首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Summary 3-cyanopyridine was hydrated to nicotinamide by whole cells ofBrevibacterium R-312 containing nitrile hydratase. Cells used for kinetic studies had an initial activity of 0.30 mg nicotinamide/mg cells(dry)-min and storage half-lives (pH 8) of approximately 100 days, 10 days, 5 days and less than 1 day at 4°C, 10°C, 25°C, and 30°C respectively. Temperature and pH maxima were 35°C and 8.0, respectively. Fermentations gave a maximum total hydratase activity of 1.25 mg nicotinamide/min, but at this maximum the amidase activity was unacceptably high (25% of the hydratase activity): nicotinamide was converted too rapidly to nicotinic acid. But systematic fermentation studies (7 1) showed that harvesting at mid-log phase (18–20 h) prior to the attainment of maximum total activity gave reasonably high levels of hydratase (0.3 mg nicotinamide/mg cells-min) and acceptable levels of amidase (0.03 mg nicotinic acid/mg cells-min).  相似文献   

2.
Abstract The effects of cobalt ions on the activities of Rhodococcus rhodochrous M8 enzymes for nitrile utilization, nitrile hydratase and amidase, were investigated. In contrast to amidase, synthesis of nitrile hydratase and its activity required cobalt ions in the growth medium. Northern blot analysis showed that in the presence of cobalt ions, the level of mRNA for nitrile hydratase genes was several times higher than that under cobalt-limited conditions. It was assumed that the low nitrile hydratase activity in cells grown in the absence of cobalt ions is connected either with the weak expression of nitrile hydratase genes or with the rapid degradation of nitrile hydratase mRNA.  相似文献   

3.
A semi-purified nitrile hydratase from Rhodococcus erythropolis A4 was applied to biotransformations of 3-oxonitriles 1a–4a, 3-hydroxy-2-methylenenitriles 5a–7a, 4-hydroxy-2-methylenenitriles 8a–9a, 3-hydroxynitriles 10a–12a and 3-acyloxynitrile 13a into amides 1b–13b. Cross-linked enzyme aggregates (CLEAs) with nitrile hydratase and amidase activities (88% and 77% of the initial activities, respectively) were prepared from cell-free extract of this microorganism and used for nitrile hydration in presence of ammonium sulfate, which selectively inhibited amidase activity. The genes nha1 and nha2 coding for and β subunits of nitrile hydratase were cloned and sequenced.  相似文献   

4.
The Rhodococcus erythropolis strain (N′4) possesses the ability to convert 4-chloro-3-hydroxybutyronitrile into the corresponding acid. This conversion was determined to be performed by its nitrile hydratase and amidase. Ammonium sulfate fractionation, DEAE ion exchange chromatography, and phenyl chromatography were used to partially purify nitrile hydratase from cell-free extract. A SDS-PAGE showed that the partially purified enzyme had two subunits and gel filtration chromatography showed that it consisted of four subunits of α2β2. The purified enzyme had a high specific activity of 860 U mg−1 toward methacrylonitrile. The enzyme was found to have high activity at low temperature range, with a maximum activity occurring at 25 °C and be stable in the presence of organic acids at higher temperatures. The enzyme exhibited a preference for aliphatic saturated nitrile substrates over aliphatic unsaturated or aromatic ones. It was inhibited by sulfhydryl, oxidizing, and serine protease inhibitors, thus indicating that essential cysteine and serine residues can be found in the active site.The purified nitrile hydratase was able to convert 4-chloro-3-hydroxybutyronitrile into the corresponding amide at 15 °C. GC analysis showed that the initial conversion rate of the reaction was 215 mg substrate consumed min−1 mg−1. This demonstrated that this enzyme could be used in conjunction with a stereoselective amidase to synthesize ethyl (S)-4-chloro-3-hydroxybutyrate, an intermediate for a hypercholesterolemia drug, Atorvastatin.  相似文献   

