首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Summary 3-cyanopyridine was hydrated to nicotinamide by whole cells ofBrevibacterium R-312 containing nitrile hydratase. Cells used for kinetic studies had an initial activity of 0.30 mg nicotinamide/mg cells(dry)-min and storage half-lives (pH 8) of approximately 100 days, 10 days, 5 days and less than 1 day at 4°C, 10°C, 25°C, and 30°C respectively. Temperature and pH maxima were 35°C and 8.0, respectively. Fermentations gave a maximum total hydratase activity of 1.25 mg nicotinamide/min, but at this maximum the amidase activity was unacceptably high (25% of the hydratase activity): nicotinamide was converted too rapidly to nicotinic acid. But systematic fermentation studies (7 1) showed that harvesting at mid-log phase (18–20 h) prior to the attainment of maximum total activity gave reasonably high levels of hydratase (0.3 mg nicotinamide/mg cells-min) and acceptable levels of amidase (0.03 mg nicotinic acid/mg cells-min).  相似文献   

2.
A -glycosidase of a thermophile, Thermus thermophilus, belonging to the glycoside hydrolase family 1, was cloned and overexpressed in Escherichia coli. The purified enzyme (Ttgly) has a broad substrate specificity towards -D-glucoside, -D-galactoside and -D-fucoside derivatives. The thermostability of Ttgly was exploited to study its kinetic properties within the range 25–80[emsp4 ]°C. Whatever the temperature, except around 60[emsp4 ]°C, the enzyme displayed non-Michaelian kinetic behavior. Ttgly was inhibited by high concentrations of substrate below 60[emsp4 ]°C and was activated by high concentrations of substrate above 60[emsp4 ]°C. The apparent kinetic parameters (k cat and K m ) were calculated at different temperatures. Both k cat and K m increased with an increase in temperature, but up to 75[emsp4 ]°C the values of k cat increased much more rapidly than the values of K m . The observed kinetics might be due to a combination of factors including inhibition by excess substrate and stimulation due to transglycosylation reactions. Our results show that the substrate could act not only as a glycosyl donor but also as a glycosyl acceptor. In addition, when the glucose was added to reaction mixtures, inhibition or activation was observed depending on both substrate concentration and temperature. A reaction model is proposed to explain the kinetic behavior of Ttgly. The scheme integrates the inhibition observed at high concentrations of substrate and the activation due to transglycosylation reactions implicating the existence of a transfer subsite.  相似文献   

3.
Yeast alcohol dehydrogenase (EC 1.1.1.1) catalyzes the novel reduction of p-nitro-so-N,N-dimethylaniline with NADH as a cofactor. Apparent kinetic constants for this enzymatic reaction are: V 2=2.1 s–1, K Q=456 M, K iQ=119 M, and K P=1.47 mM, at pH 8.9, 25 °C. This reaction is especially useful for the quantitative determination of NAD+ and NADH by enzymatic cycling.  相似文献   

4.
Andreas Renz  Mark Stitt 《Planta》1993,190(2):166-175
The substrate dependence and product inhibition of three different fructokinases and three different hexokinases from growing potato (Solanum tuberosum L.) tubers was investigated. The tubers contained three specific fructokinases (FK1, FK2, FK3) which had a high affinity for fructose K m=64, 90 and 100 (M) and effectively no activity with glucose or other hexose sugars. The affinity for ATP (K m=26, 25 and 240 M) was at least tenfold higher than for other nucleoside triphosphates. All three fructokinases showed product inhibition by high fructose (K i=5.7, 6.0 and 21 mM) and were also inhibited by ADP competitively to ATP. Sensitivity to ADP was increased in the presence of high fructose, or fructose-6-phosphate. In certain conditions, the K i (ADP) was about threefold below the K m (ATP). All three fructokinase were also inhibited by fructose-6-phosphate acting non-competitively to fructose (K i=1.3 mM for FK2). FK1 and FK2 showed very similar kinetic properties whereas FK3, which is only present at low activities in the tuber but high activities in the leaf, had a generally lower affinity for ATP, and lower sensitivity to inhibition by ADP and fructose. The tuber also contained three hexokinases (HK1, HK2, HK3) which had a high affinity for glucose (K m=41, 130 and 35 M) and mannose but a poor affinity for fructose (K m=11, 22 and 9 mM). All three hexokinases had a tenfold higher affinity for ATP (K m=90, 280 and 560 M) than for other nucleoside triphosphates. HK1 and HK2 were both inhibited by ADP (K i=40 and 108 M) acting competitively to ATP. HK1, but not HK2, was inhibited by glucose-6-phosphate, which acted non-competitively to glucose (K i=4.1 mM). HK1 and HK2 differed, in that HK1 had a narrower pH optimum, a higher affinity for its substrate, and showed inhibition by glucose-6-phosphate. The relevance of these properties for the regulation of hexose metabolism in vivo is discussed.Abbreviations FK fructokinase - Fru6P fructose-6-phosphate - Glc6P glucose-6-phosphate - HK hexokinase - NTP nucleoside triphosphate - Pi inorganic phosphate - UDPGlc uridine-5-diphosphoglucose This work was supported by the Deutsche Froschungsgemeinschaft (SFB 137). We are grateful to Professor E. Beck (Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth, FRG) for providing laboratory facilities.  相似文献   

