首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The green fluorescent protein (GFP) of the jellyfish, Aeqorea victoria, was used as an autofluorescent tag to track the trafficking of aquaporin 5 (AQP5), an exocrine gland-type water channel. Two groups of chimeric proteins were constructed; one in which GFP was fused to the amino-terminus of AQP5 (GFP-AQP5) and the other, in which it was fused to the carboxyl terminus of it (AQP5-GFP). In each group, 2 chimeras were produced, a wild-type AQP5 with its normal sequence and a mutant AQP5 having a mutated amino acid at 259, i.e., GFP-AQP5-T259A and AQP5-GFP-T259A. They were used to transfect Madin-Darby canine kidney (MDCK) cells. The GFP-AQP5 chimera was localized in the intracellular vesicles, which trafficked to the plasma membrane in response to N(6), 2'-O-dibutyryladenosine 3', 5'-cyclic monophosphate (dbcAMP). Membrane trafficking was inhibited by N-[2-(p-bromocinnamylamino)ethyl]-5-isoquimolinesulfonamide (H-89) but not by palmitoyl-dl-carnitine chloride (PCC). In contrast, the AQP5-GFP chimera expressed in MDCK cells was localized constitutively on the plasma membrane. The cellular localization of the latter chimera was not affected by stimulation with dbcAMP in the presence or absence of H-89 or PCC. Replacement of Thr-259 with Ala-259 did not affect the dbcAMP-induced translocation of the chimeric protein, suggesting that phosphorylation of Thr-259 was not necessary for AQP5 trafficking under the present experimental conditions. Thus, the GFP-AQP5 chimera will be a useful tool to study AQP5 trafficking in vitro, whereas the constitutive membrane localization of the AQP5-GFP chimera suggests the importance of the carboxyl terminus of the AQP5 protein for its sorting, whether it is translocated to intracellular vesicles or to the plasma membrane.  相似文献   

2.
In mammals, the regulation of water homeostasis is mediated by the aquaporin-1 (AQP1) water channel, which localizes to the basolateral and apical membranes of the early nephron segment, and AQP2, which is translocated from intracellular vesicles to the apical membrane of collecting duct cells after vasopressin stimulation. Because a similar localization and regulation are observed in transfected Madin-Darby Canine Kidney (MDCK) cells, we investigated which segments of AQP2 are important for its routing to forskolin-sensitive vesicles and the apical membrane through analysis of AQP1-AQP2 chimeras. AQP1 with the entire COOH tail of AQP2 was constitutively localized in the apical membrane, whereas chimeras with shorter COOH tail segments of AQP2 were localized in the apical and basolateral membrane. AQP1 with the NH2 tail of AQP2 was constitutively localized in both plasma membranes, whereas AQP1 with the NH2 and COOH tail of AQP2 was sorted to intracellular vesicles and translocated to the apical membrane with forskolin. These data indicate that region N220-S229 is essential for localization of AQP2 in the apical membrane and that the NH2 and COOH tail of AQP2 are essential for trafficking of AQP2 to intracellular vesicles and its shuttling to and from the apical membrane. routing signals; chimera; Madin-Darby canine kidney cells; regulated trafficking  相似文献   

3.
To study the membrane mobility of aquaporin water channels, clones of stably transfected LLC-PK1 cells were isolated with plasma membrane expression of GFP-AQP1 and GFP-AQP2, in which the green fluorescent protein (GFP) was fused upstream and in-frame to each aquaporin (AQP). The GFP fusion did not affect AQP tetrameric association or water transport function. GFP-AQP lateral mobility was measured by irreversibly bleaching a spot (diameter 0.8 microm) on the membrane with an Argon laser beam (488 nm) and following the fluorescence recovery into the bleached area resulting from GFP translational diffusion. In cells expressing GFP-AQP1, fluorescence recovered to >96% of its initial level with t(1/2) of 38 +/- 2 s (23 degrees C) and 21 +/- 1 s (37 degrees C), giving diffusion coefficients (D) of 5.3 and 9.3 x 10(-11) cm(2)/s. GFP-AQP1 diffusion was abolished by paraformaldehyde fixation, slowed >50-fold by the cholesterol-binding agent filipin, but not affected by cAMP agonists. In cells expressing GFP-AQP2, fluorescence recovered to >98% with D of 5.7 and 9.0 x 10(-11) cm(2)/s at 23 degrees C and 37 degrees C. In contrast to results for GFP-AQP1, the cAMP agonist forskolin slowed GFP-AQP2 mobility by up to tenfold. The cAMP slowing was blocked by actin filament disruption with cytochalasin D, by K(+)-depletion in combination with hypotonic shock, and by mutation of the protein kinase A phosphorylation consensus site (S256A) at the AQP2 C-terminus. These results indicate unregulated diffusion of AQP1 in membranes, but regulated AQP2 diffusion that was dependent on phosphorylation at serine 256, and an intact actin cytoskeleton and clathrin coated pit. The cAMP-induced immobilization of phosphorylated AQP2 provides evidence for AQP2-protein interactions that may be important for retention of AQP2 in specialized membrane domains for efficient membrane recycling.  相似文献   