5.
Rhodococcus rhodochrous IFO 15564 enantioselectively hydrolysed racemic 3-benzoyloxypentanenitrile and 3-benzoyloxypentanamide to afford (R)-amide and (S)-car☐ylic acid with high enantiomeric excess (> 90%). In this reaction, both enantiomers of the starting nitrile were converted to the amide by nitrile hydratase, and amidase-catalysed enantioselective hydrolysis of the amide was responsible for the kinetic resolution. The lack of enantioselectivity of the nittile hydratase toward the racemic nitrile forms a marked contrast to the case of previously reported highly enantioselective conversion of prochiral 3-benzoyloxypentanedinitrile by this enzyme. since (R)-amide could be hydrolysed chemically to (R)-car☐ylic acid without any loss of its ee, the present microbial kinetic resolution serves as an effective method for preparing both enantiomers of synthetically useful 3-hydroxypentanoic acid derivatives.  相似文献   

6.
Rhodococcus pyridinovorans MW3 was isolated from an arable land of manioc from the Congo for its ability to transform acrylonitrile to acrylamide. This strain contains a cobalt nitrile hydratase (NHase) showing high sequence homology with NHases so far described. The specific NHase activity was 97 U mg(-1) dry wt. NHase production by R. pyridinovorans MW3 was urea and Co-dependent. The NHase was active for acrylamide up to 60% (w/v) indicating its potential for acrylamide production.  相似文献   

7.
Acinetobacter strain IVS-B aerobically grows on isovalerate as sole carbon and energy source. Isovalerate is metabolised via isovaleryl-CoA, an intermediate of the oxidative (S)-leucine degradation pathway. A 3-methylglutaconyl-CoA hydratase (EC 4.2.1.18) was purified 65-fold to apparent homogeneity from cell-free extracts of isovalerate-grown cells of Acinetobacter strain IVS-B. The enzyme was found to be a homotetramer (115.2 kDa) composed of four identical subunits of 28.8 kDa not containing any cofactors. The enzyme was shown to catalyse the hydration of (E)-glutaconyl-CoA (k cat=18 s−1, K m=40 μM) and the dehydration of (S)-3-hydroxyglutaryl-CoA (k cat=13 s−1, K m=52 μM), albeit with somewhat lower catalytic efficiencies as compared to the 3-methyl derivatives, 3-methylglutaconyl-CoA (k cat=138 s−1, K m=14 μM) and (S)-3-hydroxy-3-methylglutaryl-CoA (k cat=60 s−1, K m=36 μM). Thus, the mechanistically simple syn-addition of water to the (E)-isomer of 3-methylglutaconyl-CoA of the leucine degradative pathway leading to the common intermediate (S)-3-hydroxy-3-methylglutaryl-CoA was assigned as the major physiological role to this enzyme. The amino acid sequence of 3-methylglutaconyl-CoA hydratase from Acinetobacter sp. was found to be related to over 100 prokaryotic enoyl-CoA hydratases (up to 50% identity), possibly all being 3-methylglutaconyl-CoA hydratases.An erratum to this article can be found at  相似文献   

8.
In soil the herbicide 2,6-dichlorobenzonitrile (dichlobenil) is degraded to the persistent metabolite 2,6-dichlorobenzamide (BAM) which has been detected in 19% of samples taken from Danish groundwater. We tested if common soil bacteria harbouring nitrile-degrading enzymes, nitrile hydratases or nitrilases, were able to degrade dichlobenil in vitro. We showed that several strains degraded dichlobenil stoichiometrically to BAM in 1.5–6.0 days; formation of the amide intermediate thus showed nitrile hydratase rather than nitrilase activity, which would result in formation of 2,6-dichlorobenzoic acid. The non-halogenated␣analogue benzonitrile was also degraded, but here the benzamide intermediate accumulated only transiently showing nitrile hydratase followed by amidase activity. We conclude that a potential for dichlobenil degradation to BAM is found commonly in soil bacteria, whereas further degradation of the BAM intermediate could not be demonstrated.  相似文献   

