首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toll-like receptors (TLRs) mediate microbial pattern recognition in vertebrates. A broad variety of agonists has been attributed to TLR2 and three TLRs, TLR4, TLR2, and TLR5, have been demonstrated to bind microbial products. Distinct agonists might interact with different subdomains of the TLR2 extracellular domain. The TLR2 extracellular domain sequence includes 10 canonical leucine-rich repeat (LRR) motifs and 8-10 additional and potentially functionally relevant LRR-like motifs. Thus, the transfection of TLR2 LRR/LRR-like motif deletion constructs in human embryonic kidney 293 cells and primary TLR2-deficient mouse fibroblasts was performed for analysis of the role of the regarding domains in specific pattern recognition. Preparations applied as agonists were highly purified soluble peptidoglycan, lipoteichoic acid, outer surface protein A from Borrelia burgdorferi, synthetic mycoplasmal macrophage-activating lipoprotein-2, tripalmitoyl-cysteinyl-seryl-(lysyl)3-lysine (P3CSK4), dipalmitoyl-CSK4 (P2-CSK4), and monopalmitoyl-CSK4 (PCSK4) as well as lipopolysaccharide and inactivated bacteria. We found that a block of the N-terminal seven LRR/LRR-like motifs was not involved in TLR2-mediated cell activation by P3CSK4 and P2CSK4 ligands mimicking triacylated and diacylated bacterial polypeptides, respectively. In contrast, the integrity of the TLR2 holoprotein was compulsory for effective cellular recognition of other TLR2 agonists applied, including PCSK4. The formation of a functionally relevant subdomain by a region including the N-terminal seven LRR/LRR-like motifs rather than by single LRRs is suggested by our results. They further imply that TLR2 contains multiple binding domains for ligands that may contribute to the characterization of its promiscuous molecular pattern recognition.  相似文献   

2.
The ligand specificity of human TLR (hTLR) 2 is determined through the formation of functional heterodimers with either hTLR1 or hTLR6. The chicken carries two TLR (chTLR) 2 isoforms, type 1 and type 2 (chTLR2t1 and chTLR2t2), and one putative TLR1/6/10 homologue (chTLR16) of unknown function. In this study, we report that transfection of HeLa cells with the various chicken receptors yields potent NF-kappaB activation for the receptor combination of chTLR2t2 and chTLR16 only. The sensitivity of this complex was strongly enhanced by human CD14. The functional chTLR16/chTLR2t2 complex responded toward both the hTLR2/6-specific diacylated peptide S-(2,3-bispalmitoyloxypropyl)-Cys-Gly-Asp-Pro-Lys-His-Pro-Lys-Ser-Phe (FSL-1) and the hTLR2/1 specific triacylated peptide tripalmitoyl-S-(bis(palmitoyloxy)propyl)-Cys-Ser-(Lys)(3)-Lys (Pam(3)CSK(4)), indicating that chTLR16 covers the functions of both mammalian TLR1 and TLR6. Dissection of the species specificity of TLR2 and its coreceptors showed functional chTLR16 complex formation with chTLR2t2 but not hTLR2. Conversely, chTLR2t2 did not function in combination with hTLR1 or hTLR6. The use of constructed chimeric receptors in which the defined domains of chTLR16 and hTLR1 or hTLR6 had been exchanged revealed that the transfer of leucine-rich repeats (LRR) 6-16 of chTLR16 into hTLR6 was sufficient to confer dual ligand specificity to the human receptor and to establish species-specific interaction with chTLR2t2. Collectively, our data indicate that diversification of the central LRR region of the TLR2 coreceptors during evolution has put constraints on both their ligand specificity and their ability to form functional complexes with TLR2.  相似文献   

