首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wastewater treatment with particulate biofilm reactors   总被引:2,自引:0,他引:2  
The review presented in this paper focuses on applications of particulate biofilm reactors (e.g. Upflow Sludge Blanket, Biofilm Fluidized Bed, Expanded Granular Sludge Blanket, Biofilm Airlift Suspension, Internal Circulation reactors). Several full-scale applications for municipal and industrial wastewater treatment are presented and illustrated, and their most important design and operation aspects (e.g. biofilm formation, hydrodynamics, mass transfer, mixing) are analysed and discussed. It is clear from the review that this technology can be considered a grown up technology for which good design and scale-up guidelines are available.  相似文献   

2.
Biofilms are defined as microbial cell layers, which are irreversibly or reversibly attached on solid surfaces. These attached cells are embedded in a self-produced exopolysaccharide matrix, and exhibit different growth and bioactivity compared with suspended cells. With their high biomass density, stability, and potential for long-term fermentation, biofilm reactors are employed for the fermentation and bioconversion, which need large amount of biomass. During the past decade, biofilm reactors have been successfully applied for production of many value-added products. This review article summarizes the applications of biofilm reactors with different novel designs. Advantages and concerns using biofilm reactors, potential uses for industrial-scale production, and further investigation needs are discussed.  相似文献   

3.
Firstly, biofilm and biosorbents are defined. Mechanisms of interactions between metal ions and biofilm are discussed in terms of diffusion, mass transfer and sorption. In a second step, different processes using biofilm to remove heavy metal in aqueous solutions are presented. The continuously stirred processes are described for metal ion removal in wastewater by biofilm coating particles. In this case, the equilibrium data obtained with isotherm curves show a good adsorption of several metal ions onto biofilm. Examples of adsorption capacities for a large number of microorganisms and heavy metal ions are presented. The fixed bed reactors packed with grains coated with a biofilm are efficient to get a sorption (adsorption or ion exchange) of cations. The pressure drop is calculated with classical equations. Some values such as adsorption capacities and breakthrough times are got from the breakthrough curves. Several models (Adams-Bohart, mass transfer, and homogeneous surface diffusion models) are applied to get design data. A new approach using neural network to model breakthrough curves is proposed and discussed.  相似文献   

4.

Recent studies show the essential health benefits associated with vitamin K, especially menaquinone-7 (MK-7). These benefits include reducing risks of cardiovascular diseases, osteoporosis, and even cancer. However, MK-7 production on an industrial level is only possible through bacterial fermentation and also current static fermentation strategies are not potent enough with difficulties to scale up. Biofilm reactors, however, may be a practical alternative. Biofilm reactors provide a controlled environment for the microorganisms to form mature and robust biofilms that enable them to produce value-added products with enhanced efficiencies. In this study, fed-batch addition of glucose and glycerol were investigated to the base media in biofilm reactors, as carbon source addition seemed crucial in batch fermentations. Results indicated that fed-batch strategies can be significantly effective in glucose-based medium, increasing the end-product concentrations to 28.7 ± 0.3 mg/L of MK-7 which was 2.3 fold higher than the level produced in suspended-cell bioreactors and renders the biofilm reactors as a potential replacement for static fermentation strategies. Moreover, morphological changes of B. subtilis were tracked during the 12-day long fermentation runs and finally, SEM investigations confirmed significant biofilm and extracellular matrices formed on the plastic composite support (PCS) in the biofilm reactors. In conclusion, biofilm reactors especially with fed-batch fermentation regimes seem to be an effective tool for MK-7 production at industrial scales.