4.
BACKGROUND INFORMATION: Most AQPs (aquaporins) function at the plasma membrane, however AQP6 is exclusively localized to membranes of intracellular vesicles in acid-secreting type-A intercalated cells of renal collecting ducts. The intracellular distribution indicates that AQP6 has a function distinct from trans-epithelial water movement. RESULTS: We show by mutational analyses and immunofluorescence that the N-terminus of AQP6 is a determinant for its intracellular localization. Presence or absence at the plasma membrane of AQP6 constructs was confirmed by electrophysiological methods. Addition of a GFP (green fluorescent protein) or a HA (haemagglutinin) epitope tag (GFP-AQP6 or HA-AQP6) to the N-terminus of AQP6, directed AQP6 to the plasma membranes of transfected Madin-Darby canine kidney cells. In contrast, addition of a GFP tag to the C-terminus (AQP6-GFP) caused the protein to remain intracellular, similar to untagged wild-type AQP6. Replacement of the N-terminus of AQP6 by that of AQP1 also directed AQP6 to the plasma membranes, whereas the N-terminus of AQP6 retained AQP1 in cytosolic sites. CONCLUSION: Our results suggest that the N-terminus of AQP6 is critical for trafficking of the protein to the intracellular sites. Moreover, our studies provide an approach for future identification of proteins involved in vesicle sorting in the acid-secreting type-A intercalated cells.  相似文献   

5.
6.
Cellular distribution of the aquaporins: A family of water channel proteins   总被引:1,自引:1,他引:0  
A group of transmembrane proteins that are related to the major intrinsic protein of lens fibers (MIP26) have been named aquaporins to reflect their role as water channels. These proteins are located at strategic membrane sites in a variety of epithelia, most of which have well-defined physiological functions in fluid absorption or secretion. However, some aquaporins have been localized in cell types where their role is at present unknown. Most of the aquaporins are delivered to the plasma membrane in a non-regulated (constitutive) fashion, but AQP2 enters the regulated exocytotic pathway and its membrane expression is controlled by the action of the antidiuretic hormone, vasopressin. These pathways of constitutive versus regulated delivery to the plasma membrane have been reconstituted in transfected LLC-PK1 epithelial cells, indicating that the information encoded within the protein sequence is sufficient to allow sorting of newly synthesized protein into distinct intracellular vesicles. Finally, different members of the aquaporin family can be targeted to apical, basolateral or both apical and basolateral plasma membrane domains of polarized epithelial cells. This implies that signals for the polarized targeting of these proteins also is located in non-homologous regions of these similar proteins. Thus, future investigations on the aquaporin family of proteins will provide important information not only on the physiology of membrane transport processes in many cell types, but also on the targeting and trafficking signals that allow proteins to enter distinct intracellular vesicular pathways in epithelial cells. In the case of AQP2, the availability of the transfected cell culture system will allow the intracellular signaling pathway, and the accessory molecules that are involved in this pathway, to be dissected and identified.  相似文献   

