首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of NO2 on Airborne Venezuelan Equine Encephalomyelitis Virus   总被引:1,自引:1,他引:0       下载免费PDF全文
Studies were conducted to determine the effect of nitrogen dioxide (NO(2)) on aerosol survival and biological decay rate of Venezulean equine encephalomyelitis (VEE) virus and spores of Bacillus subtilis var. niger. The NO(2) concentrations used in the experiments were 0.5, 5, and 10 ppm at 24 C and 85% RH. The survival of airborne VEE virus disseminated as particles 1 to 5 mum in diameter was significantly influenced by the presence of 5 ppm of NO(2). At this concentration, the biological decay rate increased threefold and the aerosol recovery and aerosol survival of the VEE virus were significantly lower than at 0.5 ppm or in the absence of NO(2). Airborne spores of B. subtilis were not significantly affected by as much as 10 ppm of NO(2).  相似文献   

2.
Experiments were conducted to determine the effects of storage temperatures, relative humidity, and additives on the survival of aerosolized Escherichia coli phage T-3. The aerosol stability of the coliphage, calculated as per cent recovery, was not affected by storage at 10 or -70 C for up to 4 months. However, an increase in aerosol decay rate of coliphage stored at 10 C was observed. The effect of humidities ranging from 20 to 90% relative humidity was studied, and it was observed that humidities lower than 70% relative humidity significantly reduce the survival of airborne coliphage. The effect of various compounds on the aerosol decay rate of T-3 coliphage was studied at 50 and 85% relative humidity. Addition of dextrose in 0.1 M concentrations to the disseminating fluid significantly reduced aerosol decay rate at 50% relative humidity without affecting the decay at 85%. Addition of spermine, spermidine-phosphate, thiourea, galacturonic acid, and glucosaminic acid, individually or in combination, had no effect on aerosol decay rates. The use of deuterium oxide as the suspending fluid for dissemination had no effect on aerosol stability of the coliphage.  相似文献   

3.
This paper reports a series of experiments in which two methods of collecting airborne bacteriophage particles were compared. A standard aerosol sampler, the AGI-30, was evaluated for its competence in measuring the content of bacteriophage aerosols. It was used alone or with a prewetting or humidification device (humidifier bulb) to recover T(3) coliphage and Pasteurella pestis bacteriophage particles from aerosols maintained at 21 C and varied relative humidity. Collection of bacteriophage particles via the humidifier bulb altered both the initial recovery level and the apparent biological decay. Sampling airborne bacteriophage particles by the AGI-30 alone yielded data that apparently underestimated the maximal number of potentially viable particles within the aerosol, sometimes by as much as 3 logs.  相似文献   

4.
The aerosol survival, recovery, and death rate of Pasteurella tularensis SCHU S5 disseminated in particle sizes of 1 to 5 mum were significantly affected by air temperature. The highest aerosol recovery of viable P. tularensis was observed within -7 and 3 C; the recovery decreased significantly below and above this temperature range. The death rate of airborne P. tularensis was not significantly influenced by an increase in temperature from -40 to 24 C. However, a progressive increase in atmospheric temperature from 24 to 35 C resulted in increased death rates; thus, a linear relationship appeared to be present between the temperature and death rates. At 49 C, the recoveries of viable airborne P. tularensis were significantly lower and the death rates were higher than at the other temperatures.  相似文献   

5.
Effects of temperatures ranging from -40 to 49 C on the behavior of airborne Serratia marcescens, Escherichia coli, and Bacillus subtilis var. niger were investigated. Aerosol decay rates of B. subtilis spores were not significantly affected by the temperature and remained approximately constant within the temperature range studied. The survival of airborne S. marcescens and E. coli was closely related to the temperature. An increase in temperature from -18 to 49 C resulted in a progressive increase of the biological death rate, and the relationship between the biological death rate and the temperature appeared to be linear. An increase in temperature from 24 to 49 C resulted in significantly reduced aerosol recoveries of the two vegetative organisms. At -40 C, the aerosol recovery of all three agents was consistently lower than at -18 to 24 C.  相似文献   