  相似文献   

5.
The models of anoxic/methanogenic processes in biofilm reactors published until now have supposed that pH does not change between the bulk liquid and biofilm. These assumptions are not necessarily valid for processes in reactors with biofilms. The present work studied an anoxic/methanogenic biofilm reactor incorporating the pH variation in both bulk and biofilm. Two dynamic models, one including the calculation of pH throughout the biofilm, were solved numerically and compared with each other. The results showed that the inclusion of a pH algorithm calculation produces different profiles and efficiencies on an anoxic/methanogenic biofilm system. Values of C/N ratio higher than 20 mg TOC/mg NO3–N and values of HRT lower than 4.5 h produce differences of up to 46 % with a traditional model that does not include pH calculation inside the biofilm. Thus, the assumption of a constant pH within the biofilm when using the traditional model does not accurately describe the performance of the system under these conditions, and pH calculation inside the biofilm should be included.  相似文献   

6.
Biohydrogen could efficiently be produced in glucose-fed biofilm reactors filled with plastic carriers and operated at 70 degrees C. Batch experiments were, in addition, conducted to enrich and cultivate glucose-fed extreme-thermophilic hydrogen producing microorganisms from a biohydrogen CSTR reactor fed with household solid waste. Kinetic analysis of the biohydrogen enrichment cultures show that substrate (glucose) likely inhibited hydrogen production when its concentration was higher than 1 g/L. Different start up strategies were applied for biohydrogen production in biofilm reactors operated at 70 degrees C, and fed with synthetic medium with glucose as the only carbon and energy source. A biofilm reactor, started up with plastic carriers, that were previously inoculated with the enrichment cultures, resulted in higher hydrogen yield (2.21 mol H(2)/mol glucose consumed) but required longer start up time (1 month), while a biofilm reactor directly inoculated with the enrichment cultures reached stable state much faster (8 days) but with very low hydrogen yield (0.69 mol H(2)/mol glucose consumed). These results indicate that hydraulic pressure is necessary for successful immobilization of bacteria on carriers, while there is the risk of washing out specific high yielding bacteria.  相似文献   

7.
Biofilms in the environment can both cause detrimental and beneficial effects. However, their use in bioreactors provides many advantages including lesser tendencies to develop membrane fouling and lower required capital costs, their higher biomass density and operation stability, contribution to resistance of microorganisms, etc. Biofilm formation occurs naturally by the attachment of microbial cells to the support without use of any chemicals agent in biofilm reactors. Biofilm reactors have been studied and commercially used for waste water treatment and bench and pilot-scale production of value-added products in the past decades. It is important to understand the fundamentals of biofilm formation, physical and chemical properties of a biofilm matrix to run the biofilm reactor at optimum conditions. This review includes the principles of biofilm formation; properties of a biofilm matrix and their roles in the biofilm formation; factors that improve the biofilm formation, such as support materials; advantages and disadvantages of biofilm reactors; and industrial applications of biofilm reactors.  相似文献   

8.
Comparative performance of biofilm reactor types   总被引:1,自引:0,他引:1  
Development of a unified model of biofilm-reactor kinetics is based on substrate-utilization kinetics, mass transport, biofilm growth, and reactor analysis. The model is applied to steady-state conditions for complete-mix, fixed-bed, and fluidized-bed reactors with and without recycle. The results of modeling experiments demonstrate that simple loading factors and kinetic relationships are insufficient to describe the performance of a variety of biofilm processes. Instead, the interactions among utilization kinetics, biofilm growth, and reactor configuration determine the performance. For example, fluidized-bed reactors can achieve superior performance to complete-mix and fixed-bed reactors because the biofilm is evenly distributed throughout the reactor while the liquid regime has plug-flow characteristics. When it is possible, experimental results which demonstrate key concepts are presented.  相似文献   

