首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A number of previous studies determined dilute acid pretreatment conditions that maximize xylose yields from pretreatment or glucose yields from subsequent digestion of the pretreated cellulose, but our emphasis was on identifying conditions to realize the highest yields of both sugars from both stages. Thus, individual xylose and glucose yields are reported as a percentage of the total potential yield of both sugars over a range of sulfuric acid concentrations of 0.22%, 0.49% and 0.98% w/w at 140, 160, 180 and 200 degrees C. Up to 15% of the total potential sugar in the substrate could be released as glucose during pretreatment and between 15% and 90+% of the xylose remaining in the solid residue could be recovered in subsequent enzymatic hydrolysis, depending on the enzyme loading. Glucose yields increased from as high as 56% of total maximum potential glucose plus xylose for just enzymatic digestion to 60% when glucose released in pretreatment was included. Xylose yields similarly increased from as high as 34% of total potential sugars for pretreatment alone to between 35% and 37% when credit was taken for xylose released in digestion. Yields were shown to be much lower if no acid was used. Conditions that maximized individual sugar yields were often not the same as those that maximized total sugar yields, demonstrating the importance of clearly defining pretreatment goals when optimizing the process. Overall, up to about 92.5% of the total sugars originally available in the corn stover used could be recovered for coupled dilute acid pretreatment and enzymatic hydrolysis. These results also suggest that enhanced hemicellulase activity could further improve xylose yields, particularly for low cellulase loadings.  相似文献   

2.
The production of fermentable sugars from olive tree biomass was studied by dilute acid pretreatment and further saccharification of the pretreated solid residues. Pretreatment was performed at 0.2%, 0.6%, 1.0% and 1.4% (w/w) sulphuric acid concentrations while temperature was in the range 170-210 degrees C. Attention is paid to sugar recovery both in the liquid fraction issued from pretreatment (prehydrolysate) and that in the water-insoluble solid (WIS). As a maximum, 83% of hemicellulosic sugars in the raw material were recovered in the prehydrolysate obtained at 170 degrees C, 1% sulphuric acid concentration, but the enzyme accessibility of the corresponding pretreated solid was not very high. In turn, the maximum enzymatic hydrolysis yield (76.5%) was attained from a pretreated solid (at 210 degrees C, 1.4% acid concentration) in which cellulose solubilization was detected; moreover, sugar recovery in the prehydrolysate was the poorest one among all the experiments performed. To take account of fermentable sugars generated by pretreatment and the glucose released by enzymatic hydrolysis, an overall sugar yield was calculated. The maximum value (36.3 g sugar/100 g raw material) was obtained when pretreating olive tree biomass at 180 degrees C and 1% sulphuric acid concentration, representing 75% of all sugars in the raw material. Dilute acid pretreatment improves results compared to water pretreatment.  相似文献   

3.
With its high content of carbohydrates and low percentage of lignin, corn fiber represents a renewable feedstock that can be processed to produce biofuels. Through a combination of pretreatment by lime and enzymatic hydrolysis, total reducing sugars of 700 mg/g corn fiber were released. This amount is equivalent to 92.7% of theoretically available sugars in corn fiber. The resulting hydrolysate itself did not support any growth of Cryptococcus curvatus. But with addition of minerals, C. curvatus grew to a cell density of 6.6 g/L in 6 days. Using the adapted cells, rapid sugar consumption and cell growth were observed. This study demonstrated that it is feasible to produce microbial lipids from corn fiber through pretreatment, enzymatic hydrolysis, and fermentation. In addition, C. curvatus is an excellent candidate for this application since it can utilize all major sugars, glucose, xylose, and arabinose with yield of cells and lipids as 0.55 and 0.27 g/g sugars, respectively. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:945–951, 2014  相似文献   

