首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Lack of heat-shock response in preovulatory mouse oocytes   总被引:5,自引:0,他引:5  
The response to heat (hs response) of preovulatory mouse oocytes was compared with that of mouse granulosa cells and characterized in regard to in vitro resumption of meiosis, amino acid incorporation into total protein, and qualitative analysis of protein synthesized before and after the shock. Granulosa cells displayed a hs response typical of other mammalian systems. When incubated at 43 degrees C for 20-40 min, these cells maintained a normal level of amino acid incorporation into total protein, responded to stress by new synthesis of 33- and 68-kDa heat-shock proteins (hsps), and enhanced synthesis of 70-kDa heat-shock cognate protein (hsc70) and of 89- and 110-kDa hsps. In contrast to granulosa cells, preovulatory mouse oocytes were very sensitive to hyperthermia. Incubation at 43 degrees C for 20-40 min strongly inhibited oocyte resumption of meiosis and protein synthesis and did not induce a new or enhanced synthesis of hsps. Unstressed preovulatory mouse oocytes constitutively synthesized 70- and 89-kDa polypeptides resembling hsc70 and hsp89 of granulosa cells.  相似文献   

2.
The effect of hyperthermia treatments on ornithine decarboxylase (ODC) induction in mouse tissue was determined both in vitro and in vivo. In vitro, the addition of 12-0-tetradecanoylphorbol-13-acetate (TPA) to adult mouse skin pieces incubated at 37 degrees C in serum-free MEM led to a dramatic increase in epidermal ODC activity 5 hours following treatment. In contrast, incubation temperatures of 40 degrees C for the entire 5 hour incubation period rendered the skin pieces unresponsive to TPA for ODC induction. This inhibition of ODC induction was not the result of thermal skin kill, inactivation of TPA, or a general effect on epidermal protein synthesis. The inhibition of ODC induction could be reversed by switching the incubation temperature back to 37 degrees C. In vivo, raising the core body temperature in male mice to 41 degrees C for 1 hour resulted in a 78% decrease in kidney ODC activity. The kidney DNA synthesis and protein synthesis remained unaltered following the whole body hyperthermia treatments.  相似文献   

3.
A number of studies have demonstrated increased synthesis of heat shock proteins in brain following hyperthermia or transient ischemia. In the present experiments we have characterized the time course of heat shock RNA induction in gerbil brain after ischemia, and in several mouse tissues after hyperthermia, using probes for RNAs of the 70-kilodalton heat shock protein (hsp70) family, as well as ubiquitin. A synthetic oligonucleotide selective for inducible hsp70 sequences proved to be the most sensitive indicator of the stress response whereas a related rat cDNA detected both induced RNAs and constitutively expressed sequences that were not strongly inducible in brain. Considerable polymorphism of ubiquitin sequences was evident in the outbred mouse and gerbil strains used in these studies when probed with a chicken ubiquitin cDNA. Brief hyperthermic exposure resulted in striking induction of hsp70 and several-fold increases in ubiquitin RNAs in mouse liver and kidney peaking 3 h after return to room temperature. The oligonucleotide selective for hsp70 showed equivalent induction in brain that was more rapid and transient than observed in liver, whereas minimal induction was seen with the ubiquitin and hsp70-related cDNA probes. Transient ischemia resulted in 5- to 10-fold increases in hsp70 sequences in gerbil brain which peaked at 6 h recirculation and remained above control levels at 24 h, whereas a modest 70% increase in ubiquitin sequences was noted at 6 h. These results demonstrate significant temporal and quantitative differences in heat shock RNA expression between brain and other tissues following hyperthermia in vivo, and indicate that hsp70 provides a more sensitive index of the stress response in brain than does ubiquitin after both hyperthermia and ischemia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Abstract: Changes in brain protein synthesis activity, and in brain levels of glucose, glycogen, and several high-energy phosphate metabolites, were evaluated under conditions of amphetamine-induced hyperthermia in mice. Protein synthesis showed a striking dependence on rectal temperature ( T R), falling abruptly at T R above 40°C. A similar result was obtained following direct heating of the animals. Protein synthesis activity in liver showed the same temperature dependence observed for brain. Increased synthesis of a protein with characteristics of the major mammalian stress protein, hsp 70, was demonstrated in both brain and liver following amphetamine administration. Brain protein synthesis showed significant recovery within 2 h after amphetamine administration whereas that of liver remained below 30% of control activity, suggesting significant temporal and quantitative differences in the response of individual tissues to elevated temperatures. Brain glycogen levels after amphetamine administration were significantly lower under conditions of ambient temperature which resulted in more severe drug-induced hyperthermia but did not correlate as strikingly as protein synthesis with the temperatures of individual animals. Brain glycogen also fell in animals whose temperatures were increased by brief exposure at high ambient temperature. Brain glucose levels did not consistently change with hyperthermia. Slight decreases in high-energy phosphates with increasing T R were likely the result of fixation artifact. These results demonstrate the fundamental role of hyperthermia in the reduction of protein synthesis in brain and other tissues by amphetamine, and suggest that temperature also constitutes a significant source of variability in the effects of this drug on brain energy metabolism, in particular glycogenolysis.  相似文献   

