometric titrations. Overall, these results demonstrate the importance of a functional, semiquinone-stabilizing Q(P) site for the observation of rapid succinate-dependent heme reduction.  相似文献   

3.
The mitochondrial succinate dehydrogenase (SDH) is a tetrameric iron-sulfur flavoprotein of the Krebs cycle and of the respiratory chain. A number of mutations in human SDH genes are responsible for the development of paragangliomas, cancers of the head and neck region. The mev-1 mutation in the Caenorhabditis elegans gene encoding the homolog of the SDHC subunit results in premature aging and hypersensitivity to oxidative stress. It also increases the production of superoxide radicals by the enzyme. In this work, we used the yeast succinate dehydrogenase to investigate the molecular and catalytic effects of paraganglioma- and mev-1-like mutations. We mutated Pro-190 of the yeast Sdh2p subunit to Gln (P190Q) and recreated the C. elegans mev-1 mutation by converting Ser-94 in the Sdh3p subunit into a glutamate residue (S94E). The P190Q and S94E mutants have reduced succinate-ubiquinone oxidoreductase activities and are hypersensitive to oxygen and paraquat. Although the mutant enzymes have lower turnover numbers for ubiquinol reduction, larger fractions of the remaining activities are diverted toward superoxide production. The P190Q and S94E mutations are located near the proximal ubiquinone-binding site, suggesting that the superoxide radicals may originate from a ubisemiquinone intermediate formed at this site during the catalytic cycle. We suggest that certain mutations in SDH can make it a significant source of superoxide production in mitochondria, which may contribute directly to disease progression. Our data also challenge the dogma that superoxide production by SDH is a flavin-mediated event rather than a quinone-mediated one.  相似文献   

4.
Succinate:quinone oxidoreductase (SQR) from Bacillus subtilis consists of two hydrophilic protein subunits comprising succinate dehydrogenase, and a di-heme membrane anchor protein harboring two putative quinone binding sites, Q(p) and Q(d). In this work we have used spectroelectrochemistry to study the electronic communication between purified SQR and a surface modified gold capillary electrode. In the presence of two soluble quinone mediators the midpoint potentials of both hemes were revealed essentially as previously determined by conventional redox titration (heme b(H), E(m)=+65 mV, heme b(L), E(m)=-95 mV). In the absence of mediators the enzyme still communicated with the electrode, albeit with a reproducible hysteresis, resulting in the reduction of both hemes occurring approximately at the midpoint potential of heme b(L), and with a pronounced delay of reoxidation. When the specific inhibitor 2-n-heptyl-4 hydroxyquinoline N-oxide (HQNO), which binds to Q(d) in B. subtilis SQR, was added together with the two quinone mediators, rapid reductive titration was still possible which can be envisioned as an electron transfer occurring via the HQNO insensitive Q(p) site. In contrast, the subsequent oxidative titration was severely hampered in the presence of HQNO, in fact it completely resembled the unmediated reaction. If mediators communicate with Q(p) or Q(d), either event is followed by very rapid electron redistribution within the enzyme. Taken together, this strongly suggests that the accessibility of Q(p) depended on the redox state of the hemes. When both hemes were reduced, and Q(d) was blocked by HQNO, quinone-mediated communication via the Q(p) site was no longer possible, revealing a redox-dependent conformational change in the membrane anchor domain.  相似文献   