9.
The use of 2,2'-dithiodibenzaldehyde (DTDB) as a reactant for incorporating thiolate donors into the coordination sphere of a transition metal complex without the need for protecting groups is expanded to include the synthesis of complexes with pentadentate ligands. The ligand N,N'-bis(thiosalicylideneimine)-2,2'-thiobis(ethylamine) (tsaltp) is synthesized at a cobalt center by the reaction of DTDB with a Co complex of thiobis(ethylamine). The resulting Co complexes are thus coordinated by the N(2)S(3) pentadentate ligand through two imine N atoms, two thiolate S atoms, and one thioether S atom. A dimeric, bis-thiolate-bridged complex (1) is isolated and converted to a monomeric CN adduct (2) by treatment with KCN. The N(2)S(3) coordination environment provided by the tsaltp ligand is similar to that provided by the protein donors at the active site of the nitrile hydratase enzymes, with 2 being the first octahedral Co complex reported with such a coordination sphere.  相似文献   

10.
The reaction conditions towards the preferential action of either nitrile hydratase or amidase in the harvested whole cells of Rhodococcus rhodochrous IFO 15564 were elaborated. The amidase showed higher heat tolerance than the nitrile hydratase and, at 45 °C the amidase worked exclusively. DMSO assisted the preferential action of nitrile hydratase, however, at more than 30% (v/v) addition of DMF, the nitrile hydratase activity was completely lost and only amidase worked. A one-pot chemo-enzymatic conversion of aldehydes to amides [(1) aq. NH3, I2, DMSO; (2) Na2S2O3; (3) harvested cells of R. rhodochrous] was established. Under these reaction conditions, most of the amidase was lost, and the incubation of the firstly formed intermediates, nitriles in aq. NH3 was responsible for the selective inhibition of amidase. The freezing of harvested cells in an exhaustively deionized environment provided a long-term preservable “ready to use” for the organic chemist.  相似文献   

11.
The enantioselective production of (S)-2,2-dimethylcyclopropane carboxylic acid was investigated in 53 Rhodococcus and Pseudomonas related strains. Rhodococcus erythropolis ATCC 25544 was selected as it showed the highest enantioselectivity. The enantioselectivity was due to the amidase activity in a two-step reaction involving nitrile hydratase. The enantiomeric excess of the amidase was highest at pH 7.0 and decreased significantly above 20 °C. For the enantioselective production of (S)-2,2-dimethylcyclopropane carboxylic acid, the optimum reaction conditions of the cells were determined to be pH 7.0, 20 °C, and 10% (v/v) methanol and were the same as the optimum pH and temperature for the enantioselective conversion by the amidase. Under these conditions, the R. erythropolis ATCC 25544 cells, which harbored nitrile hydratase and amidase enzymes, produced 45 mM (S)-2,2-dimethylcyclopropane carboxylic acid from racemic 100 mM 2,2-dimethylcyclopropane carbonitrile with an 81.8% enantiomeric excess after 64 h.  相似文献   

12.
A polymerase chain reaction (PCR) protocol was developed for the specific detection of genes coding nitrile hydratase (NHase). Primer design was based on the highly conserved sequences found in the coding region of the alpha-subunit gene corresponding to the metal-binding site. Purified genomic DNA from bacterial strains or directly from soil can serve as the target for the PCR, thus affording a simple and rapid method for screening NHase genes. The primer pairs, NHCo1/NHCo2 and NHFe1/NHFe2 yield PCR products corresponding to a partial coding sequence of cobalt and iron NHase genes, respectively. Using the PCR method, both types of iron- and cobalt-NHase-encoding genes were detected in DNA from pure cultures and soil samples. Furthermore consensus primers allowed rapid cloning and expression of novel NHases in Escherichia coli.  相似文献   