9.
A customized stirred-tank biofilm reactor was designed for plastic-composite supports (PCS). In repeated-batch studies, the PCS-biofilm reactors outperformed the suspended-cell reactors by demonstrating higher lactic acid productivities (2.45 g l(-1) h(-1) vs 1.75 g l(-1) h(-1)) and greater glucose consumption rates (3.27 g l(-1) h(-1) vs 2.09 g l(-1) h(-1)). In the repeated fed-batch studies, reactors were spiked periodically with concentrated glucose (75%) to maintain a concentration of approximately 80 g of glucose l(-1) in the bioreactor. In suspended-cell fermentations with 10 g of yeast extract (YE) l(-1) and zero, one, two, and three glucose spikes, the lactic acid productivities were 2.64, 1.58, 0.80, and 0.62 g l(-1) h(-1), respectively. In comparison, biofilm reactors with 7 g of YE l(-1) and zero, one, two, and three glucose spikes achieved lactic acid productivities of 4.20, 2.78, 0.66, and 0.94 g l(-1) h(-1), respectively. The use of nystatin (30 U ml(-1)) subdued the contaminating yeast population with no effect on the lactic acid productivity of the biofilm reactors, but it did affect productivity in the suspended-cell bioreactor. Overall, in repeated fed-batch fermentations, the biofilm reactors consistently outperformed the suspended-cell bioreactors, required less YE, and produced up to 146 g of lactic acid l(-1) with 7 g of YE l(-1), whereas the suspended-cell reactor produced 132 g l(-1) with 10 g of YE l(-1).  相似文献   

10.
A cognitive model for anaerobic digestion in fluidized bed reactors is developed. The general pathway of the process is divided into five main reactions performed by different bacterial groups. Molecular diffusion of each substrate involved in the reaction scheme is described. Effectiveness factor calculations are performed in steady state for each bacterial group taken into account in the process. The case of a single substrate removal is discussed, and optimal biofilm sizes are found. Sequential substrate removal is investigated, and different kinetic regimes are characterized. The influence of biofilm size and primary substrate removal is discussed in the case of standard concentrations in the liquid phase. This study shows that, according to the theoretical model the limiting step of the process may be different and depends in a large way on mass transfer effects. Finally, importance of biofilm size is compared for acidogenic and methano-genic steps: each reaction is found to be optimized for different biofilm thicknesses. This result may be of interest for design purposes and further dynamic modeling. Concluding remarks concerning the validation of the model are made, and a comparison to experimental data from the literature is presented. (c) 1995 John Wiley & Sons, Inc.  相似文献   

11.
This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent) or form flocs/aggregates (also called granules) without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL-1 can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR), packed bed reactor (PBR), fluidized bed reactor (FBR), airlift reactor (ALR), upflow anaerobic sludge blanket (UASB) reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes.  相似文献   

12.
Tricking filters are biofilm reactors commonly used for biological removal of nitrogen and organic matter. A review of published and unpublished material on the function, microbiology, design and operation of trickling filters is given. This is followed by more general dynamic biofilm reactor modelling, i.e. models for rotating biological contactors, different types of biofilters, moving beds as well as trickling filters.  相似文献   

13.
Attached biofilm reactors provide the means for implementing energy-efficient anaerobic wastewater treatment at full scale. Progress has been made in the development of fixed, expanded and fluidized bed anaerobic processes by addressing fundamental reactor design issues. Several new biofilm reactor concepts have evolved from recent studies.  相似文献   

14.
In this article we present magnetic resonance microscopy (MRM) characterization of the advective transport in a biofilm capillary reactor. The biofilm generates non-axial flows that are up to 20% of the maximum axial velocity. The presence of secondary velocities of this magnitude alters the mass transport in the bioreactor relative to non-biofilm fouled reactors and questions the applicability of empirical mass transfer coefficient approaches. The data are discussed in the context of simulations and models of biofilm transport and conceptual aspects of transport modeling in complex flows are also discussed. The variation in the residence time distribution due to biofilm growth is calculated from the measured propagator of the motion. Dynamical systems methods applied to model fluid mixing in complex flows are indicated as a template for extending mass transport theory to quantitatively incorporate microscale data on the advection field into macroscale mass transfer models.  相似文献   

15.
Biofilms can cause severe problems to human health due to the high tolerance to antimicrobials; consequently, biofilm science and technology constitutes an important research field. Growing a relevant biofilm in the laboratory provides insights into the basic understanding of the biofilm life cycle including responses to antibiotic therapies. Therefore, the selection of an appropriate biofilm reactor is a critical decision, necessary to obtain reproducible and reliable in vitro results. A reactor should be chosen based upon the study goals and a balance between the pros and cons associated with its use and operational conditions that are as similar as possible to the clinical setting. However, standardization in biofilm studies is rare. This review will focus on the four reactors (Calgary biofilm device, Center for Disease Control biofilm reactor, drip flow biofilm reactor, and rotating disk reactor) approved by a standard setting organization (ASTM International) for biofilm experiments and how researchers have modified these standardized reactors and associated protocols to improve the study and understanding of medical biofilms.  相似文献   