7.
In renal collecting ducts, vasopressin increases the expression of and redistributes aquaporin-2 (AQP2) water channels from intracellular vesicles to the apical membrane, leading to urine concentration. However, basolateral membrane expression of AQP2, in addition to AQP3 and AQP4, is often detected in inner medullary principal cells in vivo. Here, potential mechanisms that regulate apical versus basolateral targeting of AQP2 were examined. The lack of AQP2-4 association into heterotetramers and the complete apical expression of AQP2 when highly expressed in Madin-Darby canine kidney cells indicated that neither heterotetramerization of AQP2 with AQP3 and/or AQP4, nor high expression levels of AQP2 explained the basolateral AQP2 localization. However, long term hypertonicity, a feature of the inner medullary interstitium, resulted in an insertion of AQP2 into the basolateral membrane of Madin-Darby canine kidney cells after acute forskolin stimulation. Similarly, a marked insertion of AQP2 into the basolateral membrane of principal cells was observed in the distal inner medulla from normal rats and Brattleboro rats after acute vasopressin treatment of tissue slices that had been chronically treated with vasopressin to increase interstitial osmolality in the medulla, but not in tissues from vasopressin-deficient Brattleboro rats. These data reveal for the first time that chronic hypertonicity can program cells in vitro and in vivo to change the insertion of a protein into the basolateral membrane instead of the apical membrane.  相似文献   

8.
Aquaporins (AQP) were originally regarded as plasma membrane channels that are freely permeated by water or small uncharged solutes but not by ions. Unlike other aquaporins, AQP6 overexpressed in Xenopus laevis oocytes was previously found to exhibit Hg2+ or pH-activated ion conductance. AQP6 could not be analyzed electrophysiologically in mammalian cells, however, because the protein is restricted to intracellular vesicles. Here we report that addition of a green fluorescence protein (GFP) tag to the N terminus of rat AQP6 (GFP-AQP6) redirects the protein to the plasma membranes of transfected mammalian cells. This permitted measurement of rapid, reversible, pH-induced anion currents by GFP-AQP6 in human embryonic kidney 293 cells. Surprisingly, anion selectivity relative to Cl- revealed high nitrate permeability even at pH 7.4; P(NO3)/P(Cl) > 9.8. Site-directed mutation of a pore-lining threonine to isoleucine at position 63 at the midpoint of the channel reduced NO3-/Cl- selectivity. Moreover, no anomalous mole-fraction behavior was observed with NO3-/Cl- mixtures, suggesting a single ion-binding pore in each subunit. Our studies indicate that AQP6 exhibits a new form of anion permeation with marked specificity for nitrate conferred by a specific pore-lining residue, observations that imply that the primary role of AQP6 may be in cellular regulation rather than simple fluid transport.  相似文献   

9.
To examine the trafficking, assembly, and turnover of connexin43 (Cx43) in living cells, we used an enhanced red-shifted mutant of green fluorescent protein (GFP) to construct a Cx43-GFP chimera. When cDNA encoding Cx43-GFP was transfected into communication-competent normal rat kidney cells, Cx43-negative Madin-Darby canine kidney (MDCK) cells, or communication-deficient Neuro2A or HeLa cells, the fusion protein of predicted length was expressed, transported, and assembled into gap junctions that exhibited the classical pentalaminar profile. Dye transfer studies showed that Cx43-GFP formed functional gap junction channels when transfected into otherwise communication-deficient HeLa or Neuro2A cells. Live imaging of Cx43-GFP in MDCK cells revealed that many gap junction plaques remained relatively immobile, whereas others coalesced laterally within the plasma membrane. Time-lapse imaging of live MDCK cells also revealed that Cx43-GFP was transported via highly mobile transport intermediates that could be divided into two size classes of <0.5 microm and 0.5-1.5 microm. In some cases, the larger intracellular Cx43-GFP transport intermediates were observed to form from the internalization of gap junctions, whereas the smaller transport intermediates may represent other routes of trafficking to or from the plasma membrane. The localization of Cx43-GFP in two transport compartments suggests that the dynamic formation and turnover of connexins may involve at least two distinct pathways.  相似文献   