6.
Persistence of Salmonella typhimurium on Fabrics   总被引:3,自引:3,他引:0       下载免费PDF全文
The objective of this study was to determine the feasibility of using airborne T3 coliphage as a viral tracer in microbial aerosols. Although T3 coliphage was relatively stable when stored either at temperatures ranging from 21 to 37 C or in the frozen state at -20 C, there was a 2-log loss in infectivity when stored for 72 days at 4 C. Either agitation of stored coliphage suspensions held at 31 C or wide fluctuations in storage temperature produced an increased loss of infectivity. In the airborne state, freshly prepared coliphage and stored coliphage behaved similarly, with survival diminishing as the relative humidity (RH) was lowered. The greatest loss occurred during the first five min following aerosolization. The results showed that only under certain conditions of temperature and relative humidity can T3 coliphage be used as a satisfactory aerosol tracer.  相似文献   

7.
The objective of this study was to determine the feasibility of using airborne T3 coliphage as a viral tracer in microbial aerosols. Although T3 coliphage was relatively stable when stored either at temperatures ranging from 21 to 37 C or in the frozen state at -20 C, there was a 2-log loss in infectivity when stored for 72 days at 4 C. Either agitation of stored coliphage suspensions held at 31 C or wide fluctuations in storage temperature produced an increased loss of infectivity. In the airborne state, freshly prepared coliphage and stored coliphage behaved similarly, with survival diminishing as the relative humidity (RH) was lowered. The greatest loss occurred during the first five min following aerosolization. The results showed that only under certain conditions of temperature and relative humidity can T3 coliphage be used as a satisfactory aerosol tracer.  相似文献   

8.
Assessment of Aerosol Mixtures of Different Viruses   总被引:1,自引:1,他引:0       下载免费PDF全文
Aerosol mixtures of the psittacosis agent, yellow fever virus, and variola virus were assayed by selective immunofluorescence in conjunction with fluorescent cell counting. The aerosol behavior of each agent could be readily delineated at test conditions of 80 F (26.67 C) and three relative humidities (30, 50, or 80%). Of the three agents, variola virus exhibited the lowest biological decay. The biological decay rates of the airborne agents were not significantly affected by humidity changes.  相似文献   

9.
The aerosol stability of two particle forms, infectious and potentially infectious, of reovirus were examined under static conditions for a range of relative humidities at 21 and 24 degrees C. Virus aerosolization efficiency was determined for two methods of dissemination: Collison nebulizer and Chicago atomizer. Suspensions of Bacillus subtilis var. niger spores were added to reovirus preparations that included both particle forms and disseminated into a dynamic aerosol toroid to estimate the physical decay of the aerosols. At 90 to 100% relative humidity, both reovirus particle forms showed less than 10-fold loss of infectivity after 12 h of aging. At lower relative humidities the aerosol decay curve showed rapid initial decay followed by a markedly lower decay rate. Our findings reveal that reovirus particles are relatively stable in the airborne state.  相似文献   

10.
Almost 90% of the Trinidad strain of Venezuelan equine encephalomyelitis (VEE) virus survived for 1 hr after aerosolization into a dark environment at 30% relative humidity (RH), and 78% survived for 1 hr at 60% RH. After exposure to simulated solar radiation (584 mcal per cm(2) per min) 0.02% of the aerosolized virus survived for 1 hr at 30% RH and 0.006% survived for 1 hr at 60% RH. When 1.0 mg of sodium fluorescein per ml was added to suspensions prior to aerosol dissemination (to determine physical loss of aerosol), no virus was detected after 30 min at either RH upon irradiation. Sodium fluorescein also exhibited some toxicity (31% survival at 60 min) for nonirradiated aerosols of VEE virus at 60% RH; no effect was noted at 30%.  相似文献   

11.
We studied some important aspects constituting aerosol transmission of Hantaan virus, including the possibility of viral aerosol generated by rodents, airborne stability, rodent’s susceptibility to aerosol challenge, and field air sampling for the virus. Our results showed that Hantaan virus aerosol could be generated through the activities of infected mice, and cause specific infection among the exposed animals. Several kinds of rodents such asApodemus agrarius, weaning mice and suckling mice were found to be rather sensitive to the aerosol challenge of Hantaan virus. The 50% of inhaled lethal dose (LD50) of suckling mice is 0.73 (1.4–0.37) plaque-forming unit (pfu). Hantaan virus aerosol was relatively stable in the air at 18–20°C and 70–90% relative humidity. The biological decay rate of the viral aerosol was 4.1% per min during 90 min. We also successfully sampled and isolated Hantaan virus from the working field atmosphere. The data obtained in the study provided more solid evidence for Hantaan virus aerosol transmission among rodents and from rodents to human-beings.  相似文献   