5.
Summary The apparent energy of activation (E a), Michaelis-Menten constant (K mfor oxaloacetate), V max/K mratios and specific activities of NADP+-malate dehydrogenase (NADP+-MDH; EC 1.1.1.82) were analyzed in plants of Barnyard grass from Québec (QUE) and Mississippi (MISS) acclimated to two thermoperiods 28/22°C, 21/15°C, and grown under two CO2 concentrations, 350 l l-1 and 675 l l-1. E avalues of NADP+-MDH extracted from QUE plants were significantly lower than those of MISS plants. K mvalues and V max/K mratios of the enzyme from both ecotypes were similar over the range of 10–30°C but reduced V max/K mratios were found for the enzyme of QUE plants at 30 and 40°C assays. MISS plants had higher enzyme activities when measured on a chlorophyll basis but this trend was reversed when activities were expressed per fresh weight leaf or per leaf surface area. Activities were significantly higher in plants of both populations acclimated to 22/28°C. CO2 enrichment did not modify appreciably the catalytic properties of NADP+-MDH and did not have a compensatory effect upon catalysis or enzyme activity under cool acclimatory conditions. NADP+-MDH activities were always in excess of the amount required to support observed rates of CO2 assimilation and these two parameters were significantly correlated. The enhanced photosynthetic performance of QUE plants under cold temperature conditions, as compared to that of MISS plants, cannot be attributed to kinetic differences of NADP+-malate dehydrogenase among these ecotypes.  相似文献   

6.
Two l-threonine (l-serine) dehydratases (EC 4.2.1.16) of the thermophilic phototrophic bacterium Chloroflexus aurantiacus Ok-70-fl were purified to electrophoretic homogeneity by procedures involving anion exchange and hydrophobic interaction chromatography. Only one of the two enzymes was sensitive to inhibition by l-isoleucine (K i=2 M) and activation by l-valine. The isoleucine-insensitive dehydratase was active with l-threonine (K m=20 mM) as well as with l-serine (K m=10 mM) whereas the other enzyme, which displayed much higher affinity to l-threonine (K m=1.3 mM), was inactivated when acting on l-serine. Both dehydratases contained pyridoxal-5-phosphate as cofactor. When assayed by gel filtration techniques at 20 to 25° C, the molecular weights of both enzymes were found to be 106,000±6,000. In sodium dodecylsulfate-polyacrylamide gel electrophoresis, the two dehydratases yielded only one type of subunit with a molecular weight of 55,000±3,000. The isoleucine-insensitive enzyme was subject to a glucose-mediated catabolite repression.Abbreviations A absorbance - ile isoleucine - PLP pyridoxal-5-phosphate - SDS sodium dodecyl sulfate - TDH threonine dehydratase - U unit  相似文献   

