首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of abscisic acid (ABA) was observed on exudation from roots of sunflower ( Helianthus annuus L. cv. Habad) plants whose mineral nutrition was cut off or which were deprived of K+ or NO3 for 90 h prior to excision. In spite of a marked decrease in exudation rate, the magnitude of the promotive effect of ABA on both volume flow and release of ions to the xylem was similar to that obtained in roots of plants grown in full nutrient solution. Application of ABA to the medium at different times after excision increased the promotive effect of ABA as the time from excision increased. The magnitude of the ratio ABA-treated/control in roots which were treated 74 h after excision was twice that in freshly-excised roots. The effect of ABA lasted up to 50 h and during that period it followed the endogenous rhythm in exudation from the control roots. It is concluded that since a steady promotive effect of ABA persists under a variety of experimental conditions, this may be considered a genera! phenomenon in sunflower roots.  相似文献   

2.
Twenty‐day‐old sunflower plants ( Helianthus annuus L. cv. Sun‐Gro 380) grown in nutrient solutions with different KCl levels were used to study the effects of K+ status of the root and of abcisic acid (ABA) on the exudation rate (Jv), the hydraulic conductivity of the root (Lp), the fluxes of exuded K+ and Na+ (JK and JNa), and the gradient of osmotic pressure between the xylem and the external medium. Jv and Lp increased in direct proportion to the K+ starvation of the root. Also addition of ABA (4 µ M ) at the onset of exudation in the external medium made Jv and Lp rise, and this effect also increased with the degree of K+ starvation. Similarly, K+ starvation and ABA promoted both the flux of exuded Na+ and the accumulation of Na+ in the root. We suggest that ABA acts as a regulating signal for the radial transport of water across the root, and that potassium may be an effector of this mechanism.  相似文献   

3.
Four-week-old sunflower plants ( Helianthus annuus L. cv. Halcón), grown in different nutrient solutions, were used to study the effects of gibberellic acid (GA3) on K+ (Rb+) uptake by roots or transport to the shoot. Gibberellic acid application to the nutrient solution did not affect the exudation process of excised roots. When GA3 was sprayed on leaves 2 to 6 days before excising the roots, the rate of exudation and the K+ flux increased. When the exudation study was done keeping the roots in a nutrient solution in which Rb+ replaced K+, the GA3 effects were evident also on Rb+ uptake and transport. In intact plants, GA3 increased the Rb+ transported to the shoot but did not affect Rb+ accumulation in the root. It is suggested that these GA3 effects can be explained if it is assumed that GA3 acts on the transport of ions to the xylem vessels.  相似文献   

4.
Young sunflower plants ( Helianthus annuus L. cv. Halcón), grown in nutrient solution at two K+ levels (0.25 and 2.5 m M ) were used to study the effect of K+ content in the root on uptake and transport of K+ to the exuding stream of decapitated plants. Roots of plants grown in low K+ gave higher exudation flux, higher K+ concentration in exudate and higher K+ flux than high K+ roots. After 6 h of uptake the K+ flux in low K+ roots was about three times that in high K+ roots. When the roots were kept in a nutrient solution in which Rb+ replaced K+, low K+ roots exuded much more Rb+ than K+ after the first 2 h, whereas high K+ roots exuded about similar amounts of K+ and Rb+. In intact plants grown at three different K+ levels (0.1, 1.0 and 10.0 m M ), there was an inverse relationship between the K+ level in the nutrient solution and the Rb+ accumulated in the roots or transported to the shoot. The results suggest that the transport of ions from xylem parenchyma to stele apoplast may be controlled by ions coming down from the shoot in sieve tubes.  相似文献   

5.
Flooding of excised roots or roots of intact aeroponically grown sunflower ( Helianthus annuus L. cv. Russian) caused a reduction in the activity of ATPases of microsomal membrane vesicles within 1 day. With increasing flooding of up to 3 days, the enzyme activity in the roots declined. During the same period, enzyme activity gradually increased in the non-flooded aeroponically grown roots. Continuous aeration during flooding either maintained the activity of the enzyme to the level of the controls or enhanced it. The ATPase did not require MgSO4 and had a much higher activity at pH 6.7 than at pH 8.5. The activity of the ATPases was markedly inhibited by sodium orthovanadate. There was 8 to 44% stimulation of the activity of the ATPases due to KCl in the absence as well as presence of MgSO4. These data indicate that a substantial proportion of the ATPases, and thus the interface vesicles, could be of plasma membrane origin.  相似文献   