3.
X Pan  J Yue  G Ding  B Li  X Liu  X Zheng  M Yu  J Li  W Jiang  C Wu  J Zheng  H Zhou 《The Journal of biological chemistry》2012,287(36):30596-30609
TLR9 is a receptor for sensing bacterial DNA/CpG-containing oligonucleotides (CpG ODN). The extracellular domain (ECD) of human TLR9 (hTLR9) is composed of 25 leucine-rich repeats (LRR) contributing to the binding of CpG ODN. Herein, we showed that among LRR2, -5, -8, and -11, LRR11 of hTLR9 had the highest affinity for CpG ODN followed by LRR2 and -5, whereas LRR8 had almost no affinity. In vitro, preincubation with LRR11 more significantly decreased CpG ODN internalization, subsequent NF-κB activation, and cytokine release than with LRR2 and -5 in mouse peritoneal macrophages treated with CpG ODN. The LRR11 deletion mutant of hTLR9 conferred decreased cellular responses to CpG ODN. Single- or multiple-site mutants at five positively charged residues of LRR11 (LRR11m1-9), especially Arg-337 and Lys-367, were shown to contribute to hTLR9 binding of CpG ODN. LRR11m1-9 showed reduced inhibition of CpG ODN internalization and CpG ODN/TLR9 signaling, supporting the above findings. Prediction of whole hTLR9 ECD-CpG ODN interactions revealed that Arg-337 and Lys-338 directly contact CpG ODN through hydrogen bonding, whereas Lys-347, Arg-348, and His-353 contribute to stabilizing the shape of the ligand binding region. These findings suggested that although all five positively charged residues within LRR11 contributed to its high affinity, only Arg-337 and Lys-338 directly interacted with CpG ODN. In conclusion, the results suggested that LRR11 could strongly bind to CpG ODN, whereas mutations at the five positively charge residues reduced this high affinity. LRR11 may be further investigated as an antagonist of hTLR9.  相似文献   

4.
Toll-like receptors (TLRs) are pattern recognition receptors that recognize pathogens based on distinct molecular signatures. The human (h)TLR1, 2, 6 and 10 belong to the hTLR1 subfamilies, which are localized in the extracellular regions and activated in response to diverse ligand molecules. Due to the unavailability of the hTLR10 crystal structure, the understanding of its homo and heterodimerization with hTLR2 and hTLR1 and the ligand responsible for its activation is limited. To improve our understanding of the TLR10 receptor-ligand interaction, we used homology modeling to construct a three dimensional (3D) structure of hTLR10 and refined the model through molecular dynamics (MD) simulations. We utilized the optimized structures for the molecular docking in order to identify the potential site of interactions between the homo and heterodimer (hTLR10/2 and hTLR10/1). The docked complexes were then used for interaction with ligands (Pam3CSK4 and PamCysPamSK4) using MOE-Dock and ASEDock. Our docking studies have shown the binding orientations of hTLR10 heterodimer to be similar with other TLR2 family members. However, the binding orientation of hTLR10 homodimer is different from the heterodimer due to the presence of negative charged surfaces at the LRR11-14, thereby providing a specific cavity for ligand binding. Moreover, the multiple protein-ligand docking approach revealed that Pam3CSK4 might be the ligand for the hTLR10/2 complex and PamCysPamSK4, a di-acylated peptide, might activate hTLR10/1 hetero and hTLR10 homodimer. Therefore, the current modeled complexes can be a useful tool for further experimental studies on TLR biology.  相似文献   

5.
Toll-like receptor 2 (TLR2) recognizes bacterial derived- and synthetic-lipopeptides after dimerization with TLR1 or TLR6. Hyper-activation of TLR2 has been described in several inflammatory diseases and the discovery of inhibitors of its pro-inflammatory activity represent potential starting points to develop therapeutics in such pathologies. We designed peptides derived from the TLR2 sequence comprising amino acid residues involved in ligand binding (Pam3CSK4) or heterodimerization (TLR2/TLR1) as pointed out by structural data.2 We identified several peptides (P13, P13(LL), P16, P16(LL)) which inhibited TLR2/1 signaling in HEK293-TLR2 cells (MAPK activation and NF-kB activity). Moreover, P13L and P16L decreased TNFα release in human primary PBMCs and mouse macrophages. The peptides were selective for TLR2/1 as they did not inhibit the activity of other TLRs tested. P13L and P16L inhibited the internalization of Pam3CSK4 fluorescently labeled in macrophages and the heterodimerization of TLR2 with TLR1 as demonstrated by immunoprecipitation studies. Our data demonstrate that peptides derived from the region comprising the leucine-rich repeats (LRR) 11 and 13 in the extracellular domain of TLR2 are good starting points to develop more potent anti-inflammatory peptides with TLR2 inhibitory activity.  相似文献   