10.
In isolated rat adipose cells, physiologically relevant insulin target cells, glucose transporter 4 (GLUT4) subcellular trafficking can be assessed by transfection of exofacially HA-tagged GLUT4. To simultaneously visualize the transfected GLUT4, we fused GFP with HA-GLUT4. With the resulting chimeras, GFP-HA-GLUT4 and HA-GLUT4-GFP, we were able to visualize for the first time the cell-surface localization, total expression, and intracellular distribution of GLUT4 in a single cell. Confocal microscopy reveals that the intracellular proportions of both GFP-HA-GLUT4 and HA-GLUT4-GFP are properly targeted to the insulin-responsive aminopeptidase-positive vesicles. Dynamic studies demonstrate close similarities in the trafficking kinetics between the two constructs and with native GLUT4. However, while the basal subcellular distribution of HA-GLUT4-GFP and the response to insulin are indistinguishable from those of HA-GLUT4 and endogenous GLUT4, most of the GFP-HA-GLUT4 is targeted to the plasma membrane with little further insulin response. Thus, HA-GLUT4-GFP will be useful to study GLUT4 trafficking in vivo while GFP on the N-terminus interferes with intracellular retention.  相似文献   

11.
In the present study we examined the trafficking pathways of connexin49 (Cx49) fused to green fluorescent protein (GFP) in polar and non-polar cell lines. The Cx49 gene was isolated from ovine lens by RT-PCR. Cx49 cDNA was fused to GFP and the hybrid cDNA was transfected into several cell lines. After transfection of Cx49-GFP cDNA into HeLa cells, it was shown using the double whole-cell patch-clamp technique that the expressed fusion protein was still able to form conducting gap junction channels. Synthesis, assembly, and turnover of the Cx49-GFP hybrid protein were investigated using a pulse-chase protocol. A major 78-kDa protein band corresponding to Cx49-GFP could be detected with a turnover of 16-20 h and a half-life time of 10 h. The trafficking pathways of Cx49-GFP were monitored by confocal laser microscopy. Fusion proteins were localized in subcellular compartments, including the endoplasmic reticulum (ER), the ER-Golgi intermediate compartment, the Golgi apparatus, and the trans-Golgi network, as well as vesicles traveling towards the plasma membrane. Time-dependent sequential localization of Cx49-GFP in the ER and then the Golgi apparatus supports the notion of a slow turnover of Cx49-GFP compared to other connexins analyzed so far. Gap junction plaques resembling the usual punctuate distribution pattern could be demonstrated for COS-1 and MDCK cells. Basolateral distribution of Cx49-GFP was observed in polar MDCK cells, indicating specific sorting behavior of Cx49 in polarized cells. Together, this report describes the first characterization of biosynthesis and trafficking of lens Cx49.  相似文献   

12.
Membrane water channel aquaporin-2 (AQP2) and glucose transporter 4 (GLUT4) exhibit a common feature in that they are stored in intracellular storage compartments and undergo translocation to the plasma membrane upon hormonal stimulation. We compared the intracellular localization and trafficking of AQP2 and GLUT4 in polarized Madin-Darby canine kidney cells stably transfected with human AQP2 (MDCK-hAQP2) by immunofluorescence microscopy. When expressed in MDCK-hAQP2 cells, GLUT4 and GLUT4—EGFP were predominantly localized in the perinuclear region close to and within the Golgi apparatus, similar to endogenous GLUT4 in adipocytes and myocytes. In addition, GLUT4 was occasionally seen in EEA1-positive early endosomes. AQP2, on the other hand, was sequestered in subapical Rab11-positive vesicles. In the basal state, the intracellular storage site of GLUT4 was distinct from that of AQP2. Forskolin induced translocation of AQP2 from the subapical storage vesicles to the apical plasma membrane, which did not affect GLUT4 localization. When forskolin was washed out, AQP2 was first retrieved to early endosomes from the apical plasma membrane, where it was partly colocalized with GLUT4. AQP2 was then transferred to Rab11-positive storage vesicles. These results show that AQP2 and GLUT4 share a common compartment after retrieval from the plasma membrane, but their storage compartments are distinct from each other in polarized MDCK-hAQP2 cells.  相似文献   

