首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Quercus crassifolia and Q. crassipes are dominant species in temperate forests of central Mexico and hybridize between each other when they occur in sympatry. Oak canopies contain a considerable portion of arthropod diversity and the hybrid zones can provide new habitats to epiphyte fauna. We tested if the establishment of hybrids in contact zones with their parental hosts increases the species diversity of canopy arthropods assuming that hybrid trees constitute new genotypes of potential new habitats to small organisms. We examined the effect of hybridization on some community structure parameters (diversity, composition, similarity and density of arthropod fauna) of canopy arthropods compared to their parental species in a hybrid zone located in central Mexico. We employed 17 leaf morphological traits and six diagnostic RAPD primers to identify parental and hybrid plants. The RAPDs marker showed unidirectional introgression towards Q. crassifolia, and were detected hybrid (F1), backcrosses and introgression individual trees. In total, 30 oak canopies were fogged during rainy and dry season. We recognized 532 taxa of arthropods belonging to 22 orders associated with tree canopies. The taxonomic status of host‐trees may be an important factor in the arthropod community structure and that seasonality (dry and rainy) is not a factor that could modify their organization. Trees of Q. crassipes registered the highest densities of arthropod fauna followed by hybrid hosts (F1); trees originated by backcrosses towards Q. crassifolia registered a significant less arthropod density than F1 hybrids; and trees of Q. crassifolia had the lowest density. Hybrid plants and Q. crassipes individuals had higher diversity (H′) of arthropods than Q. crassifolia plants. Hybrid plants had also more rare species in both seasons in comparison with parental species. This study suggests that hybrid oaks act as a center of biodiversity by accumulating arthropods of both parental and different species including a considerable number of rare species.  相似文献   

2.
Jamin Eisenbach 《Oecologia》1996,105(2):258-265
Plant-herbivore and herbivore-parasitoid wasp interactions were examined in three hybrid zones of the cattails Typha latifolia and T. angustifolia in south-eastern Michigan over a 2-year period. Patterns of resource use by two lepidopteran species of seed-eating herbivores were studied and herbivore densities sustained by the hybrid cattail T. x glauca and its parental species were determined. Densities of the commoner seed-eating lepidopteran, Lymnaecia phragmitella, were found to be highest in seed heads of both parental species and lowest in hybrid seed heads in zones of hybridization, thus supporting the hybrid resistance hypothesis of Fritz et al. (1994). Densities of the second herbivore, Dicymolomia julianalis, on the hybrid were lower than on the parental T. latifolia, but did not differ from the mean of the combined herbivore densities of the two parental species. D. julianalis in cattails appears to fit the additive hypothesis (Fritz et al. 1994). Parasitism of L. phragmitella by four species of parasitoid wasp, Itoplectis conquisitor (Ichneumonidae), Scambus hispae (Ichneumonidae), Macrocentrus delicatus (Braconidae), and Temelucha gracilipes (Ichneumonidae), was studied to determine if rates of parasitization by these natural enemics on the different cattails were similar to the patterns of plant exploitation exhibited by their hosts. Parasitism rates of L. phragmitella were significantly higher in larvae reared on hybrid cattails. This study reveals two different patterns of hybrid utilization by two very similar herbivores. Opposite patterns of plant utilization were found for the parasitoids compared with their host (L. phragmitella) in cattail hybrid zones.  相似文献   

3.
Tovar-Sánchez E  Oyama K 《Oecologia》2006,147(4):702-713
In a previous study, we showed that the geographic proximity of hybrid plants to the allopatric areas of parental species increases their morphological and genetic similarity with them. In the present work, we explored whether the endophagous fauna of hybrid plants show the same pattern. We studied the canopy species richness, diversity and composition of leaf-mining moths (Lepidoptera: Tischeridae, Citheraniidae) and gall-forming wasps (Hymenoptera: Cynipidae) associated with two species of red oaks (Quercus crassifolia and Quercus crassipes) and their interspecific hybrid (Quercus×dysophylla Benth pro sp.) in seven hybrid zones in central Mexico, during four seasons in 2 years. The study was conducted on 194 oak trees with known genetic status [identified by leaf morphology and molecular markers (random amplified polymorphic DNAs)], and the results indicate a bidirectional pattern of gene flow. Hybrid plants supported intermediate levels of infestation of gall-forming and leaf-mining insects compared to their putative parental species. The infestation level of leaf-mining insects varied significantly following the pattern: Q. crassifolia>hybrids>Q. crassipes, whereas the gall-forming insects showed an inverse pattern. A negative and significant relationship was found between these two types of insect guilds in each host taxa, when the infestation percentage was evaluated. It was found that 31.5% (n=11) of the endophagous insects were specific to Q. crassipes, 22.9% (n=8) to Q. crassifolia, and 8.6% (n=3) to hybrid individuals. The hybrid bridge hypothesis was supported in the case of 25.7% (n=9) of insects, which suggests that the presence of a hybrid intermediary plant may favor a host herbivore shift from one plant species to another. Greater genetic diversity in a hybrid zone is associated with greater diversity in the endophagous community. The geographic proximity of hybrid plants to the allopatric site of a parental species increases their similarity in terms of endophagous insects and the Eje Neovolcánico acts as a corridor favoring this pattern. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