16.
Adhesion and biofilm formation by Pseudomonas putida was studied using suspended carriers in laboratory airlift reactors. Standard, roughened, hydrophobic, and positively charged glass beads, sand, and basalt grains were used as carriers. The results clearly show that in airlift reactors hydrodynamic conditions and particle collisions control biofilm formation. In the reactors, on surfaces subjected to different shear levels, biofilm formation differed considerably. This could be described by a simple growth and detachment model. Increased surface roughness promoted biofilm accumulation on suspended carriers. The physicochemical surface characteristics of the carrier surface proved to be less important due to the turbulent conditions in the airlift reactors. Adhesion of P. putida to glass beads was poor, and results of an adhesion test under quiescent conditions were not predictive for adhesion and subsequent biofilm formation under reactor conditions. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55:880-889, 1997.  相似文献   

17.
Catalytic biofilms minimize reactant toxicity and maximize biocatalyst stability in selective transformations of chemicals to value‐added products in continuous processes. The scaling up of such catalytic biofilm processes is challenging, due to fluidic and biological parameters affording a special reactor design affecting process performance. A solid support membrane‐aerated biofilm reactor was optimized and scaled‐up to yield gram amounts of (S)‐styrene oxide, a toxic and instable high value chemical synthon. A sintered stainless steel membrane unit was identified as an optimal choice as biofilm substratum and for high oxygen mass transfer. A stable expanded polytetrafluoroethylene (ePTFE) membrane was best suited for in situ substrate delivery and product extraction. For the verification of scalability, catalytic biofilms of Pseudomonas sp. strain VLB120ΔC produced (S)‐styrene oxide to an average concentration of 390 mM in the organic phase per day (equivalent to 24.4 g Laq–1 day–1). This productivity was gained by efficiently using the catalyst with an excellent product yield on biomass of 13.6 gproduct gbiomass–1. This product yield on biomass is in the order of magnitude reported for other continuous systems based on artificially immobilized biocatalysts and is fulfilling the minimum requirements for industrial biocatalytic processes. Overall, 46 g of (S)‐styrene oxide were produced and isolated (purity: 99%; enantiomeric excess [ee]: >99.8%. yield: 30%). The productivity is in a similar range as in comparable small‐scale biofilm reactors highlighting the large potential of this methodology for continuous bioprocessing of bulk chemicals and biofuels.  相似文献   

18.
19.
Various reported field studies on the performance of biofilm reactors suggest that the linear control of the system is effective for maintaining the consistent treatment efficiency under changing environmental conditions. However, no theoretical basis is available in the literature to substantiate such a claim. In this article, inherent linearity of the biofilm process has been identified along with the conditions under which this linearity exists. Exploiting the linear state of the system, operational criteria for regulating the performance of the biofilm reactors are obtained. The utility and applicability of the developed criteria are numerically demonstrated. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 253-258, 1997.  相似文献   

20.
Stratified mixed-culture biofilm model for anaerobic digestion   总被引:1,自引:0,他引:1  
Development of a novel two-layer anaerobic biofilm model is based on substrate utilization kinetics and mass transport. The model is applied to steady-state conditions for a fixed-film anaerobic reactor. The microbial film is considered to consist of two distinct biofilm layers, one adjacent to the second, with an acidogenic bacteria biofilm forming the outer layer and a methanogenic film the inner one. The model assumes that sugars are only metabolized by the first layer and converted into volatile fatty acids (VFA), while fatty acids are taken up only by the inner layer. The model is able to predict both substrate flux net uptake and methane production for steady-state conditions. The results of modeling agree with methane production experimental data published elsewhere. Further, the model shows why layered fixed-film reactors can withstand high and inhibitory concentrations of volatile fatty acids as well as severe overloading without failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号