6.
7.
Evidence for specific and direct bacterial product recognition through toll-like receptors (TLRs) has been emphasized recently. We analyzed lipopeptide analogues and enterobacterial lipopolysaccharide (eLPS) for their potential to activate cells through TLR2 and TLR4. Whereas bacterial protein palmitoylated at its N-terminal cysteine and N-terminal peptides derived thereof are known to induce TLR2-mediated cell activation, a synthetic acylhexapeptide mimicking a bacterial lipoprotein subpopulation for which N-terminal trimyristoylation is characteristic (Myr(3)CSK(4)) activated cells not only through TLR2 but also through TLR4. Conversely, highly purified eLPS triggered cell activation through overexpressed TLR2 in the absence of TLR4 expression if CD14 was coexpressed. Accordingly, TLR2(-/-) macrophages prepared upon gene targeting responded to Myr(3)CSK(4) challenge, whereas TLR2(-/-)/TLR4(d/d) cells were unresponsive. Through interferon-gamma (IFNgamma) priming, macrophages lacking expression of functional TLR4 and/or MD-2 acquired sensitivity to eLPS, whereas TLR2/TLR4 double deficient cells did not. Not only TLR2(-/-) mice but also TLR4(-/-) mice were resistant to Myr(3)CSK(4) challenge-induced fatal shock. d-Galactosamine-sensitized mice expressing defective TLR4 or lacking TLR4 expression acquired susceptibility to eLPS-driven toxemia upon IFNgamma priming, whereas double deficient mice did not. Immunization toward ovalbumin using Myr(3)CSK(4) as adjuvant was ineffective in TLR2(-/-)/TLR4(-/-) mice yet effective in wild-type, TLR2(-/-), or TLR4(-/-) mice as shown by analysis of ovalbumin-specific serum Ig concentration. A compound such as Myr(3)CSK(4) whose stimulatory activity is mediated by both TLR2 and TLR4 might constitute a preferable adjuvant. On the other hand, simultaneous blockage of both of the two TLRs might effectively inhibit infection-induced pathology.  相似文献   

8.
Unmethylated CpG motifs present in bacterial DNA stimulate a rapid and robust innate immune response. Human cell lines and PBMC that recognize CpG DNA express membrane-bound human Toll-like receptor 9 (hTLR9). Cells that are not responsive to CpG DNA become responsive when transfected with hTLR9. Expression of hTLR9 dramatically increases uptake of CpG (but not control) DNA into endocytic vesicles. Upon cell stimulation, hTLR9 and CpG DNA are found in the same endocytic vesicles. Cells expressing hTLR9 are stimulated by CpG motifs that are active in primates but not rodents, suggesting that evolutionary divergence between TLR9 molecules underlies species-specific differences in the recognition of bacterial DNA. These findings indicate that hTLR9 plays a critical role in the CpG DNA-mediated activation of human cells.  相似文献   

9.
We have recently demonstrated that oxidants can activate monocytes via an action on Toll-like receptor (TLR) 2; however, it is unclear what functional consequence this has on immune surveillance for Gram-negative and -positive bacteria. Gram-negative and -positive bacteria and their related pathogen-associated molecular patterns (PAMPs) are sensed by TLR4 and TLR2, respectively. In the current study, we used a human monocyte cell line to show that oxidants prime cells to subsequent challenge with Gram-negative or -positive bacteria as well as PAMPs specific for TLR4 (LPS), TLR2/1 (Pam(3)CSK4), TLR2/6 (FSL-1), Nod1 (FK565), and Nod2 (MDP Lys 18). Similarly, activation of TLR4 with LPS primed for subsequent activation of cells by agonists of the TLR2/6 or TLR2/1 complex. However, no synergy was noted when cells were costimulated with Pam(3)CSK4 and FSL-1. We then tested blood (and isolated monocytes) derived from healthy smokers, which is oxidant primed, making it more sensitive to bacterial or PAMP stimulation when compared with blood of nonsmokers. Thus an oxidant stimulation, possibly via an action on TLR2 or associated transduction pathways, provides a signal that initiates inflammatory responses and sensitizes cells to pathogenic insults.  相似文献   