5.
The pattern of poly(A)-associated [poly(A)+] RNA synthesis was studied in rabbit cerebral cortex in the period following a single electroconvulsive shock (ECS). Labeled uridine was injected into the brain 2 and 4 hr after ECS and the animals sacrificed 1 hr later. Total and poly(A)+ RNA were then prepared from cortical nuclei and microsomes and analyzed. The amounts of newly synthesized total and poly(A)+ RNA in nuclei and microsomes appeared to be close to the control. However, the pattern of newly synthesized poly(A)+ nuclear RNA appeared to be still displaced toward the high molecular weights as it was in the early post-ECS period. The result indicates a long-lasting disturbance of brain poly(A)+-RNA metabolism by ECS.  相似文献   

6.
The present study investigated the effect of single and repeated electroconvulsive shock (ECS) on proteinkinase C in rat cerebral cortex, cerebellum, hippocampus and striatum using [3H]Phorbol-12, 13-butyrate binding. In the postictal period and 24 hr after a single ECS there was no alteration in any brain region. Twenty four hr after 10 once-daily ECS there was a significant decrease the number of binding sites in cerebral cortex (30%) and in cerebellum (20%) without a change in the affinity constant. These findings are discussed with regard to earlier reports on phosphoinositide turnover following chemically and electrically induced seizures.  相似文献   

7.
The labeling pattern of non poly(A) associated (poly(A)) RNA of rabbit cerebral cortex was studied 24 hr after a single electroconvulsive shock (ECS). The animals were injected subarachnoidally with [3H]uridine and sacrificed 1 hr later. The fractionation pattern of labeled nuclear poly(A) RNA in the cerebral cortex of ECS treated animals was identical to that of the controls. However, microsomal poly(A) RNA from the treated animals showed an increased labeling of 18S ribosomal RNA. Also 28S RNA displayed a higher labeling but the effect was not statistically significant. These results indicate a more efficient production of ribosomal RNA in the late post-ECS period which might be in relationship with an increased activity of brain protein synthesis machinery.  相似文献   

8.
The synthesis and intracellular transport of the beta-subunit of rat liver F1-ATPase was studied in a cell-free system, using free polysomal mRNA from rat liver and isolated rat hepatocytes. The beta-subunit of rat liver F1-ATPase is synthesized as a larger precursor form in rabbit reticulocyte lysate and then transported into isolated mitochondria in the absence of protein synthesis. In pulse experiments at 37 degrees C, the precursor of the beta-subunit reached a plateau 30 min after the pulse. The labeled mature beta-subunit appeared in the particulate fraction (containing mitochondria) after a time lag and increased almost linearly with time up to 40 min.  相似文献   