7.
Desulfobacter postgatei is an acetate-oxidizing, sulfate-reducing bacterium that metabolizes acetate via the citric acid cycle. The organism has been reported to contain a si-citrate synthase (EC 4.1.3.7) which is activated by AMP and inorganic phosphate. It is show now, that the enzyme mediating citrate formation is an ATP-citrate lyase (EC 4.1.3.8) rather than a citrate synthase. Cell extracts (160,000xg supernatant) catalyzed the conversion of oxaloacetate (apparent K m=0.2 mM), acetyl-CoA (app. K m=0.1 mM), ADP (app. K m=0.06 mM) and phosphate (app. K m=0.7 mM) to citrate, CoA and ATP with a specific activity of 0.3 mol·min-1·mg-1 protein. Per mol citrate formed 1 mol of ATP was generated. Cleavage of citrate (app. K m=0.05 mM; V max=1.2 mol · min-1 · mg-1 protein) was dependent on ATP (app. K m=0.4 mM) and CoA (app. K m=0.05 mM) and yielded oxaloacetate, acetyl-CoA, ADP, and phosphate as products in a stoichiometry of citrate:CoA:oxaloacetate:ADP=1:1:1:1. The use of an ATP-citrate lyase in the citric acid cycle enables D. postgatei to couple the oxidation of acetate to 2 CO2 with the net synthesis of ATP via substrate level phosphorylation.  相似文献   

8.
Summary An extremely thermophilic aerobic bacterium which produced -glucosidase was isolated from soil collected at the Yudanaka hot spring in Japan. It was identified as belonging to the genus Thermus. Production of -glucosidase by this bacterium was stimulated by the addition of cellobiose or laminaribiose to the medium. The optimum pH and temperature of the enzyme were 4.5–6.5 and 85° C respectively. The enzyme was stable in the pH range of 4.5–7.0 at 70° C for 2 h and the half-life at 75° C was 5 days. The K m value of the enzyme for p-nitrophenyl--d-glucopyranoside, determined at 70° C in 0.1 M sodium phosphate buffer (pH 6.5), was 0.28 mM while the K m was 2.0 mM for cellobiose. The enzyme effectively hydrolysed cellobiose at 70° C and the conversion yields of cellobiose to glucose were 95%, 93% and 90% at substrate concentrations of 5%, 10% and 15%, respectively.  相似文献   

9.
The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase   总被引:1,自引:0,他引:1  
The substrate specificity factor, V cKo/VoKc, of spinach (Spinacia oleracea L.) ribulose 1,5-bisphosphate carboxylase/oxygenase was determined at ribulosebisphosphate concentrations between 0.63 and 200 M, at pH values between 7.4 and 8.9, and at temperatures in the range of 5° C to 40° C. The CO2/O2 specificity was the same at all ribulosebisphosphate concentrations and largely independent of pH. With increasing temperature, the specificity decreased from values of about 160 at 5° C to about 50 at 40° C. The primary effects of temperature were on K c [Km(CO2)] and V c [Vmax (CO2)], which increased by factors of about 10 and 20, respectively, over the temperature range examined. In contrast, K o [Ki (O2)] was unchanged and V o [Vmax (O2)] increased by a factor of 5 over these temperatures. The CO2 compensation concentrations () were calculated from specificity values obtained at temperatures between 5° C and 40° C, and were compared with literature values of . Quantitative agreement was found for the calculated and measured values. The observations reported here indicate that the temperature response of ribulose 1,5-bisphosphate carboxylase/oxygenase kinetic parameters accounts for two-thirds of the temperature dependence of the photorespiration/photosynthesis ratio in C3 plants, with the remaining one-third the consequence of differential temperature effects on the solubilities of CO2 and O2.Abbreviations RuBPC/O(ase) ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate - CO2 compensation concentration  相似文献   

10.
Bacillus species producing a thermostable phytase was isolated from soil, boiled rice, and mezu (Korean traditinal koji). The activity of phytase increased markedly at the late stationary phase. An extracellular phytase from Bacillus sp. KHU-10 was purified to homogeneity by acetone precipitation and DEAE-Sepharose and phenyl-Sepharose column chromatographies. Its molecular weight was estimated to be 46 kDa on gel filtration and 44 kDa on SDS-polyacrylamide gel elctrophoresis. Its optimum pH and temperature for phytase activity were pH 6.5-8.5 and 40°C without 10 mM CaCl2 and pH 6.0-9.5 and 60°C with 10 mM CaCl2. About 50% of its original activity remained after incubation at 80°C or 10 min in the presence of 10 mM CaCl2. The enzyme activity was fairly stable from pH 6.5 to 10.0. The enzyme had an isoelectric point of 6.8. As for substrate specificity, it was very specific for sodium phytate and showed no activity on other phosphate esters. The K m value for sodium phytate was 50 M. Its activity was inhibited by EDTA and metal ions such as Ba2+, Cd2+, Co2+, Cr3+, Cu2+, Hg2+, and Mn2+ ions.  相似文献   