4.
Corn bran is mainly made up of the pericarp of corn kernels and is a byproduct stream resulting from the wet milling step in corn starch processing. Through statistic modeling this study examined the optimization of pretreatment of corn bran for enzymatic hydrolysis. A low pH pretreatment (pH 2, 150 °C, 65 min) boosted the enzymatic release of xylose and glucose and maximized biomass solubilization. With more acidic pretreatment followed by enzymatic hydrolysis the total xylose release was maximized (at pH 1.3) reaching ~ 50% by weight of the original amount present in destarched corn bran, but the enzyme catalyzed xylose release was maximal after pretreatment at approx. pH 2. The total glucose release peaked after pretreatment of approx. pH 1.5 with an enzymatic release of approx. 68% by weight of the original amounts present in destarched corn bran. For arabinose the enzymatic release was negatively affected by the acidic pretreatment as labile arabinosyl-linkages were presumably hydrolysed directly during the pretreatment. A maximum of 60% arabinose release was achieved directly from the optimal (acidic) pretreatment. The total content of diferulic acids, supposedly involved in the cross-linking of the arabinoxylan polymers, decreased by both alkaline and acidic pretreatment pH, with the loss by alkaline pretreatments being highest. No direct correlation between the enzymatic release of xylose and the content of diferulic acids in the substrate could be verified. On the contrary the enzymatic release of xylose was significantly correlated to the total release of arabinose, indicating that the degree of arabinosyl-substitutions on the xylan backbone is an essential parameter for enzymatic hydrolysis of corn bran arabinoxylan.  相似文献   

5.
In the bioconversion of lignocellulosic materials to ethanol, pretreatment of the material prior to enzymatic hydrolysis is essential to obtain high overall yields of sugar and ethanol. In this study, steam pretreatment of fast-growing Salix impregnated with sulfuric acid has been investigated by varying the temperature (180-210 degrees C), the residence time (4, 8 or 12 min), and the acid concentration (0.25% or 0.5% (w/w) H(2)SO(4)). High sugar recoveries were obtained after pretreatment, and the highest yields of glucose and xylose after the subsequent enzymatic hydrolysis step were 92% and 86% of the theoretical, respectively, based on the glucan and xylan contents of the raw material. The most favorable pretreatment conditions regarding the overall sugar yield were 200 degrees C for either 4 or 8 min using 0.5% sulfuric acid, both resulting in a total of 55.6g glucose and xylose per 100g dry raw material. Simultaneous saccharification and fermentation experiments were performed on the pretreated slurries at an initial water-insoluble content of 5%, using ordinary baker's yeast. An overall theoretical ethanol yield of 79%, based on the glucan and mannan content in the raw material, was obtained.  相似文献   

6.
The production of extracellular xylanase by a locally isolated strain of Aspergillus tubingensis JP-1 was studied under solid-state fermentation. Among the various agro residues used wheat straw was found to be the best for high yield of xylanase with poor cellulase production. The influence of various parameters such as initial pH, moisture, moistening agents, nitrogen sources, additives, surfactants and pretreatment of substrates were investigated. The production of the xylanase reached a peak in 8 days using untreated wheat straw with modified MS medium, pH 6.0 at 1:5 moisture level at 30 °C. Under optimized conditions yield as high as 6,887 ± 16 U/g of untreated wheat straw was achieved. Crude xylanase was used for enzymatic saccharification of agro-residues like wheat straw, rice bran, wheat bran, sugarcane bagasse and industrial paper pulp. Dilute alkali (1 N NaOH) and acid (1 N H2SO4) pretreatment were found to be beneficial for the efficient enzymatic hydrolysis of wheat straw. Dilute alkali and acid-pretreated wheat straw yielded 688 and 543 mg/g reducing sugar, respectively. Yield of 726 mg/g reducing sugar was obtained from paper pulp after 48 h of incubation.  相似文献   