9.
A single hyperthermic exposure can render cells transiently resistant to subsequent high temperature stresses. Treatment of rat embryonic fibroblasts with cycloheximide for 6 h after a 20-min interval at 45 degrees C inhibits protein synthesis, including heat shock protein (hsp) synthesis, and results in an accumulation of hsp 70 mRNA, but has no effect on subsequent survival responses to 45 degrees C hyperthermia. hsp 70 mRNA levels decreased within 1 h after removal of cycloheximide but then appeared to stabilize during the next 2 h (3 h after drug removal and 9 h after heat shock). hsp 70 mRNA accumulation could be further increased by a second heat shock at 45 degrees C for 20 min 6 h after the first hyperthermic exposure in cycloheximide-treated cells. Both normal protein and hsp synthesis appeared increased during the 6-h interval after hyperthermia in cultures which received two exposures to 45 degrees C for 20 min compared with those which received only one treatment. No increased hsp synthesis was observed in cultures treated with cycloheximide, even though hsp 70 mRNA levels appeared elevated. These data indicate that, although heat shock induces the accumulation of hsp 70 mRNA in both normal and thermotolerant cells, neither general protein synthesis nor hsp synthesis is required during the interval between two hyperthermic stresses for Rat-1 cells to express either thermotolerance (survival resistance) or resistance to heat shock-induced inhibition of protein synthesis.  相似文献   

10.
The regional distribution of c-fos mRNA in the mouse brain has been investigated by in situ hybridization autoradiography after seizures induced by an acute electroconvulsive shock (ECS). ECS led to a widespread induction of the proto-oncogene c-fos in the brain, with highest concentrations in discrete areas within the limbic system and also in the hypothalamus and cerebellum. The mild stress of sham treatment in earclipped animals induced a weaker and qualitatively different pattern of c-fos mRNA expression involving the cortex, hippocampus, and cerebellum. These data suggest the usefulness of c-fos in situ hybridization as a marker of neuronal stimulation and in mapping a range of effects from a mild stress to the robust changes of an electroconvulsive seizure.  相似文献   

11.
The increase in rat body temperature by 2-3 degrees as a result of overheating (45 degrees C, 22% humidity) over 90 and 120 min is accompanied by changes in the rate of labeled precursors incorporation into rat liver protein fractions. The incorporation of labeled amino acids into liver nuclear matrix proteins within the first 90 min of overheating is somewhat decreased, whereas 120 min thereafter it exceeds by 30% the corresponding values in control animals kept at room temperature. The polypeptide pattern of the nuclear matrix in hyperthermia is characterized by an increased relative content of polypeptide components around Mr 100, 55, 40 and 30 kDa against a decreased level of several polypeptides as compared to the control.  相似文献   

12.
Heat shock proteins are induced at normal temperatures by oxidants and during reoxygenation following hypoxia. We now report cyanide-resistant O2 consumption increased 30-50% in rat lungs exposed to heat shock or reoxygenation following hypoxia. The synthesis of Cu,Zn superoxide dismutase, but not Mn superoxide dismutase, was increased in rat lung slices by in vivo hyperthermia (39 degrees C), by in vitro heat shock (41 degrees C), and during incubation of lung slices with the Cu chelator diethyldithiocarbamate, which decreased the activity of Cu,Zn superoxide dismutase. The heat shock-induced increase in Cu,Zn superoxide dismutase developed 2 h later than the induction of heat shock proteins and was not blocked by actinomycin D. The rates of synthesis of both superoxide dismutases were decreased 50% by hypoxia and failed to increase during reoxygenation. During hypoxia the activity of Cu,Zn superoxide dismutase decreased about 50%, but the activity of Mn superoxide dismutase remained unchanged. We conclude that hyperthermia increases the synthesis of Cu,Zn superoxide dismutase, the synthesis of Cu,Zn superoxide dismutase and Mn superoxide dismutase are not coordinately regulated by hyperthermia or by the oxidant stress produced by lowering the activity of Cu,Zn superoxide dismutase, and the synthesis of heat shock proteins and Cu,Zn superoxide dismutase are regulated at different levels of gene expression.  相似文献   