5.
Fumarate reductase from Escherichia coli functions both as an anaerobic fumarate reductase and as an aerobic succinate dehydrogenase. A site-directed mutation of E. coli fumarate reductase in which FrdB Pro-159 was replaced with a glutamine or histidine residue was constructed and overexpressed in a strain of E. coli lacking a functional copy of the fumarate reductase or succinate dehydrogenase complex. The consequences of these mutations on bacterial growth, assembly of the enzyme complex, and enzymatic activity were investigated. Both mutations were found to have no effect on anaerobic bacterial growth or on the ability of the enzyme to reduce fumarate compared with the wild-type enzyme. The FrdB Pro-159-to-histidine substitution was normal in its ability to oxidize succinate. In contrast, however, the FrdB Pro-159-to-Gln substitution was found to inhibit aerobic growth of E. coli under conditions requiring a functional succinate dehydrogenase, and furthermore, the aerobic activity of the enzyme was severely inhibited upon incubation in the presence of its substrate, succinate. This inactivation could be prevented by incubating the mutant enzyme complex in an anaerobic environment, separating the catalytic subunits of the fumarate reductase complex from their membrane anchors, or blocking the transfer of electrons from the enzyme to quinones. The results of these studies suggest that the succinate-induced inactivation occurs by the production of hydroxyl radicals generated by a Fenton-type reaction following introduction of this mutation into the [3Fe-4S] binding domain. Additional evidence shows that the substrate-induced inactivation requires quinones, which are the membrane-bound electron acceptors and donors for the succinate dehydrogenase and fumarate reductase activities. These data suggest that the [3Fe-4S] cluster is intimately associated with one of the quinone binding sites found n fumarate reductase and succinate dehydrogenase.  相似文献   

6.
The role of the heme b in Escherichia coli succinate dehydrogenase is highly ambiguous and its role in catalysis is questionable. To examine whether heme reduction is an essential step of the catalytic mechanism, we generated a series of site-directed mutations around the heme binding pocket, creating a library of variants with a stepwise decrease in the midpoint potential of the heme from the wild-type value of +20 mV down to -80 mV. This difference in midpoint potential is enough to alter the reactivity of the heme towards succinate and thus its redox state under turnover conditions. Our results show both the steady state succinate oxidase and fumarate reductase catalytic activity of the enzyme are not a function of the redox potential of the heme. As well, lower heme potential did not cause an increase in the rate of superoxide production both in vitro and in vivo. The electron paramagnetic resonance (EPR) spectrum of the heme in the wild-type enzyme is a combination of two distinct signals. We link EPR spectra to structure, showing that one of the signals likely arises from an out-of-plane distortion of the heme, a saddled conformation, while the second signal originates from a more planar orientation of the porphyrin ring.  相似文献   

7.
Borek A  Sarewicz M  Osyczka A 《Biochemistry》2008,47(47):12365-12370
Cytochrome bc(1), a key enzyme of biological energy conversion, generates or uses a proton motive force through the Q cycle that operates within the two chains of cofactors that embed two catalytic quinone oxidation/reduction sites, the Q(o) site and the Q(i) site. The Q(o) site relies on the joint action of two cofactors, the iron-sulfur (FeS) cluster and heme b(L). Side reactions of the Q cycle involve a generation of superoxide which is commonly thought to be a product of an oxidation of a highly unstable semiquinone formed in the Q(o) site (SQ(o)), but the overall mechanism of superoxide generation remains poorly understood. Here, we use selectively modified chains of cytochrome bc(1) to clearly isolate states linked with superoxide production. We show that this reaction takes place under severely impeded electron flow that traps heme b(L) in the reduced state and reflects a probability with which a single electron on SQ(o) is capable of reducing oxygen. SQ(o) gains this capability only when the FeS head domain, as a part of a catalytic cycle, transiently leaves the Q(o) site to communicate with the outermost cofactor, cytochrome c(1). This increases the distance between the FeS cluster and the remaining portion of the Q(o) site, reducing the likelihood that the FeS cluster participates in an immediate removal of SQ(o). In other states, the presence of both the FeS cluster and heme b(L) in the Q(o) site increases the probability of completion of short-circuit reactions which retain single electrons within the enzyme instead of releasing them on oxygen. We propose that in this way, cytochrome bc(1) under conditions of impeded electron flow employs the leak-proof short-circuits to minimize the unwanted single-electron reduction of oxygen.  相似文献   

8.
The [2Fe-2S] soluble ferredoxin from Chlamydomonas reinhardtii was mutated by site directed mutagenesis, using PCR and the expression plasmid pET-Fd as a template. The recombinant mutated proteins were purified to homogeneity and tested in the activation of NADP-malate dehydrogenase, a light dependent reaction in which ferredoxin thioredoxin reductase (FTR) and thioredoxin are involved. The mutation of residue Glu-91 (E92 in spinach, E94 in Anabaena) alone, either to Gln (E91Q) or to Lys (E91K), was found to completely abolish the reaction of the enzyme light activation. On the other hand, the mutants (E92Q) or (E92K) were as efficient as the wild type ferredoxin in this reaction whereas the double mutants (E91Q/E92Q) or (E91K/E92K) had no activity. In addition, a triple mutant (D25A/E28Q/E29Q) was also found to be inactive for this redox dependent light activation. All these mutations had much weaker effects on the ferredoxin/ferredoxin NADP reductase interaction as measured by the cytochrome c reduction assay. These results indicate that there is a recognition site for FTR in the C terminus part of ferredoxin, but also that a core of negatively charged residues in the α1 helix of ferredoxin might be important in the general process of light activation.  相似文献   