7.
Shi J  Ebrik MA  Wyman CE 《Bioresource technology》2011,102(19):8930-8938
Dacotah switchgrass was pretreated with sulfuric acid concentrations of 0.5, 1.0, and 2.0 wt.% at 140, 160, and 180 °C and with 1 and 3 wt.% sulfur dioxide at 180 °C over a range of times. Sulfur dioxide loadings of 0%, 1%, 3%, 5%, and 10%wt.% of dry biomass were also tested at 180 °C for 10 min. Sugar yields were tracked for pretreatment and subsequent enzymatic hydrolysis to identify conditions for the highest total sugar yields. Pretreatment with 1 wt.% dilute sulfuric acid at 140 °C for 40 min followed by enzymatic hydrolysis with 48.6 mg enzyme/g initial glucan in raw biomass resulted in ~86% of theoretical yield for glucose and xylose combined. For sulfur dioxide pretreatment, the highest total sugar yield of about 87% occurred at 5% SO? for 10 min and 180 °C. However, xylose yields were higher at shorter times and glucose yields at longer times.  相似文献   

8.
王伟  崔宝凯  李牧洁 《菌物学报》2012,31(5):745-753
通过化学分析和酶水解试验,研究了不同的白腐菌对毛白杨的预处理效果及不同组分的降解对酶水解的影响。毛白杨木片经6种白腐菌预处理30d后,各组分都发生了降解,其中半纤维素的损失最为显著,Trametes ochracea C6888引起半纤维素降解率高达47.19%,其次是纤维素和酸不溶木素的降解。在后续酶水解过程中,6种白腐菌处理后的样品显示出不同的水解模式,菌株Trametes ochracea C6888、T. pubescens C7571和T. versicolor C6915预处理效果最为显著,还原糖得率在整个酶水解过程中一直高于对照,其中T. ochracea C6888在水解96h后还原糖得率达到15.93%,比未处理样品提高了25%。分析酸不溶木素降解率及半纤维素降解率与还原糖得率的关系发现,不同菌株在作用同一种基质时,预处理效果差异显著,木质素和半纤维素的脱除都会影响木质纤维素的酶水解。  相似文献   

9.
为了提高沙柳生物转化过程的经济可行性,考察了沙柳原料经过蒸爆、超微粉碎+稀酸、超微粉碎+稀碱预处理后高浓度底物补料酶解的效果,并对其高浓度水解糖液进行了乙醇发酵。结果表明:蒸爆处理法水解效果最好,通过补料酶解,底物质量分数可以达到30%,酶解液中总糖质量浓度达到132 g/L,葡萄糖质量浓度105 g/L;超微粉碎+稀酸预处理原料底物质量分数可以达到22%,酶解液中总糖质量浓度达到123 g/L,葡萄糖质量浓度73 g/L;超微粉碎+稀碱预处理原料底物质量分数可以达到22%,酶解液中总糖质量浓度133 g/L,葡萄糖质量浓度77 g/L。3种预处理使沙柳原料的酶解糖液都可以较好地被酿酒酵母利用发酵产乙醇,蒸爆处理原料的酶解糖液乙醇发酵效果最好,乙醇质量浓度达到47 g/L。  相似文献   

10.
Lactic acid production by Lactobacillus brevis and Lactobacillus pentosus on a hemicellulose hydrolysate (HH) of wet-oxidized wheat straw was evaluated. The potential of 11-12 g/l fermentable sugars was released from the HH through either enzymatic or acidic pretreatment. Fermentation of added xylose in untreated HH after wet-oxidation, showed no inhibition on the lactic acid production by either Lb. pentosus or Lb. brevis. Lb. pentosus produced lactate corresponding to 88% of the theoretical maximum yield regardless of the hydrolysis method, whereas Lb. brevis produced 51% and 61% of the theoretical maximum yield after enzymatic, or acid treatment of HH, respectively. Individually, neither of the two strains were able to fully utilize the relatively broad spectra of sugars released by the acid and enzyme treatments; however, lactic acid production increased to 95% of the theoretical maximum yield by co-inoculation of both strains. Xylulose was the main sugar released after enzymatic treatment of HH with Celluclast. Lb. brevis was able to degrade xylobiose, but was unable to assimilate xylulose, whereas Lb. pentosus was able to assimilate xylulose but unable to degrade xylobiose.  相似文献   