13.
1. Emerging evidence indicates that brain-derived neurotrophic factor (BDNF) and its receptor TrkB play important roles in the mechanism of action of electroconvulsive shock (ECS) treatment. ECS produces a significant increase in brain BDNF synthesis together with a variety of neuroplastic changes including neurogenesis and axonal sprouting in the rodent brain, which is believed to be associated to the antidepressant effect of ECS. ERK1/2 (extracellular signal-regulated kinase-1/2) and Akt (protein kinase B), both intracellular signaling molecules being linked to neurotrophin signaling and synthesis, are important pathways triggered by TrkB autophosphorylation. 2. We have previously observed that chemical antidepressants induce a rapid activation of TrkB signaling in the rodent prefrontal cortex (PFC), which is likely a consequence of the stimulatory effect of antidepressants on BDNF synthesis. However, it is not known whether ECS triggers TrkB autophosphorylation and if any ECS-induced effect on TrkB function may be associated with the activation of the ERK1/2 and Akt pathways. 3. The present study assayed the phosphorylation levels of TrkB, ERK1/2, and Akt in the PFC of sham and ECS-treated rats. While the TrkB autophosphorylation (pTrkB) levels were decreased 30 min after both acute and chronic ECS, no change in pTrkB levels were observed at any other time points measured. In contrast, acute but not chronic ECS, transiently induced a very rapid and robust hyperphosphorylation of ERK1/2. Akt phosphorylation levels remained unchanged following acute or chronic ECS. Hence, although ECS effectively stimulates the ERK1/2 pathway in the PFC, this effect does not appear to involve upstream activation of TrkB.  相似文献   

14.
1. Palmitoyl-CoA synthetase activity was assayed in subfractions of control and Quaking, Jimpy, Shiverer and Trembler mouse brain. 2. Mouse brain palmitoyl-CoA synthetase activity is not altered during myelination. 3. Mouse brain enzyme activity (homogenate 1.5 +/- 0.3 nmol palmitoyl carnitine/min/per mg protein crude mitochondria 0.6 +/- 0.1 nmol/min/per mg protein and microsomes 1.9 +/- 0.3 nmol/min/per mg protein) does not differ markedly from rat and rabbit brain activity. 4. The lesions of the above mutants which affect myelination and lipid synthesis do not include the enzyme palmitoyl-CoA synthetase.  相似文献   

15.
Changes in protein synthesis that occurred under the influence of heat shock (HS) in monolayer (L929) and suspension (LS) mouse cell cultures were studied. The rates of protein synthesis determined as 35S-methionine incorporations were seen reduced from the initial level up to 40-60 and 6-13% after HS at 42 and 44 degrees C, respectively. Simultaneously the rate of actin and tubulin syntheses decreased, the decrease being more pronounced in LS cells. According to electrophoresis and autoradiography data, after hyperthermia both the cell cultures were able to synthesize heat shock proteins (HSP), primarily HSP70. After a 40 min HS towards L929 and LS cells at 43 degrees C, the shares of their HSP70 bands in the total label loaded on the gel constituted, resp., 8.8 and 5.4%. The data suggest that L929 cells, with their synthetic activity lower than in LS cells, appear more resistant to HS and are able eventually to synthesize larger amounts of HSP70, compared to the latter.  相似文献   

16.
When we were studying phosphorylated proteins in the rat brain after electroconvulsive shock (ECS), we observed the rapid phosphorylation of a 75-kDa protein, which cross-reacted with the anti-phospho-p70 S6 kinase antibody. The phosphorylated protein was purified and identified as moesin, a member of the ezrin/radixin/moesin (ERM) family and a general cross-linker between cortical actin filaments and plasma membranes. The purified moesin from rat brain was phosphorylated at serine and threonine residues. Moesin was rapidly phosphorylated at the threonine 558 residue after ECS in the rat hippocampus, peaked at 1 min, and returned to the basal level by 2 min after ECS. To investigate the mechanism of moesin phosphorylation in neuronal cells, we stimulated a rat hippocampal progenitor cell, H19-7/IGF-IR, with glutamate, and observed the increased phosphorylation of moesin at Thr-558. Glutamate transiently activated RhoA, and constitutively active RhoA increased the basal level phosphorylation of moesin. The inhibition of RhoA and its effector, Rho kinase, abolished increased Thr-558 phosphorylation by glutamate in H19-7/IGF-IR cells, suggesting that the phosphorylation of moesin at Thr-558 in H19-7/IGF-IR cells by glutamate is mediated by RhoA and Rho kinase activation.  相似文献   