11.
Summary Cell growth and phenol degradation kinetics were studied at 10°C for a psychrotrophic bacterium, Pseudomonas putida Q5. The batch studies were conducted for initial phenol concentrations, So, ranging from 14 to 1000 mg/1. The experimental data for 14<=So<=200 mg/1 were fitted by non-linear regression to the integrated Haldane substrate inhibition growth rate model. The values of the kinetic parameters were found to be: m=0.119 h–1, K S=5.27 mg/1 and K I=377 mg/1. The yield factor of dry biomass from substrate consumed was Y=0.55. Compared to mesophilic pseudomonads previously studied, the psychrotrophic strain grows on and degrades phenol at rates that are ca. 65–80% lower. However, use of the psychrotrophic microorganism may still be economically advantageous for waste-water treatment processes installed in cold climatic regions, and in cases where influent waste-water temperatures exhibit seasonal variation in the range 10–30°C.Nomenclature K S saturation constant (mg/l) - K I substrate inhibition constant (mg/l) - specific growth rate (h–1) - m maximum specific growth rate without substrate inhibition (h–1) - max maximum achievable specific growth rate with substrate inhibition (h–1) - S substrate (phenol) concentration (mg/l) - So initial substrate concentration (mg/l) - Smax substrate concentration corresponding to max (mg/l) - t time (h) - X cell concentration, dry basis (mg DW/l) - Xf final cell concentration, dry basis (mg DW/l) - Xo initial cell concentration, dry basis (mg DW/l) - Y yield factor (mg DW cell produced/mg substrate consumed)  相似文献   

12.
A ferritin from the obligate anaerobe and hyperthermophilic archaeon Pyrococcus furiosus (optimal growth at 100°C) has been cloned and overproduced in Escherichia coli to one-fourth of total cell-free extract protein, and has been purified in one step to homogeneity. The ferritin (PfFtn) is structurally similar to known bacterial and eukaryal ferritins; it is a 24-mer of 20 kDa subunits, which add up to a total Mr 480 kDa. The protein belongs to the non-heme type of ferritins. The 24-mer contains approximately 17 Fe (as isolated), 2,700 Fe (fully loaded), or <1 Fe (apoprotein). Fe-loaded protein exhibits an EPR spectrum characteristic for superparamagnetic core formation. At 25°C Vmax=25 mole core Fe3+ formed per min per mg protein when measured at 315 nm, and the K0.5=5 mM Fe(II). At 0.3 mM Fe(II) activity increases 100-fold from 25 to 85°C. The wild-type ferritin is detected in P. furiosus grown on starch. PfFtn is extremely thermostable; its activity has a half-life of 48 h at 100°C and 85 min at 120°C. No apparent melting temperature was found up to 120°C. The extreme thermostability of PfFtn has potential value for biotechnological applications.  相似文献   

13.
Two enzymes catalyze the two step reactions in the D-galactonate nonphosphorolytic catabolic pathway ofAspergillus terreus, namely D-galactonate dehydratase and 2-keto-3-deoxy-D-galactonate (KDGal) aldolase. Maximum enzyme activities were obtained at 40° C and pH 8.0 or at 50° C and pH 7.5 for these two enzymes, respectively. Stability of the two enzymes under different conditions was investigated. From a Lineweaver-Burk plot of the reciprocal of initial velocities and substrate concentrations, apparent K m values were calculated for D-galactonate, pyruvate and glyceraldehyde and found to be 8.33, 14.28 and 5.55 mM, respectively, in crude cell-free extracts. Results indicated the requirement of magnesium cation for D-galactonate dehydratase activity at an initial concentration of 10–2 M. The presence of Mg2+ in the reaction mixture seems to induce greatly the fitness of the dehydratase with D-galactonate as no activity could be detected with 24-h dialyzed extract in the absence of magnesium cation.  相似文献   