13.
A propionitrile-induced nitrile hydratase (NHase), a promising biocatalyst for synthesis of organic amides has been purified from cell-free extract of Rhodococcus rhodochrous PA-34. About 11-fold purification of NHase was achieved with 52% yield. The SDS-PAGE of the purified enzyme revealed that it consisted of two subunits of 25.04 kD and 30.6 kD. However, the molecular weight of holoenzyme was speculated to be 86 kD by native-PAGE. This NHase exhibited maximum activity at pH 8.0 and temperature 40°C. Half-life was 2 h at 40°C and 0.5 h at 50°C. The Km and Vmax were 167 mM and 250 μmole/min/mg using 25 mM 3-cyanopyridine as substrate. AgNO3, Pb(CH3COO)2 and HgCl2 inhibited the NHase to extent of 89–100%.  相似文献   

14.
Abstract Nocardia sp. 108 exhibited strong acrylonitrile-hydrating activity and its nitrile hydratase was Co2+-dependent. Nocardia sp. 108 was active within a broad pH range from 6.0 to 10.0 at 30°C and thermostable at temperatures below 35°C, but became unstable at temperatures above 45°C. Furthermore, it was found that Nocardia sp. 108 can hydrate indole-3-acetonitrile, p-chlorobenzonitrile, p-hydroxybenzylcyanide, 3,4,5-trimethoxybenzonitrile, p-aminobenzonitrile, 3-cyanopyridine, o-chlorobenzonitrile to the corresponding amides and hence displayed a broad substrate specificity. The temperature and pH optima for these hydrations were 28°C and pH 7.0–7.5, respectively. At the observed concentrations, acrylonitrile was completely converted within 5 min, while 3,4,5-trimethoxybenzonitrile, p-aminobenzonitrile, indole-3-acetonitrile, p-chlorobenzonitrile were approximately 21.71, 8.98, 34.44, 93.10% hydrated. p-Chlorobenzonitrile appeared to be the preferred aromatic nitrile for Nocardia sp. 108.  相似文献   

15.
A gram-negative rod-shaped bacterium capable of utilizing acrylonitrile as the sole source of nitrogen was isolated from industrial sewage and identified as Klebsiella pneumoniae. The isolate was capable of utilizing aliphatic nitriles containing 1 to 5 carbon atoms or benzonitrile as the sole source of nitrogen and either acetamide or propionamide as the sole source of both carbon and nitrogen. Gas chromatographic and mass spectral analyses of culture filtrates indicated that K. pneumoniae was capable of hydrolyzing 6.15 mmol of acrylonitrile to 5.15 mmol of acrylamide within 24 h. The acrylamide was hydrolyzed to 1.0 mmol of acrylic acid within 72 h. Another metabolite of acrylonitrile metabolism was ammonia, which reached a maximum concentration of 3.69 mM within 48 h. Nitrile hydratase and amidase, the two hydrolytic enzymes responsible for the sequential metabolism of nitrile compounds, were induced by acrylonitrile. The optimum temperature for nitrile hydratase activity was 55°C and that for amidase was 40°C; both enzymes had pH optima of 8.0.Abbreviations PBM phosphate buffered medium - GC gas chromatography - GC/MS gas chromatography/mass spectrometry  相似文献   

16.
To enhance the productivity and activity of nitrile hydratase inRhodococcus rhodochrous M33, a glucose-limited fed-batch culture was performed. In a fed-batch culture where the glucose was controlled at a limited level and cobalt was supplemented during the fermentation period, the cell mass and total activity of nitrile hydratase both increased 3.3-fold compared to that in the batch fermentation. The productivity of nitrile hydratase also increased 1.9-fold compared to that in the batch fermentation. The specific activity of nitrile hydratase in the whole cell preparation when using a fed-batch culture was 120 units/mg-DCW, which was similar to that in the batch culture.  相似文献   