9.
Treatment of the soluble ubiquinone-deficient succinate: ubiquinone reductase with pyridoxal phosphate results in the inhibition of the carboxin-sensitive ubiquinone-reductase activity of the enzyme. The inactivation is prevented by the soluble homolog of ubiquinone (Q2) but is insensitive to the dicarboxylates interacting with the substrate binding site of succinate dehydrogenase. The reactivity of the pyridoxal phosphate-inhibited enzyme with different electron acceptors suggests that the observed inhibition is due to the dissociation of succinate dehydrogenase from the enzyme complex. The soluble succinate dehydrogenase was recovered in the supernatant after treatment of the insoluble succinate: ubiquinone reductase with pyridoxal phosphate. The data obtained strongly suggest the participation of amino groups in the interaction between succinate dehydrogenase and the ubiquinone reactivity conferring peptide within the complex.  相似文献   

10.
Matsson M  Tolstoy D  Aasa R  Hederstedt L 《Biochemistry》2000,39(29):8617-8624
Succinate:quinone reductases are membrane-bound enzymes that catalyze electron transfer from succinate to quinone. Some enzymes in vivo reduce ubiquinone (exergonic reaction) whereas others reduce menaquinone (endergonic reaction). The succinate:menaquinone reductases all contain two heme groups in the membrane anchor of the enzyme: a proximal heme (heme b(P)) located close to the negative side of the membrane and a distal heme (heme b(D)) located close to the positive side of the membrane. Heme b(D) is a distinctive feature of the succinate:menaquinone reductases, but the role of this heme in electron transfer to quinone has not previously been analyzed. His28 and His113 are the axial ligands to heme b(D) in Bacillus subtilis succinate:menaquinone reductase. We have individually replaced these His residues with Leu and Met, respectively, resulting in assembled membrane-bound enzymes. The H28L mutant enzyme lacks succinate:quinone reductase activity probably due to a defective quinone binding site. The H113M mutant enzyme contains heme b(D) with raised midpoint potential and is impaired in electron transfer to menaquinone. Our combined experimental data show that the heme b(D) center, into which we include a quinone binding site, is crucial for succinate:menaquinone reductase activity. The results support a model in which menaquinone is reduced on the positive side of the membrane and the transmembrane electrochemical potential provides driving force for electron transfer from succinate via heme b(P) and heme b(D) to menaquinone.  相似文献   

11.
The mitochondrial succinate dehydrogenase (SDH) is an essential component of the electron transport chain and of the tricarboxylic acid cycle. Also known as complex II, this tetrameric enzyme catalyzes the oxidation of succinate to fumarate and reduces ubiquinone. Mutations in the human SDHB, SDHC, and SDHD genes are tumorigenic, leading to the development of several types of tumors, including paraganglioma and pheochromocytoma. The mechanisms linking SDH mutations to oncogenesis are still unclear. In this work, we used the yeast SDH to investigate the molecular and catalytic effects of tumorigenic or related mutations. We mutated Arg(47) of the Sdh3p subunit to Cys, Glu, and Lys and Asp(88) of the Sdh4p subunit to Asn, Glu, and Lys. Both Arg(47) and Asp(88) are conserved residues, and Arg(47) is a known site of cancer causing mutations in humans. All of the mutants examined have reduced ubiquinone reductase activities. The SDH3 R47K, SDH4 D88E, and SDH4 D88N mutants are sensitive to hyperoxia and paraquat and have elevated rates of superoxide production in vitro and in vivo.We also observed the accumulation and secretion of succinate. Succinate can inhibit prolyl hydroxylase enzymes, which initiate a proliferative response through the activation of hypoxia-inducible factor 1alpha. We suggest that SDH mutations can promote tumor formation by contributing to both reactive oxygen species production and to a proliferative response normally induced by hypoxia via the accumulation of succinate.  相似文献   