13.
The endothelial-derived G-protein-coupled receptor EDG-1 is a high-affinity receptor for the bioactive lipid mediator sphingosine-1-phosphate (SPP). In the present study, we constructed the EDG-1-green fluorescent protein (GFP) chimera to examine the dynamics and subcellular localization of SPP-EDG-1 interaction. SPP binds to EDG-1-GFP and transduces intracellular signals in a manner indistinguishable from that seen with the wild-type receptor. Human embryonic kidney 293 cells stably transfected with the EDG-1-GFP cDNA expressed the receptor primarily on the plasma membrane. Exogenous SPP treatment, in a dose-dependent manner, induced receptor translocation to perinuclear vesicles with a tau1/2 of approximately 15 min. The EDG-1-GFP-containing vesicles are distinct from mitochondria but colocalize in part with endocytic vesicles and lysosomes. Neither the low-affinity agonist lysophosphatidic acid nor other sphingolipids, ceramide, ceramide-1-phosphate, or sphingosylphosphorylcholine, influenced receptor trafficking. Receptor internalization was completely inhibited by truncation of the C terminus. After SPP washout, EDG-1-GFP recycles back to the plasma membrane with a tau1/2 of approximately 30 min. We conclude that the high-affinity ligand SPP specifically induces the reversible trafficking of EDG-1 via the endosomal pathway and that the C-terminal intracellular domain of the receptor is critical for this process.  相似文献   

14.
BACKGROUND INFORMATION: Aquaporin 2 (AQP2) plays an important, VP (vasopressin)-regulated role in water reabsorption by the kidney. The amount of AQP2 expressed at the surface of principal cells results from an equilibrium between the AQP2 in intracellular vesicles and the AQP2 on the plasma membrane. VP shifts the equilibrium in favour of the plasma membrane and this allows osmotic equilibration to occur between the collecting duct lumen and the interstitial space. Membrane accumulation of AQP2 could result from a VP-induced increase in exocytosis, a decrease in endocytosis, or both. In the present study, we further investigated AQP2 accumulation at the cell surface, and compared it with V2R (VP type 2 receptor) trafficking using cells that express epitope-tagged AQP2 and V2R. RESULTS: Endocytosis of V2R and of AQP2 are independent events that can be separated temporally and spatially. The burst of endocytosis seen after VP addition to target cells, when AQP2 accumulates at the cell surface, is primarily due to internalization of the V2R. Increased endocytosis is not induced by forskolin, which also induces membrane accumulation of AQP2 by direct stimulation of adenylate cyclase. This indicates that cAMP elevation is not the primary cause of the initial, VP-induced endocytic process. After VP exposure, AQP2 is not located in endosomes with internalized V2R. Instead, it remains at the cell surface in 'endocytosis-resistant' membrane domains, visualized by confocal imaging. After VP washout, AQP2 is progressively internalized with the fluid-phase marker FITC-dextran, indicating that VP washout releases an endocytotic block that maintains AQP2 at the cell surface. Finally, polarized application of VP to filter-grown cells shows that apical VP can induce basolateral endocytosis and V2R down-regulation, and vice versa. CONCLUSIONS: After VP stimulation of renal epithelial cells, AQP2 accumulates at the cell surface, while the V2R is actively internalized. This endocytotic block may involve a reduced capacity of phosphorylated AQP2 to interact with components of the endocytotic machinery. In addition, a complex cross-talk exists between the apical and basolateral plasma-membrane domains with respect to endocytosis and V2R down-regulation. This may be of physiological significance in down-regulating the VP response in the kidney in vivo.  相似文献   

15.
The leptin receptor (OBR) and its ligand leptin (OB) are key players in the regulation of body weight. The OBR is a member of the class I cytokine receptor family and is alternatively spliced into at least six different isoforms. The multiple forms are identical in their extracellular and transmembrane regions but differ in lengths. The two predominant isoforms include a long form (OBR(l)) with an intracellular domain of 303 amino acids and a shorter form (OBR(s)) with an intracellular domain of 34 amino acids. We have constructed a recombinant OBR(l) chimera with the green fluorescent protein (GFP) by fusing GFP to the C-terminus of the OBR(l). The OBR(l)-GFP chimera was transiently transfected and expressed in SHSY5Y and HEK293 cells. In a STAT-Luciferase assay we show that the GFP moiety in this chimera did not affect the signalling capacity of OBR(l)-GFP. In both SHSY5Y and HEK293 cells transfected with OBR(l)-GFP, a predominant intracellular green OBR(l)-GFP fluorescence was detected in vesicles also positive for internalized fluorophore conjugated leptin. We also found that treatment with the lysosomotropic reagent monensin did not relocalize OBR(l)-GFP together with the human transferrin receptor in recycling endosomes, indicating OBR(l)-GFP not to participate in this pathway. In biotinylation-streptavidin pulse chase experiments, using antibodies raised against GFP and OBR, we observed that the rate of early appearance of OBR(s) at the cell surface, upon leptin stimulation, was faster than that found for OBR(l)-GFP. Taken together, our results provide novel data concerning the intracellular trafficking of the two different isoforms of the leptin receptor.  相似文献   