6.
External application of abscisic acid (ABA) induces a relatively high rate of xylem exudation in excised roots of Lupinus luteus L. cv. Weiko III. The response is relatively slow with a lag period of ca 1 h. It is also slowly, but reversibly, abolished by application of 3.6 or 36 μ M cycloheximide (CHX). Contrary to expectation, K+ is not a significant factor in maintaining flow rates in lupin roots as no response was measured after adding K+ to root systems, from which K+ had been withheld for periods ranging from 3 h to several days. In fact, excised roots obtained from seedlings raised in the absence of K+ failed to respond to added K+. Total depletion of K+ is difficult to achieve, because of initial seed reserves, and prolonged exudation in lupins can be maintained utilising only a small proportion of the K+ originally present in the root tissue. Nevertheless, the data cast doubt on the general applicability of the concept that volume flow is maintained by an osmotic gradient with K+ as the principal mineral ion.  相似文献   

7.
The radial movement of cis-abscisic acid (ABA) has been investigated in young excised roots of Zea mays L. and Helianthus annuus L. which were grown hydroponically. In addition to the symplastic path, ABA was largely translocated across the root apoplast by solvent drag with the water in the transpiration stream. On the apoplastic path ABA may even cross the endodermis. Depending on the ABA concentration of the medium (range: 5–500 nM) and in the root apoplast, the solvent-drag component of the flow of ABA counteracted the dilution of ABA in the xylem caused by transpirational water flow. Acidification of the rhizosphere and of the root apoplast increased the apoplastic transport component. In sunflower, the apoplastic flow of ABA was significantly weaker than in maize roots. This was also indicated by the larger apparent reflection coefficient (σABA) of sunflower roots for ABA (sunflower: σABA = 0.97 ± 0.02, n = 6 roots; maize: σABA = 0.68 ± 0.06, n = 6 roots; ±SD). For both species, σABA was smaller than unity. Root reflection coefficients were affected by factors such as pH, ABA concentration of the medium, and by the suction force applied to excised root systems. Due to the complex composite structure of the permeation barrier in the root, the reflection coefficient estimated from solvent drag is also complex. Since unstirred layers affected the absolute value of the reflection coefficient, σABA has been termed `apparent'. It is concluded that the pH and ABA concentration of the soil solution as well as the transpiration rate (suction force) modify the intensity of the root-to-shoot signal which is influenced by an apoplastic bypass flow of ABA. The latter may be substantially affected by the existence of Casparian bands in the exodermis, which were lacking in the roots studied in this paper. Received: 25 February 1998 / Accepted: 16 July 1998  相似文献   

8.
The control of ion concentration in the cytosol and the accumulation of ions in vacuoles are thought to be key factors in salt tolerance. These processes depend on the establishment in vacuolar membranes of an electrochemical H+ gradient generated by two distinct H+-translocating enzymes: a H+-PPase and a H+-ATPase. H+-lrans locating activities were characterized in tonoplast-enriched membrane fractions isolated by sucrose gradient centrifugation from sunflower ( Helianthus annuus L.) roots exposed for 3 days to different NaCl regimes. The 15/32% sucrose interface was enriched in membrane vesicles possessing a vacuolar-type H+-ATPase and a H+-PPase, as indicated by inhibitor sensitivity, pH optimum, substrate specificity, ion effects kinetic data and immunolabelling with specific antibodies. Mild and severe stress did not alter the pH profile, ion dependence, apparent Km nor the amount of antigenic protein of either enzyme. Saline treatments slightly increased K+-stimulaied PPase activity with no change in ATPase activity, while both PPi-dependent and NO3-sensitive ATP-dependent H+ transport activities were strongly stimulated. These results are discussed in terms of an adaptative mechanism of the moderately tolerant sunflower plants to salt stress.  相似文献   

9.
Abstract The effects of gibberellic acid (GA3) on whole sunflower (Helianthus annuus L.) plants grown at three potassium (K) levels (0.0, 0.5 and 5.0 mM) were studied. A tenfold increase in the length of the first internode was observed when plants grown without K were treated with GA3. The uneven K distribution along the plant (higher K content in the higher internodes) was enhanced by GA3 treatment. Gibberellic acid increased the content of reducing sugars, especially in K-deficient plants. An increase in the K level in the nutrient solution resulted in a decrease of the osmotic potential of stem segments. Osmotic potential differences within the elongating first internode were increased by GA3 treatment.  相似文献   

10.
The effect of drought on transport and metabolism of radioactive abscisic acid (ABA) in roots and shoots of sunflower ( Helianthus annuus L. cv. Russian) was observed. Radioactivity from ABA moved freely all over the plants. Young shoot tissues, such as the growing apical bud or axillary buds released from apical dominance, were strong sinks for ABA. Mature tissues were effective exporters. Drought-induced alterations in the pattern of transport of radioactivity do not appear to be a major factor in the control of drought-induced changes in ABA levels. Metabolism of ABA occurred in all organs examined in stressed and unstressed plants. Labelled ABA and its metabolites moved in the xylem. Drought altered the quantity of radioactive metabolites and reduced the amount of radioactive ABA in extracts from the stressed plants.  相似文献   