17.
The effects of electroconvulsive shock (ECS; 120 V for 1 s through ear-clip electrodes) or sub-convulsive shocks (70 V for 1 s) on rat brain GABA and met-enkephalin concentration and GABA turnover has been examined 24 h after a single treatment (×1) or once daily for 10 days (×10). ECS × 10 increased GABA concentrations in the N. caudatus and N. accumbens and decreased the synthesis rate of GABA by 40% and 50% respectively in these regions. Sub-convulsive shocks (× 10 × 10) or ECS × 1 had no effect. No consistent changes were seen in the substantia nigra. Met-enkephalin concentrations increased by 50% in the N. caudatus after ECS × 10 but were unchanged in the cortex and pons/medulla. No other shock regimen had any effect on the concentration of this peptide. The results are discussed in relation to the enhanced monoamine-induced responses seen only after ECS × 10.  相似文献   

18.
The role of pituitary opioids in electroconvulsive shock (ECS)-induced postictal electrogenesis and behavioral depression was investigated in sham-hypophysectomized and hypophysectomized rats. These animals were divided into two subgroups and injected SC with either saline or naloxone (3 mg/kg) 10 min prior to transauricular ECS. Sham-hypophysectomized rats given saline responded to a single ECS with a 65 +/- 18% (s.e.) increase in postictal electrogenesis and a behavioral depression lasting 3840 +/- 530 sec. Naloxone significantly antagonized both the postictal increase in EEG voltage output and behavioral depression. Hypophysectomy by itself was without effect on EEG patterns and only partially attenuated the ECS-induced electrogenesis and postictal depression (31.9 +/- 9% and 2360 +/- 511 sec, respectively). However, in hypophysectomized rats, naloxone did not further antagonize these effects of ECS. Thus, it appears that pituitary opioids may, at least in part, mediate postictal electrogenesis and behavioral depression. Alternatively, since hypophysectomy only partially attenuates these phenomena, central or nonpituitary opioid peptide systems may be involved. In view of the observed decrease in responsiveness to naloxone in hypophysectomized rats, nonopioid systems cannot be ruled out as contributors to the opioid-like effects of ECS in these animals.  相似文献   

19.
The purpose of the present study is to determine the effect of chronic electroconvulsive shock (ECS) on the expression of beta-adrenergic receptors in rat brain by Western blot using mAb beta CO2, a monoclonal antibody against beta-adrenergic receptors. Rats in ECS treated groups received maximal ECS (70 mA, 0.5 second, 60 Hz) through ear-clip electrodes for 12 consecutive days. The experiment was carried out in 14 discrete regions of brain. Chronic ECS reduced the expression of beta-adrenergic receptors in frontal cortex, temporal cortex, parietooccipital cortex, hippocampus and limbic forebrain, but not in other areas of brain. The regional specificity and the magnitude of the reduction of receptor expression are well correlated with those of the reduction of receptor ligand binding, which was determined using [3H]dihydroalprenolol. To the best of our knowledge, this is the first report to demonstrate that chronic ECS decreases the expression of receptor protein in specific regions of rat brain.  相似文献   

20.
—The incorporation of [4,5-3H]lysine and [1-14C]leucine into the proteins of subcellular fractions of mouse brain was examined following a single electroconvulsive shock (ECS) or following cycloheximide injections. When the [3H]lysine was injected intraperitoneally immediately after the ECS the incorporation into total brain proteins was decreased by more than 50% as compared to sham controls. The proportion of lysine incorporated into the microsomal fraction was increased, but no changes were observed in the other subcellular fractions including the synaptosomal fraction. With extended pulses administered at various times after the ECS there was no change in total incorporation nor were selective effects seen in any subcellular fractions. With intracranial injections of both [3H]lysine and [14C]leucine the decreased incorporation caused by ECS was not observed, neither were there selective changes in any subcellular fraction. This lack of inhibition occurred because the intracranial injection itself severely inhibited [3H]lysine incorporation. Cycloheximide (30 mg/kg) which depressed [3H]lysine incorporation into brain proteins by 84% caused a selective depression of the incorporation into the cell-sap fraction and selective elevations into the microsomal and synaptosomal fractions. Similar changes were seen with a higher (amnestic) dose of cycloheximide (150 mg/kg) which inhibited incorporation by 94%. These data are interpreted in terms of the diverse mechanisms by which ECS and cycloheximide inhibit protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号