11.
The potential of fungal pretreatment to improve fermentable sugar yields from wheat straw or Miscanthus was investigated. We assessed 63 fungal strains including 53 white-rot and 10 brown-rot fungi belonging to the Basidiomycota phylum in an original 12 day small-scale solid-state fermentation (SSF) experiment using 24-well plates. This method offers the convenience of one-pot processing of samples from SSF to enzymatic hydrolysis. The comparison of the lignocellulolytic activity profiles of white-rot fungi and brown-rot fungi showed different behaviours. The hierarchical clustering according to glucose and reducing sugars released from each biomass after 72 h enzymatic hydrolysis splits the set of fungal strains into three groups: efficient, no-effect and detrimental-effect species. The efficient group contained 17 species belonging to seven white-rot genera and one brown-rot genus. The yield of sugar released increased significantly (max. 62%) compared with non-inoculated controls for both substrates.  相似文献   

12.
Liquid hot (LHW) water pretreatment (LHW) of lignocellulosic material enhances enzymatic conversion of cellulose to glucose by solubilizing hemicellulose fraction of the biomass, while leaving the cellulose more reactive and accessible to cellulase enzymes. Within the range of pretreatment conditions tested in this study, the optimized LHW pretreatment conditions for a 15% (wt/vol) slurry of hybrid poplar were found to be 200oC, 10 min, which resulted in the highest fermentable sugar yield with minimal formation of sugar decomposition products during the pretreatment. The LHW pretreatment solubilized 62% of hemicellulose as soluble oligomers. Hot‐washing of the pretreated poplar slurry increased the efficiency of hydrolysis by doubling the yield of glucose for a given enzyme dose. The 15% (wt/vol) slurry of hybrid poplar, pretreated at the optimal conditions and hot‐washed, resulted in 54% glucose yield by 15 FPU cellulase per gram glucan after 120 h. The hydrolysate contained 56 g/L glucose and 12 g/L xylose. The effect of cellulase loading on the enzymatic digestibility of the pretreated poplar is also reported. Total monomeric sugar yield (glucose and xylose) reached 67% after 72 h of hydrolysis when 40 FPU cellulase per gram glucan were used. An overall mass balance of the poplar‐to‐ethanol process was established based on the experimentally determined composition and hydrolysis efficiencies of the liquid hot water pretreated poplar. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

13.
分别考察C.acetobutylicum 810705、810706以不同浓度的麸皮和玉米粉添加物作为营养元素,纤维二糖直接进行丙酮丁醇(ABE)发酵的结果,发现2株菌对于玉米粉和麸皮的浓度变化趋势一致,C.acetobutylicum 810706转化率较高。纤维二糖ABE发酵工艺条件表明:玉米粉添加量为总糖含量的30%、底物糖质量浓度60 g/L,pH 6.5、温度35℃时,C.acetobutylicum 810706转化率达到37.38%,总溶剂质量浓度22.43 g/L,比葡萄糖、木糖ABE发酵转化率高。模拟纤维素酶水解产物配制混合糖培养基,其溶剂转化率较单独的葡萄糖、木糖发酵的转化率高,为34.95%。对比纤维素酶水解条件,C.acetobutylicum 810706具有优良的纤维素酶水解同步糖化ABE发酵能力。  相似文献   

14.
A (polysaccharide-rich) waste stream derived from a combined starch and ethanol factory was investigated regarding hydrolysis of the nonstarch carbohydrates for ethanol production. The material was characterized and processed to yield the maximum amount of sugars. The starch fraction was hydrolyzed with amylolytic enzymes, and the resulting fibrous material was separated by filtration. This material, denoted starch-free fibers (SFF), was subjected to heat treatment followed by enzymatic hydrolysis to recover the other major carbohydrate components, namely, cellulose and hemicellulose, in monomeric form. Heat treatment in a microwave oven efficiently solubilized a fraction of these polysaccharides and made the material more accessible to the cellulolytic and hemicellulolytic enzymes used in the subsequent enzymatic hydrolysis. The maximum sugar yield after enzymatic hydrolysis, achieved with pretreatment at 170 degrees C for 40 min, was 34.1 g per 100 g SFF, comprising 12.8 g glucose, 13.9 g xylose and 7.4 g arabinose, corresponding to 66%, 71% and 51% of the theoretical, respectively.  相似文献   