10.
Mast cells are pivotal in the pathogenesis of allergy and inflammation. In addition to the classical IgE-dependent mechanism involving crosslinking of the high-affinity receptor for IgE (FcεRI), mast cells are also activated by Toll-like receptors (TLRs) which are at the center of innate immunity. In this study, we demonstrated that the response of LAD2 cells (a human mast cell line) to anti-IgE was altered in the presence of the TLR2 agonists peptidoglycan (PGN) and tripalmitoyl-S-glycero-Cys-(Lys)4 (Pam3CSK4). Pretreatment of PGN and Pam3CSK4 inhibited anti-IgE induced calcium mobilization and degranulation without down-regulation of FcεRI expression. Pam3CSK4 but not PGN acted in synergy with anti-IgE for IL-8 release when the TLR2 agonist was added simultaneously with anti-IgE. Studies with inhibitors of key enzymes implicated in mast cell signaling revealed that the synergistic release of IL-8 induced by Pam3CSK4 and anti-IgE involved ERK and calcineurin signaling cascades. The differential modulations of anti-IgE induced mast cell activation by PGN and Pam3CSK4 suggest that dimerization of TLR2 with TLR1 or TLR6 produced different modulating actions on FcεRI mediated human mast cell activation.  相似文献   

11.
As a pattern recognition receptor, TLR1 mediates innate immune responses to a variety of microbial cell wall components including bacterial lipoproteins. We have previously shown that the central region of the extracellular domain of human TLR1, comprising leucine-rich repeat (LRR) motifs 9-12, is required for the sensing of bacterial lipopeptides. In this study, we have investigated three nonsynonymous single nucleotide polymorphisms (SNPs) located in this region of TLR1 by generating these variants and examining receptor function. We have found that a variant of TLR1 based upon the SNP P315L, located in the loop of LRR motif 11 (LRR11), is greatly impaired in mediating responses to lipopeptides and a variety of other bacterial agonists for this receptor. Despite normal cell surface expression, the P315L variant also fails to bind to GD2.F4, a commonly used anti-TLR1 mAb. Although a number of amino acid substitutions at position 315 impair receptor function, the leucine substitution has the strongest deleterious effect. GD2.F4 inhibits agonist-induced activation of TLR1, supporting a crucial role for the loop of LRR11 in receptor function. These results also suggest that the P315L SNP may predispose certain individuals to infectious diseases for which the sensing of microbial cell components by TLR1 is critical to innate immune defense.  相似文献   

12.
It has demonstrated that the recognition of triacylated lipopeptides by Toll-like receptor (TLR) 2 requires TLR1 as a coreceptor. In the NF-kappaB reporter assay system in which human embryonic kidney 293 cells were transfected with TLR2 and TLR1 together with an NF-kappaB luciferase reporter gene, S-(2,3-bispalmitoyloxypropyl)-N-palmitoyl-Cys-Lys-Lys-Lys-Lys (Pam(3)CSK(4)) and Pam(3)CSSNA were recognized by TLR2/TLR1, but the recognition level was unexpectedly very low. However, cotransfection of CD14 drastically enhanced the recognition of triacylated lipopeptides by TLR2/TLR1. The CD14-induced enhancement did not occur without cotransfection of TLR1. Both CD14(dS39-A48), a mutant with deletion of the part of possible N-terminal ligand-binding pocket, and anti-CD14 monoclonal antibody reduced the CD14-induced enhancement. Transfection of a TIR domain-deficient mutant of TLR2 (TLR2(dE772-S784)) or TLR1 (TLR1(dQ636-K779)) completely abrogated the CD14-induced enhancement. Soluble recombinant CD14 added extracellularly enhanced the recognition of Pam(3)CSSNA by TLR2/TLR1. Immunoprecipitation analysis demonstrated that CD14 was not associated with TLR2 but that TLR1 was associated with TLR2. In addition, surface plasmon resonance-based assay demonstrated that CD14 binds to Pam(3)CSK(4) at a dissociation constant of 5.7 microM. This study suggests that CD14 directly binds to triacylated lipopeptides and facilitates recognition of the lipopeptides by the TLR2/TLR1 complex without binding to the receptor complex.  相似文献   