12.
Suspensions of transmissible gastroenteritis virus (TGEV), a porcine coronavirus, were nebulized at rates of 0.1–0.2 ml/min into moving air using a Collison nebulizer or a plastic medical nebulizer operating at pressures ranging from 7 to 15 psi. The airborne viruses were collected on heating, ventilating, and air conditioning (HVAC) filters in an experimental apparatus and also sampled upstream of these test filters using AGI-30 and BioSampler impinger samplers. To study the effects of relative humidity (RH) on TGEV collection by the filters and samplers, the virus was nebulized into air at 30, 50, 70, and 90% RH. There were no significant changes in virus titer in the nebulizer suspension before and after nebulization for either nebulizer at any of the pressures utilized. Aerosolization efficiency – the ratio of viable virus sampled with impingers to the quantity of viable virus nebulized – decreased with increasing humidity. BioSamplers detected more airborne virus than AGI-30 samplers at all RH levels. This difference was statistically significant at 30 and 50% RH. Nebulizer type and pressure did not significantly affect the viability of the airborne virus. Virus recovery from test filters relative to the concentration of virus in the nebulizer suspension was less than 10%. The most and the least virus were recovered from filter media at 30% and 90% RH, respectively. The results suggest that TGEV, and perhaps other coronaviruses, remain viable longer in an airborne state and are sampled more effectively at low RH than at high humidity.  相似文献   

13.
Stability of St. Louis Encephalitis Virus in the Airborne State   总被引:1,自引:1,他引:0       下载免费PDF全文
The aerosol stability of St. Louis encephalitis (SLE) virus was studied over a 6-hr period at a temperature of 21 C and relative humidity values of 23, 46, 60, and 80%. Aerosols were generated from and collected in 0.75% bovine albumin-buffered saline, and spores of Bacillus subtilis var. niger were used as the tracer to determine the physical decay of the aerosols. Aerosol samples were titrated in BHK-21 cell monolayers for surviving SLE virus. The results of this study indicated that, under the test conditions employed, relative humidity had no influence on the stability of SLE virus in the airborne state.  相似文献   

14.
Airborne Stability of Tailless Bacterial Viruses S-13 and MS-2   总被引:6,自引:6,他引:0       下载免费PDF全文
The effect of relative humidity (RH) on the airborne stability of two small bacterial viruses, S-13 and MS-2, was studied. Poorest recovery of S-13 was obtained at 50% RH. Humidification prior to aerosol sampling significantly increased the recovery of S-13 at RH deleterious to the airborne virus. A commercial preparation of MS-2 suspended in a buffered saline solution showed a rapid loss of viability at RH above 30%, whereas a laboratory preparation containing 1.3% tryptone showed high recoveries at all RH studied. Dilution of the commercial MS-2 into tryptone broth conferred stability on the airborne virus. Humidification prior to sampling significantly reduced the viable recovery from aerosols of commercial MS-2, whereas the laboratory preparation was unaffected.  相似文献   

15.
The effect of an abrupt change in the relative humidity on the viability of airborne Mycoplasma pneumoniae has been examined. When the microbial aerosols were permitted to equilibrate in air held at either low or high humidities and were then subjected to a sudden shift to a mid-range humidity, a significant loss (>90%) of the colony-forming units per liter of aerosol occurred within 8 min. In contrast, a change in the relative humidity of more than 18% in either direction from a lethal mid-range humidity noticeably decreased the rate of biological decay. Double humidity shifts (i.e., from dry to a mid-range level and then to a high humidity range) were very detrimental, with very few survivors after 8 min. These results indicate that the biological stability of airborne M. pneumoniae may be easily modified by a sudden change in the relative humidity, such as occurs in natural atmospheres. This increased sensitivity brought about by producing changes in relative humidity through the lethal humidity range may provide a method whereby the control of these organisms in naturally contaminated indoor air environments may be eventually achieved.  相似文献   

16.
The Wa strain of human rotavirus, grown in MA-104 cells, was suspended either in tryptose phosphate broth or feces from a case of rotaviral diarrhea. It was then aerosolized into a rotating drum using a Collison nebulizer. The drum air was sampled using an all-glass impinger containing tryptose phosphate broth as collecting fluid. At 20 +/- 1 degree C, the virus aerosolized from tryptose phosphate broth was found to survive best at 50 +/- 5% relative humidity, where its half-life was 44.2 +/- 6.3 h. At 30 +/- 5% and 80 +/- 5% relative humidity, the half-life of the virus was 24.5 +/- 3.5 and 3.8 +/- 1.0 h, respectively. At 6 +/- 1 degree C, the airborne survival of the virus at the mid and low relative humidity levels was further enhanced, but at the high relative humidity it remained very similar to that seen at 20 +/- 1 degree C. When aerosols of fecally suspended human rotavirus were held at 20 +/- 1 degree C with 50 +/- 5% relative humidity, nearly 80% of the airborne virus particles remained infectious even at the aerosol age of 24 h. These findings may help in our understanding of the epidemiology of rotaviral infections.  相似文献   