17.
The crystal structure of Fe-type nitrile hydratase from Rhodococcus erythropolis AJ270 was determined at 1.3A resolution. The two cysteine residues (alphaCys(112) and alphaCys(114)) equatorially coordinated to the ferric ion were post-translationally modified to cysteine sulfinic acids. A glutamine residue (alphaGln(90)) in the active center gave double conformations. Based on the interactions among the enzyme, substrate and water molecules, a new mechanism of biocatalysis of nitrile hydratase was proposed, in which the water molecule activated by the glutamine residue performed as the nucleophile to attack on the nitrile which was simultaneously interacted by another water molecule coordinated to the ferric ion.  相似文献   

18.
The genes encoding an enantioselective nitrile hydratase (NHase) from Rhodococcus erythropolis AJ270 have been cloned and an active NHase has been produced in Escherichia coli. Maximal activity was found when the genes encoding the α- and β-subunits were transcribed as one unit and the gene encoding the P44k activator protein as a separate ORF on a single replicon. Addition of n-butyric acid and FeSO4 could improve NHase activity. Coexpression of the GroEL-GroES chaperone proteins increased activity in the absence of P44k protein but had no effect in the presence of P44k. The recombinant enzyme was highly enantioselective in the synthesis of S-(+)-3-benzoyloxy- 4-cyanobutyramide from the prochiral substrate 3-benzoyloxyglutaronitrile.  相似文献   

19.
The nitrile metabolising strains AJ270, AJ300 and AJ115 were isolated from the same location. The strains have very similar nitrile metabolising profiles. Sequencing of the 16S rRNA gene indicates that strains AJ270 and AJ300 are novel strains of Rhodococcus erythropolis while strain AJ115 is a novel Microbacterium strain very closely related to Microbacterium oxydans and Microbacterium liquefaciens. Analysis of the structure of the nitrile hydratase/amidase gene clusters in the three strains indicates that this region is identical in these strains and that this structure is different to other nitrile hydratase/amidase gene clusters. The major difference seen is the insertion of a complete copy of the insertion sequence IS1166 in the nhr2 gene. This copy of IS1166 generates a 10 bp direct duplication at the point of insertion and has one ORF encoding a protein of 434 amino acids, with 98% homology to the transposase of IS666 from Mycobacterium avium. A gene oxd, encoding aldoxime dehydratase is found upstream of the nitrile hydratase gene cluster and an open reading frame encoding a protein with homology to GlnQ type ABC transporters is found downstream of the nitrile hydratase/amidase genes. The identity of the nitrile hydratase/amidase gene clusters in the three strains suggests horizontal gene transfer of this region. Analysis of the strains for both linear and circular plasmids indicates that both are present in the strains but hybridisation studies indicate that the nitrile hydratase/amidase gene cluster is chromosomally located. The nitrile hydratase/amidase enzymes of strain AJ270 are inducible with acetonitrile or acetamide. Interestingly although a number of Fe-type nitrile hydratases have been shown to be photosensitive, the enzyme from strain AJ270 is not.  相似文献   

20.
2,6-Pyridinedicarbonitrile (1a) and 2,4-pyridinedicarbonitrile (2a) were hydrated by Rhodococcus erythropolis A4 to 6-cyanopyridine-2-carboxamide (1b; 83% yield) and 2-cyanopyridine-4-carboxamide (2b; 97% yield), respectively, after 10 min. After 118 h, the intermediates 1b or 2b were transformed into 2,6-pyridinedicarboxamide (1c; 35% yield) and 2,6-pyridinedicarboxylic acid (1d; 60% yield) or 2-cyanopyridine-4-carboxylic acid (2c; 64% yield), respectively. The nitrilase from Fusarium solani afforded cyanocarboxylic acids 1e and 2c after 118 h (yields 95 and 62%, respectively). 3,4-Pyridinedicarbonitrile (3a) and 2,3-pyrazinedicarbonitrile (4a) were inferior substrates of nitrile hydratase and nitrilase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号