15.
The effectiveness of compression-milling pretreatment of lignocellulosics for enzymatic hydrolysis has been demonstrated for a wide variety of substrate sources. Reductions in the degree of crystallinity and the degree of polymerization of cellulose and partial destruction of the structural integrity of lignocellulosics brought about by compression milling significantly increase the susceptibility of cellulose to enzymatic hydrolysis. The enzymatic hydrolysis yield was found to be directly related to the specific energy input to the cellulosic substrate (kWh/1b substrate) by compression milling, and the energy input can be controlled by the milling time. The enzymatic hydrolysis yeilds from cellulosic materials pretreated by compression milling also vary significantly depending on the source and kind, the composition milling also vary significantly depending on the source and kind, the composition (contents of lignin and other components), and the structure. The power requirements for compression milling which renders equivalent hydrolysis yields also depend on the source and kind of lignocellulosics to be pretreated. For newspaper, the specific energy input required for 55% sugar yield is estimated as 0.3 kWh/lb substrate including 15% power loss. The additional sugar yield gained from the enzymatic hydrolysis of compression-milled newspaper (over and above the sugar yield of untreated substrate) is determined as 453 g sugar/kWh energy input.  相似文献   

16.
The technique of autohydrolysis steam explosion was examined as a means for pretreatment of sugarcane bagasse. Treatment conditions were optimized so that following enzymatic hydrolysis, pretreated bagasse would give 65.1 g sugars/100 g starting bagasse. Released sugars comprised 38.9 g glucose, 0.6 g cellobiose, 22.1 g xylose, and 3.5 g arabinose, and were equivalent to 83% of the anhydroglucan and 84% of the anhydroxylan content of untreated bagasse. Optimum conditions were treatment for 30 S with saturated steam at 220 degrees C with a water-to-solids ratio of 2 and the addition of 1 g H(2)SO(4)/100 g dry bagasse. Bagasse treated in this manner was not inhibitory to fermentation by Saccharomyces uvarum except at low inoculum levels when fermentation time was extended by up to 24 h. Pretreated saccharified bagasse was inhibitory to Pachysolen tannophilus and this was attributed to the formation of acetate from the hydrolysis of acetyl groups present in hemicellulose. The major advantage of the pretreatment is the achievement of high total sugar yield with moderate enzyme requirement and only minor losses due to sugar decomposition.  相似文献   

17.
ABE (acetone-butanol-ethanol) was produced through alkaline pre-hydrolysis, enzymatic saccharification, and fermentation using yellow poplar as a raw material. In alkaline pre-hydrolysis, 51.1% of the biomass remained as a residue. In the main woody components, the degrees of lignin and xylan removal were 94.3 and 62.0%, respectively. A yield of 80.9% for cellulose-to-glucose and 81.2% for xylan-to-xylose were obtained by enzymatic hydrolysis. The sugar composition of enzymatic hydrolysate was 95.1 g/L of glucose and 21.4 g/L of xylose. The enzymatic hydrolysate also contained 0.5 g/L of acetic acid and 0.5 g/L of total phenolics. Furfural and 5-hydroxymethylfurfural (5-HMF) were not detected in this hydrolysate. The yellow poplar hydrolysate (YPH) from enzymatic saccharification was used for the production of ABE using Clostridium acetobutylicum and C. beijerinckii. In YPH fermentation, C. acetobutylicum produced 18.1 g/L total ABE (productivity 0.38 g/L h, and yield 0.42), and C. beijerinckii produced 12.1 g/L (productivity 0.25 g/L h, and yield 0.37). Although the ABE productivity by C. beijerinckii was slightly low, the general performance of ABE fermentation in YPH was similar to or higher than those reported previously. Therefore, alkaline pre-hydrolysis could be a very effective pretreatment step prior to enzymatic hydrolysis.  相似文献   