16.
In renal collecting ducts, a vasopressin-induced cAMP increase results in the phosphorylation of aquaporin-2 (AQP2) water channels at Ser-256 and its redistribution from intracellular vesicles to the apical membrane. Hormones that activate protein kinase C (PKC) proteins counteract this process. To determine the role of the putative kinase sites in the trafficking and hormonal regulation of human AQP2, three putative casein kinase II (Ser-148, Ser-229, Thr-244), one PKC (Ser-231), and one protein kinase A (Ser-256) site were altered to mimic a constitutively non-phosphorylated/phosphorylated state and were expressed in Madin-Darby canine kidney cells. Except for Ser-256 mutants, seven correctly folded AQP2 kinase mutants trafficked as wild-type AQP2 to the apical membrane via forskolin-sensitive intracellular vesicles. With or without forskolin, AQP2-Ser-256A was localized in intracellular vesicles, whereas AQP2-S256D was localized in the apical membrane. Phorbol 12-myristate 13-acetate-induced PKC activation following forskolin treatment resulted in vesicular distribution of all AQP2 kinase mutants, while all were still phosphorylated at Ser-256. Our data indicate that in collecting duct cells, AQP2 trafficking to vasopressin-sensitive vesicles is phosphorylation-independent, that phosphorylation of Ser-256 is necessary and sufficient for expression of AQP2 in the apical membrane, and that PMA-induced PKC-mediated endocytosis of AQP2 is independent of the AQP2 phosphorylation state.  相似文献   

17.
Transepithelial water permeability was measured in LLC-PK1 cells stably transfected with aquaporins (AQPs): AQP1, AQP2, and a chimera of AQP1 and AQP2 containing 41 amino acids of the C-terminus of AQP2. Transepithelial water fluxes (Jw) were not previously reported in cells transfected with aquaporins. Jw were now recorded each minute using a specially developed experimental device. A significant increase in Posm after forskolin (FK) plus vasopressin (VP) was found in AQP2 transfected cells (39.9 ± 8.2 vs. 12.5 ± 3.3 cm · sec−1· 10−3), but not in cells transfected with AQP1 (15.3 ± 3.6 vs. 13.4 ± 3.6 cm · sec−1· 10−3). In the case of the AQP1/2 cells (chimera) the FK plus VP induced Posm was smaller than in AQP2 cells but significantly higher than in mock cells at rest (18.1 ± 4.8 vs. 6.7 ± 1.0 cm · sec−1· 10−3). The increases in Posm values were not paralleled by increases in 14C-Mannitol permeability. HgCl2 inhibited the hydrosmotic response to FK plus VP in AQP2 transfected epithelia. Results were comparable to those observed, in parallel experiments, in a native ADH-sensitive water channel containing epithelial barrier (the toad urinary bladder). Electron microscopy showed confluent LLC-PK1 cells with microvilli at the mucosal border. The presence of spherical or elongated intracellular vacuoles was observed in AQP2 transfected cells, specially after FK plus VP stimulus and under an osmotic gradient. These results demonstrate regulated transepithelial water permeability in epithelial cells transfected with AQP2. Received: 24 June 1997/Revised: 16 September 1997  相似文献   