11.
12.
Recent work in our laboratory provides evidence for a revised view of the functioning of roots of maize, and probably of all the grasses. The development of coherent soil sheaths on the distal 30-cm of these roots, and the loss of the sheaths further back, led us to investigate the differences in surface structure, anatomy, carbon exudation and microflora of the sheathed and bare zones. The significant differences are summarized. But the fact which underlies all these differences is the maturation of the late metaxylem (LMX). In the sheathed zones the LMX elements are still alive and non-conducting; only the early metaxylem (EMX) and protoxylem are open. In the bare zones they are open vessels. This leads directly to the dryness of bare zones and the wetness of sheathed zones, and indirectly to the other differences noted. Branch root junctions are shown to be structures of great significance. Besides connecting the branches to the axile systems, they serve also to connect the EMX and LMX vessels, and contain a tracheid barrier which prevents air embolisms entering the main vessels. These discoveries force us to revise the traditional view of water uptake by the root hair zone, and to suggest that much water must also enter bare roots, possibly via the laterals. There is some published evidence for this. The living LMX elements of the sheathed zone accumulate large concentrations of potassium which must joint the transpiration water at the transition to the bare zone. Calculations suggest that this may be only a tenth of the requirement of a mature plant, and that the balance may enter the bare zones with the transpiration water.  相似文献   

13.
14.
Water and ion fluxes of intact root systems of Pyrus communis L. cv. Old Home × Farmingdale 97 immersed in a nutrient solution were determined at various pressures and temperatures. Water flux (Jv was normalized on the basis of initial flow rates of a root system after 30 min at 0.50 MPa and 25°C, expressed as the ratio Qv. Qv responded linearly to pressures between 0.20 and 0.62 MPa, implying a constant root hydraulic conductivity (Lp) within this range. Similarly Qv was linearly related to temperatures between 7 and 35°C; however, large, rapid temperature changes resulted in a break of the Arrhenius plot of Qv versus the reciprocal of temperature, Abscisic acid (ABA) from 2 × 10−6 to 10−4 M , applied to intact root systems, increased Qv within 10–20 min, with the effect leveling off after 1.5 h. At a pressure of 0.50 MPa, ABA at 10-4 M enhanced Qv by 28%. The stimulation of Qv was not due to the ethanol solvent since 0.13 or 1.33% ethanol decreased Qv-, The osmotic potential of the xylem fluid was determined and was used to calculate total normalized solute flux. The results suggest that ABA-induced or ethano1-induced changes in Qv were mainly due to changes in Lp and not to changes in ion transport to the xylem.  相似文献   

15.
Desert succulents resume substantial water uptake within 1–2 d of the cessation of drought, but the changes in root structure and hydraulic conductivity underlying such recovery are largely unknown. In the monocotyledonous leaf succulent Agave deserti Engelm. substantial root mortality occurred only for lateral roots near the soil surface; nearly all main roots were alive at 180 d of drought. New main roots were initiated and grew up to 320 mm at soil water potentials lower than – 5·0 MPa, utilizing water from the shoot. The hydraulic conductivity of distal root regions decreased 62% by 45 d of drought and 70% thereafter. After 7 d of rewetting, root hydraulic conductivity was restored following 45 d of drought but not after 90 and 180 d. The production of new lateral roots and the renewed apical elongation of main roots occurred 7–11 d after rewetting following 180 d of drought. Hydraulic conductivity was higher in the distal region than at midroot and often increased again near the root base, where many endodermal cells lacked suberin lamellae. Suberization and xylem maturation were influenced by the availability of moisture, suggesting that developmental plasticity along a root allows A. deserti to capitalize on intermittent or heterogeneous supplies of water.  相似文献   

16.
Light, excision and sucrose increased extractable phenylalanine ammonia-lyase (PAL) activity from hypocotyl tissue of sunflower ( Helianthus annuus L. cv. Peredovik) to 2–6 times the basal level. Intact sunflower seedlings or whole hypocotyls incubated in water or 0.1 M sucrose exhibited, in continuous light, a pattern in which PAL peaked 4 and 28 h after the beginning of the illumination. When 0.5 cm long hypocotyl segments were incubated in water or 0.1 M sucrose, they exhibited, both in continuous light and in the dark, a pattern in which PAL rose during an initial period of 10 h (assay in sucrose and light) to 48 h (assay in water and dark) and then remained nearly constant at a high value for at least the next 10 h. When whole hypocotyls were incubated in 0.1 M sucrose, a third pattern in PAL activity was found in which PAL peaked after 28 h and subsequently declined. In all the above systems the increase in PAL activity was significantly reduced by cycloheximide. Furthermore, the subsequent decay of PAL activity following illumination was prevented by delayed transfer to cycloheximide. It is suggested that the results can be explained on the basis of a turnover mechanism involving continued de novo enzyme synthesis and subsequent synthesis of a PAL-inactivating system.  相似文献   