13.
Kim HS  Shin TH  Yang SR  Seo MS  Kim DJ  Kang SK  Park JH  Kang KS 《PloS one》2010,5(10):e15369
Toll-like receptors (TLRs) and Nod-like receptors (NLRs) are known to trigger an innate immune response against microbial infection. Although studies suggest that activation of TLRs modulate the function of mesenchymal stem cells (MSCs), little is known about the role of NLRs on the MSC function. In this study, we investigated whether NOD1 and NOD2 regulate the functions of human umbilical cord blood-derived MSCs (hUCB-MSCs). The genes of TLR2, TLR4, NOD1, and NOD2 were expressed in hUCB-MSCs. Stimulation with each agonist (Pam(3)CSK(4) for TLR2, LPS for TLR4, Tri-DAP for NOD1, and MDP for NOD2) led to IL-8 production in hUCB-MSC, suggesting the expressed receptors are functional in hUCB-MSC. CCK-8 assay revealed that none of agonist influenced proliferation of hUCB-MSCs. We next examined whether TLR and NLR agonists affect osteogenic-, adipogenic-, and chondrogenic differentiation of hUCB-MSCs. Pam(3)CSK(4) and Tri-DAP strongly enhanced osteogenic differentiation and ERK phosphorylation in hUCB-MSCs, and LPS and MDP also slightly did. Treatment of U0126 (MEK1/2 inhibitor) restored osteogenic differentiation enhanced by Pam(3)CSK(4). Tri-DAP and MDP inhibited adipogenic differentiation of hUCB-MSCs, but Pam(3)CSK(4) and LPS did not. On chondrogenic differentiation, all TLR and NLR agonists could promote chondrogenesis of hUCB-MSCs with difference in the ability. Our findings suggest that NOD1 and NOD2 as well as TLRs are involved in regulating the differentiation of MSCs.  相似文献   

14.
Lipopolysaccharides containing underacylated lipid A structures exhibit reduced abilities to activate the human (h) Toll-like receptor 4 (TLR4) signalling pathway and function as potent antagonists against lipopolysaccharides bearing canonical lipid A structures. Expression of underacylated lipopolysaccharides has emerged as a novel mechanism utilized by microbial pathogens to modulate host innate immune responses. Notably, antagonistic lipopolysaccharides are prime therapeutic candidates for combating Gram negative bacterial sepsis. Penta-acylated msbB and tetra-acylated Porphyromonas gingivalis lipopolysaccharides functionally antagonize hexa-acylated Escherichia coli lipopolysaccharide-dependent activation of hTLR4 through the coreceptor, hMD-2. Here, the molecular mechanism by which these antagonistic lipopolysaccharides act at hMD-2 is examined. We present evidence that both msbB and P. gingivalis lipopolysaccharides are capable of direct binding to hMD-2. These antagonistic lipopolysaccharides can utilize at least two distinct mechanisms to block E. coli lipopolysaccharide-dependent activation of hTLR4. The main mechanism consists of direct competition between the antagonistic lipopolysaccharides and E. coli lipopolysaccharide for the same binding site on hMD-2, while the secondary mechanism involves the ability of antagonistic lipopolysaccharide-hMD-2 complexes to inhibit E. coli lipopolysaccharide-hMD-2 complexes function at hTLR4. It is also shown that both hTLR4 and hMD-2 contribute to the species-specific recognition of msbB and P. gingivalis lipopolysaccharides as antagonists at the hTLR4 complex.  相似文献   

15.
Toll-like receptors (TLRs) recognize evolutionarily-conserved molecular patterns originating from invading microbes. In this study, we were interested in determining if microbial ligands, which use distinct TLR2-containing receptor complexes, represent unique signals to the cell and can thereby stimulate unique cellular responses. Using the TLR2 ligands, R-FSL1, S-FSL1, Pam2CSK4, Pam3CSK4, and lipoteichoic acid (LTA), we demonstrate that these ligands activate NF-κB and MAP Kinase pathways with ligand-specific differential kinetics in murine macrophages. Most strikingly, LTA stimulation of these pathways was substantially delayed when compared with the other TLR2 ligands. These kinetics differences were associated with a delay in the LTA-induced expression of a subset of genes as compared with another TLR2 ligand, R-FSL1. However, this did not translate to overall differences in gene expression patterns four hours following stimulation with different TLR2 ligands. We extended this study to evaluate the in vivo responses to distinct TLR2 ligands using a murine model of acute inflammation, which employs intravital microscopy to monitor leukocyte recruitment into the cremaster muscle. We found that, although R-FSL1, S-FSL1, Pam2CSK4, and Pam3CSK4 were all able to stimulate robust leukocyte recruitment in vivo, LTA remained functionally inert in this in vivo model. Therefore distinct TLR2 ligands elicit unique cellular responses, as evidenced by differences in the kinetic profiles of signaling and gene expression responses in vitro, as well as the physiologically relevant differences in the in vivo responses to these ligands.  相似文献   