18.
Apical plasma membrane accumulation of the water channel Aquaporin-2 (AQP2) in kidney collecting duct principal cells is critical for body water homeostasis. Posttranslational modification (PTM) of AQP2 is important for regulating AQP2 trafficking. The aim of this study was to determine the role of cholesterol in regulation of AQP2 PTM and in apical plasma membrane targeting of AQP2. Cholesterol depletion from the basolateral plasma membrane of a collecting duct cell line (mpkCCD14) using methyl-beta-cyclodextrin (MBCD) increased AQP2 ubiquitylation. Forskolin, cAMP or dDAVP-mediated AQP2 phosphorylation at Ser269 (pS269-AQP2) was prevented by cholesterol depletion from the basolateral membrane. None of these effects on pS269-AQP2 were observed when cholesterol was depleted from the apical side of cells, or when MBCD was applied subsequent to dDAVP stimulation. Basolateral, but not apical, MBCD application prevented cAMP-induced apical plasma membrane accumulation of AQP2. These studies indicate that manipulation of the cholesterol content of the basolateral plasma membrane interferes with AQP2 PTM and subsequently regulated apical plasma membrane targeting of AQP2.  相似文献   

19.
A fusion protein (beta-arrestin-1-green fluorescent protein (GFP)) was constructed between beta-arrestin-1 and a modified form of the green fluorescent protein from Aequorea victoria. Expression in HEK293 cells allowed immunological detection of an 82-kDa cytosolic polypeptide with antisera to both beta-arrestin-1 and GFP. Transient expression of this construct in HEK293 cells stably transfected to express the rat thyrotropin-releasing hormone receptor-1 (TRHR-1) followed by confocal microscopy allowed its visualization evenly distributed throughout the cytoplasm. Addition of thyrotropin-releasing hormone (TRH) caused a profound and rapid redistribution of beta-arrestin-1-GFP to the plasma membrane followed by internalization of beta-arrestin-1-GFP into distinct, punctate, intracellular vesicles. TRH did not alter the cellular distribution of GFP transiently transfected into these cells nor the distribution of beta-arrestin-1-GFP following expression in HEK293 cells lacking the receptor. To detect potential co-localization of the receptor and beta-arrestin-1 in response to agonist treatment, beta-arrestin-1-GFP was expressed stably in HEK293 cells. A vesicular stomatitis virus (VSV)-tagged TRHR-1 was then introduced transiently. Initially, the two proteins were fully resolved. Short term exposure to TRH resulted in their plasma membrane co-localization, and sustained exposure to TRH resulted in their co-localization in punctate, intracellular vesicles. In contrast, beta-arrestin-1-GFP did not relocate or adopt a punctate appearance in cells that did not express VSV-TRHR-1. Reciprocal experiments were performed, with equivalent results, following transient expression of beta-arrestin-1 into cells stably expressing VSVTRHR-1-GFP. These results demonstrate the capacity of beta-arrestin-1-GFP to interact with the rat TRHR-1 and directly visualizes their recruitment from cytoplasm and plasma membrane respectively into overlapping, intracellular vesicles in an agonist-dependent manner.  相似文献   

20.
Water reabsorption in the renal collecting duct is regulated by arginine vasopressin (AVP). AVP induces the insertion of the water channel aquaporin-2 (AQP2) into the plasma membrane of principal cells, thereby increasing the osmotic water permeability. The redistribution of AQP2 to the plasma membrane is a cAMP-dependent process and thus a paradigm for cAMP-controlled exocytic processes. Using primary cultured rat inner medullary collecting duct cells, we show that the redistribution of AQP2 to the plasma membrane is accompanied by the reorganization of microtubules and the redistribution of the small GTPase Rab11. In resting cells, AQP2 is colocalized with Rab11 perinuclearly. AVP induced the redistribution of AQP2 to the plasma membrane and of Rab11 to the cell periphery. The redistribution of both proteins was increased when microtubules were depolymerized by nocodazole. In addition, the depolymerization of microtubules prevented the perinuclear positioning of AQP2 and Rab11 in resting cells, which was restored if nocodazole was washed out and microtubules repolymerized. After internalization of AQP2, induced by removal of AVP, forskolin triggered the AQP2 redistribution to the plasma membrane even if microtubules were depolymerized and without the previous positioning of AQP2 in the perinuclear recycling compartment. Collectively, the data indicate that microtubule-dependent transport of AQP2 is predominantly responsible for trafficking and localization of AQP2 inside the cell after its internalization but not for the exocytic transport of the water channel. We also demonstrate that cAMP-signaling regulates the localization of Rab11-positive recycling endosomes in renal principal cells. dynein; Rab11  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号