17.
Influx, efflux and translocation of K+(86Rb) were studied in the roots of sunflower seedlings ( Helianthus annuus L. cv. Uniflorus) treated with 0–4.0 m M NO3 during a 9 day growth period or a 24 h pretreatment period. Roots treated with high levels of NO3 absorbed and translocated more K+(86Rb) than seedlings treated with low levels of NO3. The content of K+ in the shoots was, however, higher in seedlings treated with low levels of NO3, indicating a low rate of retranslocation of K+ in those plants. K+(86Rb) efflux was highest into the low-NO3 solutions. All effects on K+(86Rb)-fluxes were more obvious in high-K plants than in low-K plants. The results are discussed in relation to the Dijkshoorn-Ben Zioni hypothesis for K++ NO3-uptake and translocation in plants.  相似文献   

18.
Na+ transport across the tonoplast and its accumulation in the vacuoles is of crucial importance for plant adaptation to salinity. Mild and severe salt stress increased both ATP- and PPi-dependent H+ transport in tonoplast vesicles from sunflower seedling roots, suggesting the possibility that a Na+/H+ antiport system could be operating in such vesicles under salt conditions (E. Ballesteros et al. 1996. Physiol. Plant. 97: 259–268). During a mild salt stress, Na+ was mainly accumulated in the roots. Under a more severe salt treatment, Na+ was equally distributed in shoots and roots. In contrast to what was observed with Na+, all the salt treatments reduced the shoot K+ content. Dissipation by Na+ of the H+ gradient generated by the tonoplast H+-ATPase, monitored as fluorescence quenching of acridine orange, was used to measure Na+/H+ exchange across tonoplast-enriched vesicles isolated by sucrose gradient centrifugation from sunflower (Helianthus annuus L.) roots treated for 3 days with different NaCl regimes. Salt treatments induced a Na+/H+ exchange activity, which displayed saturation kinetics for Na+ added to the assay medium. This activity was partially inhibited by 125 μM amiloride, a competitive inhibitor of Na+/H+ antiports. No Na+/H+ exchange was detected in vesicles from control roots. The activity was specific for Na+. since K+ added to the assay medium slightly dissipated H+ gradients and displayed non-saturating kinetics for all salt treatments. Apparent Km for Na+/H+ exchange in tonoplast vesicles from 150 mM NaCl-treated roots was lower than that of 75 mM NaCl-treated roots, Vmax remaining unchanged. The results suggest that the existence of a specific Na+/H+ exchange activity in tonoplast-enriched vesicle fractions, induced by salt stress, could represent an adaptative response in sunflower plants, moderately tolerant to salinity.  相似文献   

19.
Shoot activity has been reported to affect rates of ion uptake by plant roots in other ways than merely through supply of assimilates. To elucidate the mechanisms by which a signal from the upper part of the plant controls the rate of K+ and NO3 uptake by roots, both uptake of K+ and NO3 and secretion into the xylem of young sunflower plants ( Helianthus annuus L.) were measured after changes in light intensity.
No close correlation was observed between the uptake of NO3 and that of K+; an increase in light intensity produced a much greater stimulation of NO3 uptake than of K+ uptake. On the other hand, secretion of NO3 into the xylem was tightly coupled to that of K+, and this coupling was strongly disturbed by excision of the root. The results suggest the involvement of the K2-malate shuttle on the regulation by the shoot of K+ and NO3 secretion in the xylem, which is linked to NO3 uptake, while K+ uptake is independent of this regulation mechanism.  相似文献   

20.
The interaction between sunflower plants showing a high level of quantitative resistance and five Plasmopara halstedii (the causal agent of downy mildew) isolates of several races were studied using five single zoosporangium isolates per pathogen isolate. Aggressiveness criteria were analyzed for 25 P. halstedii single zoosporangium isolates. Based on the reaction for the P. halstedii isolates to four sunflower hybrids H1–H4 varying only in their downy mildew resistance genes, there were differences in virulence spectrum in pathogen isolates. Analysis of five single zoosporangium isolates for P. halstedii isolates showed significant variability within pathogen isolate for all aggressiveness criteria but not for all pathogen isolates. The hypothesis explaining the interaction between P. halstedii and its host plant was discussed on the level of pathogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号