14.
The thermophilic fungus,Humicola sp isolated from soil, secreted extracellular -galactosidase in a medium cotaining wheat bran extract and yeast extract. Maximum enzyme production was found in a medium containing 5% wheat bran extract as a carbon source and 0.5% beef extract as a carbon and nitrogen source. Enzyme secretion was strongly inhibited by the presence of Cu2+, Ni2+ and Hg2+ (1mM) in the fermentation medium. Production of enzyme under stationary conditions resulted in 10-fold higher activity than under shaking conditions. The temperature range for production of the enzyme was 37° C to 55°C, with maximum activity (5.54 U ml–1) at 45°C. Optimum pH and temperature for enzyme activity were 5.0 and 60° C respectively. One hundred per cent of the original activity was retained after heating the enzyme at 60°C for 1 h. At 5mM Hg2+ strongly inhibited enzyme activity. TheK m andV max forp-nitrophenyl--d-galactopyranoside were 60M and 33.6 mol min–1 mg–1, respectively, while for raffinose those values were 10.52 mM and 1.8 mol min–1 mg–1, respectively.  相似文献   

15.
Summary Structural and kinetic parameters of the -d-glucosidase (cellobiase, -d-glucoside glucohydrolase) from Coriolus versicolor have been determined. It is a high molecular weight glycoprotein (300,000 d) composed 10% by weight of protein, 90% by weight of carbohydrate in which glucose is the primary hexose sugar. The Km for 4-nitrophenyl--d-glucopyranoside (4 NPG) and cellobiose are 0.276 and 2.94 mM respectively at pH 4.5 and 40°. d-Glucose is a competitive inhibitor with a Ki of 1.8 mM with 4 NPG as substrate, and at high concentrations, cellobiose exhibits a substrate inhibition effect on the enzyme, so negating attempts to overcome the competitive inhibition of glucose by increasing the concentration of the substrate.  相似文献   

16.
Cyclic 2,3-diphosphoglycerate (cDPG) hydrolase activity was demonstrated in cofactor-free extract of Methanobacterium thermoautotrophicum (strain H), but not in crude extract. Only after ultrafiltration or dialysis of crude extract cDPG hydrolase activity could be shown. cCPG hydrolysis was optimal at pH 6.0 and 60°C. Hydrolysis of cDPG occurred under nitrogen or hydrogen atmosphere and was completely inhibited by oxygen. Phosphate and potassium chloride were also strong inhibitors: 50% inhibition occurred at 0.6–0.7 mM phosphate or 0.2 M KCl. The enzyme was localized in the membrane fraction and could be solubilized for approximately 60% by treatment with 25 mM of the detergent CHAPS. The K m and the V max for cDPG were determined at 60°C and were 59 mM and 216 mU/mg, respectively. Furthermore, cDPG hydrolase was dependent on the presence of Co2+. The role of cDPG and cDPG hydrolase is discussed.Abbreviations cDPG cyclic 2,3-diphosphoglycerate - 2,3-DPG 2,3-diphosphoglycerate - 2-PG 2-phosphoglycerate - 3-PG 3-phosphoglycerate - PG phosphoglycerate - PEP phosphoenolpyruvate - TES N-tris(hydroxymethyl)methyl-2-aminoethanesulfonate - TRIS tris(hydroxymethyl)-aminomethane - DTT dithiothreitol - CHAPS 3-([3-cholamidopropyl]-dimethylammonio)-1-propanesulfonate - MOPS 3-(N-morpholino) propanesulfonic acid  相似文献   

17.
Germlings of Phytophthora palmivora possess at least two systems for the uptake of inorganic phosphate (Pi). The first is synthesized on germination in medium containing 50 M Pi and has a Km of approx. 30 M (Vmax=7–9 nmol Pi/h·106 cells). The second is synthesized under conditions of Pi-deprivation and has a higher affinity for Pi (Km=1–2 M), but a lower Vmax (0.5–2 nmol Pi/h·106 cells). The fungicide phosphite likewise enters the germlings via two different transport systems, the synthesis of which also depends on the concentration of Pi in the medium. The Km of the lower affinity system is 3 mM (Vmax=20 nmol phosphite/h·106 cells) and that of the higher affinity system is 0.6 mM (Vmax=12 nmol/h·106 cells). Pi and phosphite are competitive inhibitors for each other's transport in both systems. However, whereas mM concentrations of phosphite are necessary to inhibit Pi transport, only M concentrations of Pi are required to inhibit phosphite transport. A third system of uptake for Pi also exists, since when phosphate-deprived cells are presented with mM concentrations of Pi, they transport the anion at a very high rate (around 100 nmol/h·106 cells). High rates of transport of phosphite are also observed when these cells are presented with mM concentrations of this anion.  相似文献   