12.
Cytochrome bd is one of the two quinol oxidases in the respiratory chain of Escherichia coli. The enzyme contains three heme prosthetic groups. The dioxygen binding site is heme d, which is thought to be part of the heme-heme binuclear center along with heme b(595), which is a high-spin heme whose function is not known. Protein sequence alignments [Osborne, J. P., and Gennis, R. B. (1999) Biochim. Biophys Acta 1410, 32--50] of cytochrome bd quinol oxidase sequences from different microorganisms have revealed a highly conserved sequence (GWXXXEXGRQPW; bold letters indicate strictly conserved residues) predicted to be on the periplasmic side of the membrane between transmembrane helices 8 and 9 in subunit I. The functional importance of this region is investigated in the current work by site-directed mutagenesis. Several mutations in this region (W441A, E445A/Q, R448A, Q449A, and W451A) resulted in a catalytically inactive enzyme with abnormal UV--vis spectra. E445A was selected for detailed analysis because of the absence of the absorption bands from heme b(595). Detailed spectroscopic and chemical analyses, indeed, show that one of the three heme prosthetic groups in the enzyme, heme b(595), is specifically perturbed and mostly missing from this mutant. Surprisingly, heme d, while known to interact with heme b(595), appears relatively unperturbed, whereas the low-spin heme b(558) shows some modification. This is the first report of a mutation that specifically affects the binding site of heme b(595).  相似文献   

13.
Tyrosine 34 and glutamine 146 are highly conserved outer sphere residues in the mononuclear manganese active site of Escherichia coli manganese superoxide dismutase. Biochemical and spectroscopic characterization of site-directed mutants has allowed functional characterization of these residues in the wild-type (wt) enzyme. X-ray crystallographic analysis of three mutants (Y34F, Q146L, and Q146H) reveal subtle changes in the protein structures. The Y34A mutant, as well as the previously reported Y34F mutant, retained essentially the full superoxide dismutase activity of the wild-type enzyme, and the X-ray crystal structure of Y34F manganese superoxide dismutase shows that mutation of this strictly conserved residue has only minor effects on the positions of active site residues and the organized water in the substrate access funnel. Mutation of the outer sphere solvent pocket residue Q146 has more dramatic effects. The Q146E mutant is isolated as an apoprotein lacking dismutase activity. Q146L and Q146H mutants retain only 5-10% of the dismutase activity of the wild-type enzyme. The absorption and circular dichroism spectra of the Q146H mutant resemble corresponding data for the superoxide dismutase from a hyperthermophilic archaeon, Pyrobaculum aerophilum, which is active in both Mn and Fe forms. Interestingly, the iron-substituted Q146H protein also exhibits low dismutase activity, which increases at lower pH. Mutation of glutamine 146 disrupts the hydrogen-bonding network in the active site and has a greater effect on protein structure than does the Y34F mutant, with rearrangement of the tyrosine 34 and tryptophan 128 side chains.  相似文献   

14.
Involvement of mammalian mitochondrial glycerophosphate dehydrogenase (mGPDH, EC 1.1.99.5) in reactive oxygen species (ROS) generation was studied in brown adipose tissue mitochondria by different spectroscopic techniques. Spectrofluorometry using ROS-sensitive probes CM-H2DCFDA and Amplex Red was used to determine the glycerophosphate- or succinate-dependent ROS production in mitochondria supplemented with respiratory chain inhibitors antimycin A and myxothiazol. In case of glycerophosphate oxidation, most of the ROS originated directly from mGPDH and coenzyme Q while complex III was a typical site of ROS production in succinate oxidation. Glycerophosphate-dependent ROS production monitored by KCN-insensitive oxygen consumption was highly activated by one-electron acceptor ferricyanide, whereas succinate-dependent ROS production was unaffected. In addition, superoxide anion radical was detected as a mGPDH-related primary ROS species by fluorescent probe dihydroethidium, as well as by electron paramagnetic resonance (EPR) spectroscopy with DMPO spin trap. Altogether, the data obtained demonstrate pronounced differences in the mechanism of ROS production originating from oxidation of glycerophosphate and succinate indicating that electron transfer from mGPDH to coenzyme Q is highly prone to electron leak and superoxide generation.  相似文献   