17.
A system for studying the effects of relative humidity (RH) and temperature on biological aerosols, utilizing a modified toroid for a static aerosol chamber, is described. Studies were conducted at 23 C and at three RH levels (10, 35, and 90%) with four viruses (Newcastle disease virus, infectious bovine rhinotracheitis virus, vesicular stomatitis virus, and Escherichia coli B T3 bacteriophage). Virus loss on aerosol generation was consistently lower at 90% than at 10 or 35% RH. When stored at 23 C, Newcastle disease virus and vesicular stomatitis virus survived best at 10% RH. Infectious bovine rhinotracheitis virus and E. coli B T3 bacteriophage survived storage at 23 C best at 90% RH.  相似文献   

18.
Characterization of UVC light sensitivity of vaccinia virus   总被引:1,自引:0,他引:1  
Interest in airborne smallpox transmission has been renewed because of concerns regarding the potential use of smallpox virus as a biothreat agent. Air disinfection via upper-room 254-nm germicidal UV (UVC) light in public buildings may reduce the impact of primary agent releases, prevent secondary airborne transmission, and be effective prior to the time when public health authorities are aware of a smallpox outbreak. We characterized the susceptibility of vaccinia virus aerosols, as a surrogate for smallpox, to UVC light by using a benchtop, one-pass aerosol chamber. We evaluated virus susceptibility to UVC doses ranging from 0.1 to 3.2 J/m(2), three relative humidity (RH) levels (20%, 60%, and 80%), and suspensions of virus in either water or synthetic respiratory fluid. Dose-response plots show that vaccinia virus susceptibility increased with decreasing RH. These plots also show a significant nonlinear component and a poor fit when using a first-order decay model but show a reasonable fit when we assume that virus susceptibility follows a log-normal distribution. The overall effects of RH (P < 0.0001) and the suspending medium (P = 0.014) were statistically significant. When controlling for the suspending medium, the RH remained a significant factor (P < 0.0001) and the effect of the suspending medium was significant overall (P < 0.0001) after controlling for RH. Virus susceptibility did not appear to be a function of virus particle size. This work provides an essential scientific basis for the design of effective upper-room UVC installations for the prevention of airborne infection transmission of smallpox virus by characterizing the susceptibility of an important orthopoxvirus to UVC exposure.  相似文献   

19.
Effect of relative humidity on the airborne survival of rhinovirus-14   总被引:5,自引:0,他引:5  
Rhinovirus-14, suspended in tryptose phosphate broth supplemented with uranine (physical tracer) and an antifoam, was aerosolized by use of a Collison nebulizer. The aerosols were held in a rotating drum with the relative humidity at either the low (30 +/- 5%), medium (50 +/- 5%), or high (80 +/- 5%) level at 20 +/- 1 degrees C. An all-glass impinger was used to recover the virus from the air in the drum, with the first air sample being collected after a 15-min period of aerosol stabilization. Subsequent air samples were withdrawn at 2, 4, 8, and 14 h after stabilization of the aerosol. At the low and medium relative humidity levels, the infectivity of the airborne virus was rapidly lost and less than 0.25% could be detected in the first air sample. At the high RH level, however, the airborne virus had a half-life of 13.7 +/- 1.91 h and nearly 30% of the input infectious virus could be detected in the drum air even after 24 h of aerosolization. These findings suggest that under certain environmental conditions, notably high relative humidity, air may act as a vehicle for the spread of rhinovirus infections.  相似文献   

20.
Airborne Stability of Simian Virus 40   总被引:1,自引:0,他引:1       下载免费PDF全文
The influence of relative humidity on the airborne survival of simian virus 40 (SV40) was studied by allowing virus aerosols to age in rotating drums at 21 or 32 C and at a relative humidity (RH) value ranging from 22 to 88%. Airborne SV40 virus was stable at every RH tested at 21 C, but aerosols maintained at 32 C were inactivated within 60 min at mid-range RH values. The unusual stability at 21 C over a broad RH range indicates that potentially biohazardous situations may occur under laboratory conditions if this virus becomes accidentally airborne.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号