18.
For the purpose of producing pyruvate from -lactate by enzymatic methods, four microorganism strains that produce lactate oxidase (LOD) were screened and isolated from many soil samples. Among them, strain SM-6, which showed high potential for pyruvate production, was chosen for further research. Physiological studies and 16S rDNA relationship reveal that SM-6 belongs to Pseudomonas putida. The optimized pH and temperature of the enzyme-catalyzed reaction were pH 7.2, and 39 °C, respectively. Low-concentration EDTA (1 mM) could improve the stability of pyruvate and conversion ratio of lactate oxidase. Vmax and Km value for -lactate were 2.46 μmol/(min mg) protein and 9.53 mM, respectively. On preparation scale, cell-free extract from SM-6, containing 300 mg/l of crude enzyme (4037 U/ml lactate oxidase), could convert 66% of 116 mM of -lactate into 76.6 mM pyruvate in 18 h, and 82% of substrate was transformed after 48 h, giving 95.0 mM (10.5 mg/ml) of pyruvate. The ratio of product to biocatalyst was 34.8:1 (g/g).  相似文献   

19.
Protoplasts isolated from beetroot tissue took up glucose preferentially whereas sucrose was transported more slowly. The 14C-label from [14C]glucose and [14C]sucrose taken up by the cells could be detected rapidly in phosphate esters and, after feeding of [14C]glucose was found also in sucrose. The temperature-dependent uptake process (activation energy EA about 50 kJ · mol–1) seems to be carrier mediated as indicated by its substrate saturation and, for glucose, by competition experiments which revealed positions C1, C5 and C6 of the D-glucose molecule as important for effective uptake. The apparent Km(20° C) for glucose (3-O-methylglucose) was about 1 mM whereas for sucrose a significantly lower apparent affinity was determined (Km about 10 mM). When higher concentrations of glucose (5 mM) or sucrose (20 mM) were administered, the uptake process followed first-order kinetics. Carrier-mediated transport was inhibited by N,N-dicyclohexylcarbodiimide, Na-orthovanadate, p–chloromercuribenzenesulfonic acid, and by uncouplers and ionophores. The uptake system exhibited a distinct pH optimum at pH 5.0. The results indicate that generation of a proton gradient is a prerequisite for sugar uptake across the plasma membrane. Protoplasts from the bundle regions in the hypocotyl take up glucose at higher rates than those derived from bundle-free regions. The results favour the idea that apoplastic transport of assimilates en route of unloading might be restricted to distinct areas within the storage organ (i.e. the bundle region) whereas distribution in the storage parenchyma is symplastic.Abbreviations CCCP Carbonylcyanide m–chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - DOG deoxyglucose - Mes 2-(N-morpholino)ethanesulfonic acid - 3-OMG 3-O-methylglucose - PCMBS p–chloromercuribenzenesulfonic acid - SDS Sodium dodecyl sulfate - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

20.
Kinetic studies of two glucosylation reactions catalyzed by an amyloglucosidase from Rhizopus sp. leading to the synthesis of vanillin-α/β-D-glucoside from D-glucose and vanillin and curcumin-bis-α-D-glucoside from D-glucose and curcumin were investigated in detail. Initial reaction rates were determined from kinetic runs involving different concentrations of D-glucose and vanillin (5?mM to 0.1?M) or D-glucose and curcumin (5?mM to 0.1?M). Graphical double reciprocal plots showed that the kinetics of the two enzyme catalyzed reactions exhibited Ping-Pong Bi-Bi mechanism where competitive substrate inhibition by vanillin/curcumin led to dead-end amyloglucosidase–vanillin/curcumin complexes at higher concentrations of vanillin/curcumin. An attempt to obtain the best fit of this kinetic model through computer simulation yielded in good approximation, the values of four important kinetic parameters, vanillin-α/β-D-glucoside: kcat=35.0±3.2 10?5M?h?1·mg, Ki=10.5±1.1?mM, KmD-glucose=60.0±6.2?mM, Kmvanillin=50.0±4.8?mM; curcumin-bis-α-D-glucoside: kcat=6.07±0.58 10?5M?h?1·mg, Ki=3.0±0.28?mM, KmD-glucose=10.0±0.9?mM, Kmcurcumin=4.6±0.5?mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号