16.
Several TLR agonists are effective in tumor immunotherapy, but their early innate mechanisms of action, particularly those of TLR2 agonists, are unclear. Mast cells are abundant surrounding solid tumors where they are often protumorigenic and enhance tumor angiogenesis. However, antitumor roles for mast cells have also been documented. The impact of mast cells may be dependent on their activation status and mediator release in different tumors. Using an orthotopic melanoma model in wild-type C57BL/6 and mast cell-deficient Kit(W-sh/W-sh) mice and a complementary Matrigel-tumor model in C57BL/6 mice, mast cells were shown to be crucial for TLR2 agonist (Pam(3)CSK(4))-induced tumor inhibition. Activation of TLR2 on mast cells reversed their well-documented protumorigenic role. Tumor growth inhibition after peritumoral administration of Pam(3)CSK(4) was restored in Kit(W-sh/W-sh) mice by local reconstitution with wild-type, but not TLR2-deficient, mast cells. Mast cells secrete multiple mediators after Pam(3)CSK(4) activation, and in vivo mast cell reconstitution studies also revealed that tumor growth inhibition required mast cell-derived IL-6, but not TNF. Mast cell-mediated anticancer properties were multifaceted. Direct antitumor effects in vitro and decreased angiogenesis and recruitment of NK and T cells in vivo were observed. TLR2-activated mast cells also inhibited the growth of lung cancer cells in vivo. Unlike other immune cells, mast cells are relatively radioresistant making them attractive candidates for combined treatment modalities. This study has important implications for the design of immunotherapeutic strategies and reveals, to our knowledge, a novel mechanism of action for TLR2 agonists in vivo.  相似文献   

17.
《Cellular signalling》2014,26(2):279-286
The specific TLR2/1 complex activator Pam3CSK4 has been shown to provoke prominent activation and aggregation of human non-nucleated platelets. As Pam3CSK4-evoked platelet activation does not employ the major signalling pathway established in nucleated immune cells, we investigated if the TLR2/1 complex on platelets may initiate signalling pathways known to be induced by physiological agonists such as collagen via GPVI or thrombin via PARs. We found that triggering TLR2/1 complex-signalling with Pam3CSK4, in common with that induced via GPVI, and in contrast to that provoked by PARs, involves tyrosine phosphorylation of the adaptor protein LAT as well as of PLCγ2 in a src- and Syk-dependent manner. In this respect, we provide evidence that Pam3CSK4 does not cross-activate GPVI.Further, by the use of platelets from a Glanzmann's thrombasthenia patient lacking β3, in contrast to findings in nucleated immune cells, we show that the initiation of platelet activation by Pam3CSK4 does not involve integrin β3 signalling; whereas the latter, subsequent to intermediate TXA2 synthesis and signalling, was found to be indispensable for proper dense granule secretion and full platelet aggregation. Together, our findings reveal that triggering the TLR2/1 complex with Pam3CSK4 initiates human platelet activation by engaging tyrosine kinases of the src family and Syk, the adaptor protein LAT, as well as the key mediator PLCγ2.  相似文献   

18.
19.
20.
The spread of methicillin-resistant Staphylococcus aureus (MRSA) is a critical health issue that has drawn greater attention to the potential use of immunotherapy. Toll-like receptor 2 (TLR2), a pattern recognition receptor, is an essential component in host innate defense system against S. aureus infection. However, little is known about the innate immune response, specifically TLR2 activation, against MRSA infection. Here, we evaluate the protective effect and the mechanism of MRSA murine pneumonia after pretreatment with Pam3CSK4, a TLR2 agonist. We found that the MRSA-pneumonia mouse model, pretreated with Pam3CSK4, had reduced bacteria and mortality in comparison to control mice. As well, lower protein and mRNA levels of TNF-α, IL-1β and IL-6 were observed in lungs and bronchus of the Pam3CSK4 pretreatment group. Conversely, expression of anti-inflammatory cytokine IL-10, but not TGF-β, increased in Pam3CSK4-pretreated mice. Our additional studies showed that CXCL-2 and CXCL1, which are necessary for neutrophil recruitment, were less evident in the Pam3CSK4-pretreated group compared to control group, whereas the expression of Fcγ receptors (FcγⅠ/Ⅲ) and complement receptors (CR1/3) increased in murine lungs. Furthermore, we found that increased survival and improved bacterial clearance were not a result of higher levels of neutrophil infiltration, but rather a result of enhanced phagocytosis and bactericidal activity of neutrophils in vitro and in vivo as well as increased robust oxidative activity and release of lactoferrin. Our cumulative findings suggest that Pam3CSK4 could be a novel immunotherapeutic candidate against MRSA pneumonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号