15.
The Saccharomyces cerevisiae succinate dehydrogenase (SDH) of the mitochondrial electron transport chain oxidizes succinate and reduces ubiquinone. Using a random mutagenesis approach, we identified functionally important amino acid residues in one of the anchor subunits, Sdh4p. We analyzed three point mutations (F69V, S71A, and H99L) and one nonsense mutation (Y89OCH) that truncates the Sdh4p subunit at the third predicted transmembrane segment. The F69V and the S71A mutations result in greatly impaired respiratory growth in vivo and quinone reductase activities in vitro, with negligible effects on enzyme stability. In contrast, the Y89OCH and the H99L mutations elicit large structural perturbations that impair assembly as evidenced by reduced covalent FAD levels, membrane-associated succinate-phenazine methosulfate reductase activities, and thermal stability. We propose that the Phe-69 and the Ser-71 residues are involved in the formation of a quinone-binding site, whereas the His-99 residue is at the interface of the peripheral and the membrane domains. In addition, the properties of the Y89OCH mutation are consistent with the interpretation that the third transmembrane segment is not involved in catalysis but rather plays an important structural role. The mutant enzymes are differentially sensitive to a quinone analog inhibitor, providing further evidence for a two-quinone binding model in the yeast SDH.  相似文献   

16.
QP-S, a ubiquinone (Q) protein, accepts electrons from succinate through succinate dehydrogenase (SDH). A new method has produced a preparation of QP-S which has a different amino acid composition and SDS gel electrophoretic pattern from that of the old preparation (Biochemistry 19, 3579-3585 (1980)). The new preparation contains less than 1 nmol heme/mg protein; the activity of the preparation was not proportional to its heme content. A thenoyltrifluoroacetone sensitive free radical signal was detected by EPR spectroscopy in succinate-Q reductase reconstituted from this QP-S and SDH; the characteristics of this species identify it as ubisemiquinone. At pH 7.4, the Em of the two electron step was about 70 mV with E1 = 5 mV and E2 = 125 mV. The properties of the radical differed slightly from those of "Qs" radical in more intact preparations (e.g. submitochondrial particles). The present is the simplest system in which such a succinate reducible ubisemiquinone free radical has been demonstrated.  相似文献   

17.
Succinate dehydrogenase (complex II or succinate:ubiquinone oxidoreductase) is a tetrameric, membrane-bound enzyme that catalyzes the oxidation of succinate and the reduction of ubiquinone in the mitochondrial respiratory chain. Two electrons from succinate are transferred one at a time through a flavin cofactor and a chain of iron-sulfur clusters to reduce ubiquinone to an ubisemiquinone intermediate and to ubiquinol. Residues that form the proximal quinone-binding site (Q(P)) must recognize ubiquinone, stabilize the ubisemiquinone intermediate, and protonate the ubiquinone to ubiquinol, while minimizing the production of reactive oxygen species. We have investigated the role of the yeast Sdh4p Tyr-89, which forms a hydrogen bond with ubiquinone in the Q(P) site. This tyrosine residue is conserved in all succinate:ubiquinone oxidoreductases studied to date. In the human SDH, mutation of this tyrosine to cysteine results in paraganglioma, tumors of the parasympathetic ganglia in the head and neck. We demonstrate that Tyr-89 is essential for ubiquinone reductase activity and that mutation of Tyr-89 to other residues does not increase the production of reactive oxygen species. Our results support a role for Tyr-89 in the protonation of ubiquinone and argue that the generation of reactive oxygen species is not causative of tumor formation.  相似文献   