18.
Because conventional approaches for evaluating sugar release from the coupled operations of pretreatment and enzymatic hydrolysis are extremely time and material intensive, high throughput (HT) pretreatment and enzymatic hydrolysis systems have become vital for screening large numbers of lignocellulosic biomass samples to identify feedstocks and/or processing conditions that significantly improve performance and lower costs. Because dilute acid pretreatment offers many important advantages in rendering biomass highly susceptible to subsequent enzymatic hydrolysis, a high throughput pretreatment and co‐hydrolysis (HTPH) approach was extended to employ dilute acid as a tool to screen for enhanced performance. First, a single‐step neutralization and buffering method was developed to allow effective enzymatic hydrolysis of the whole pretreated slurry. Switchgrass and poplar were then pretreated with 0.5% and 1% acid loadings at a 5% solids concentration, the resulting slurry conditioned with the buffering approach, and the entire mixture enzymatically hydrolyzed. The resulting sugar yields demonstrated that single‐step neutralizing and buffering was capable of adjusting the pH as needed for enzymatic saccharification, as well as overcoming enzyme inhibition by compounds released in pretreatment. In addition, the effects of pretreatment conditions and biomass types on susceptibility of pretreated substrates to enzymatic conversion were clearly discernible, demonstrating the method to be a useful extension of HTPH systems. Biotechnol. Bioeng. 2013; 110: 754–762. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Efficient generation of a fermentable hydrolysate is a primary requirement in the utilization of fibrous plant biomass as feedstocks in bioethanol processes. The first biomass conversion step usually involves a hydrothermal pretreatment before enzymatic hydrolysis. The purpose of the pretreatment step is to increase the responsivity of the substrate to enzymatic attack and the type of pretreatment affects the enzymatic conversion efficiency. Destarched corn bran is a fibrous, heteroxylan-rich side-stream from the starch industry which may be used as a feedstock for bioethanol production or as a source of xylose for other purposes. In the present study we demonstrate the use of diffuse reflectance near infrared spectroscopy (NIR) as a rapid and non-destructive analytical tool for evaluation of pretreatment effects on destarched corn bran. NIR was used to achieve classification between 43 differently pretreated corn bran samples using principal component analysis (PCA) and hierarchal clustering algorithms. Quantification of the enzymatically released monosaccharides by HPLC was used to design multivariate calibration models (biPLS) on the NIR spectra. The models could predict the enzymatic release of different levels of arabinose, xylose and glucose from all the differently pretreated destarched corn bran samples. The present study also demonstrates a generic, non-destructive solution to determine the enzymatic monosaccharide release from polymers in biomass side-streams, thereby potentially replacing the cumbersome HPLC analysis.  相似文献   

20.
Fourier transform infrared, attenuated total reflectance (FTIR-ATR) spectroscopy, combined with partial least squares (PLS) regression, accurately predicted solubilization of plant cell wall constituents and NaOH consumption through pretreatment, and overall sugar productions from combined pretreatment and enzymatic hydrolysis. PLS regression models were constructed by correlating FTIR spectra of six raw biomasses (two switchgrass cultivars, big bluestem grass, a low-impact, high-diversity mixture of prairie biomasses, mixed hardwood, and corn stover), plus alkali loading in pretreatment, to nine dependent variables: glucose, xylose, lignin, and total solids solubilized in pretreatment; NaOH consumed in pretreatment; and overall glucose and xylose conversions and yields from combined pretreatment and enzymatic hydrolysis. PLS models predicted the dependent variables with the following values of coefficient of determination for cross-validation (Q2): 0.86 for glucose, 0.90 for xylose, 0.79 for lignin, and 0.85 for total solids solubilized in pretreatment; 0.83 for alkali consumption; 0.93 for glucose conversion, 0.94 for xylose conversion, and 0.88 for glucose and xylose yields. The sugar yield models are noteworthy for their ability to predict overall saccharification through combined pretreatment and enzymatic hydrolysis per mass dry untreated solids without a priori knowledge of the composition of solids. All wavenumbers with significant variable-important-for-projection (VIP) scores have been attributed to chemical features of lignocellulose, demonstrating the models were based on real chemical information. These models suggest that PLS regression can be applied to FTIR-ATR spectra of raw biomasses to rapidly predict effects of pretreatment on solids and on subsequent enzymatic hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号