18.
A simple procedure for preparation of highly purified soluble succinate-ubiquinone reductase from bovine heart mitochondrial particles is described. The enzyme exhibits four major bands on sodium dodecyl sulfate gel electrophoresis and contains (nmol per mg protein): covalently bound flavin, 6; non-heme iron, 53; acid-labile sulfur, 50; cytochrome b-560 heme, 1.2. The enzyme catalyzes thenoyltrifluoroacetone, or carboxin-sensitive (pure non-competitive with Q2) reduction of Q2 by succinate with a turnover number close to that in parent submitochondrial particles. The succinate reduced enzyme exhibits ferredoxin-type iron-sulfur center EPR-signal (g = 1.94 species) and a semiquinone signal (g = 2.00). An oxidized preparation shows a symmetric signal centered around g = 2.01. An unusual dissociation of the enzyme in the absence of a detergent is described. When added to the assay mixture from a concentrated protein-detergent solution, the enzyme does not reduce Q2 being highly reactive towards ferricyanide ('low Km ferricyanide reactive site'; Vinogradov, A.D., Gavrikova, E.V. and Goloveshkina, V.G. (1975) Biochem. Biophys. Res. Commun. 65, 1264-1269). The ubiquinone reductase, not the ferricyanide reductase was observed when the enzyme was added to the assay mixture from the diluted protein-detergent solutions. Thus the dissociation of succinate dehydrogenase from the complex occurs in the absence of a detergent dependent on the concentration of the protein-detergent complex in the stock preparation where the samples for the assay are taken from. An active antimycin-sensitive succinate-cytochrome c reductase was reconstituted by admixing of the soluble succinate-ubiquinone reductase and the cytochrome b-c1 complex, i.e., from the complexes which both contain the ubiquinone reactivity conferring protein (QPs). Cytochrome c reductase was also reconstituted from the succinate-ubiquinone reductase and succinate-cytochrome c reductase containing inactivated succinate dehydrogenase. The reconstitution experiments suggest that there exists a specific protein-protein (or lipid) interaction between QPs and a certain component(s) of the b-c1 complex.  相似文献   

19.
The proton-translocating NADH-quinone (Q) oxidoreductase (NDH-1) from Escherichia coli is composed of two segments: a peripheral arm and a membrane arm. The membrane arm contains 7 hydrophobic subunits. Of these subunits, NuoM, a homolog of the mitochondrial ND4 subunit, is proposed to be involved in proton translocation and Q-binding. Therefore, we conducted site-directed mutation of 15 amino acid residues of NuoM and investigated their properties. In all mutants, the assembly of the whole enzyme seemed intact. Mutation of highly conserved Glu144 and Lys234 leads to almost total elimination of energy-transducing NDH-1 activities as well as increased production of superoxide radicals. Their NADH dehydrogenase activities were almost normal. Because these two residues are predicted to be located in the transmembrane segments of NuoM, the results strongly suggest that they participate in proton translocation. Although it is hypothesized that His interacts with a Q head group, mutations at four His moderately inhibited NDH-1 activities and had almost no effect on the Km values for Q or IC50 values of capsaicin-40, a competitive inhibitor for the Q binding site. The data suggest that these His are not involved in the catalytic Q-binding. Functional roles of NuoM and advantages of NDH-1 research as a model for mitochondrial complex I study have been discussed.  相似文献   

20.
Involvement of mammalian mitochondrial glycerophosphate dehydrogenase (mGPDH, EC 1.1.99.5) in reactive oxygen species (ROS) generation was studied in brown adipose tissue mitochondria by different spectroscopic techniques. Spectrofluorometry using ROS-sensitive probes CM-H2DCFDA and Amplex Red was used to determine the glycerophosphate- or succinate-dependent ROS production in mitochondria supplemented with respiratory chain inhibitors antimycin A and myxothiazol. In case of glycerophosphate oxidation, most of the ROS originated directly from mGPDH and coenzyme Q while complex III was a typical site of ROS production in succinate oxidation. Glycerophosphate-dependent ROS production monitored by KCN-insensitive oxygen consumption was highly activated by one-electron acceptor ferricyanide, whereas succinate-dependent ROS production was unaffected. In addition, superoxide anion radical was detected as a mGPDH-related primary ROS species by fluorescent probe dihydroethidium, as well as by electron paramagnetic resonance (EPR) spectroscopy with DMPO spin trap. Altogether, the data obtained demonstrate pronounced differences in the mechanism of ROS production originating from oxidation of glycerophosphate and succinate indicating that electron transfer from mGPDH to coenzyme Q is highly prone to electron leak and superoxide generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号