4.
We examined interactions between host plants, endophytic fungi, and leaf-mining moths (Phyllonorycter sp.) in an oak (Quercus grisea x Q. gambelii) hybrid zone. The community of endophytic fungi and two common endophyte species examined responded to host plant hybridization. Total fungal frequency (TFF) and frequency of Gnomonia cerastis were lowest on hosts resembling Q. grisea, and increased linearly towards those resembling Q. gambelii. In contrast, Coccochorella quercicola was most frequently isolated from Q. grisea-like hosts and decreased in frequency across hybrids towards Q. gambelii. Frequency of G. cerastis and TFF covaried with Phyllonorycter density across the hybrid zone, but direct effects of endophytes on Phyllonorycter density were not detected. Associations between endophytes and unexplained mortality of Phyllonorycter varied according to endophyte species and state of Phyllonorycter development. In the sap-feeding stage, unexplained mortality was negatively associated with TFF and frequencies of Hormonema sp. and Preussia funiculata; whereas, in the tissue-feeding stage, unexplained Phyllonorycter mortality was positively associated with G. cerastis frequency. Three-way interactions between plant hybridization, endophytic fungi, and the insect herbivore were not significant.  相似文献   

5.
We examined the abundances of three common insect herbivores on pure and hybrid pinyon pines along a 250-km transect in west-central Arizona, United States. Using six morphological traits, we developed a hybrid index to classify trees as pure Pinus californiarum, hybrid, or pure Pinus edulis. The insects (the stem-boring moth, Dioryctria albovittella, the scale insect, Matsucoccus acalyptus, and several species of pitch moths that produce wounds on the trunk and branches) exhibited different distributional patterns across tree types. Stem-boring moths were significantly more abundant on trees at hybrid sites compared to trees at pure sites. In addition, within hybrid sites, hybrids supported significantly more moth larvae than pure trees of either species. These two patterns support the hybrid susceptibility hypothesis in which hybrid breakdown results in increased susceptibility to herbivory. In contrast to stem-borers, there were significantly more pitch moth wounds on trees at pure P. californiarum sites than at hybrid and pure P. edulis sites. Within the hybrid zone, pitch moth abundance was equal on pure P. californiarum and hybrids, and both were significantly greater than on pure P. edulis. These within-site comparisons support the dominance hypothesis where hybrid resistance differs from one tree species, but not the other. Scale insects exhibited the most restricted distribution; over the 250 km transect they were found only in the hybrid zone. This supports the hybrid susceptibility and/or the stress hypothesis (i.e., species at the edge of their range suffer greater stress and are more susceptible to herbivory). We summed the mean numbers of these three common herbivores across sites and found that hybrid sites supported 2.1 and 3.9 times more herbivores than pure P. californiarum and P. edulis sites, respectively. Furthermore, tree mortality was on average, 35 times greater within the hybrid zone compared to pure zones of each species and was associated with the cumulative abundance of herbivores (r 2=0.646). Regardless of whether this mortality is due to insect infestation, stress or a combination of both, these results suggest that hybrid zones are important arenas of natural selection.  相似文献   

6.
The plant-hybrid-zones-as-centers-of-biodiversity (hereafter, PHZCB) hypothesis posits that plant hybrid zones represent areas of elevated biodiversity, and supports the inclusion of plant hybrid zones in conservation efforts. Support for the PHZCB hypothesis is limited to a handful of cases involving insect and fungal species and to two studies involving higher trophic levels. The PHZCB hypothesis requires further testing before plant hybrid zones can be established with any certainty as centers of biodiversity. We test whether the PHZCB hypothesis holds for higher trophic levels by examining the community structure of birds and reptiles associated with the Quercus grisea × Quercus gambelii species complex. Specifically, we compare patterns of species richness and abundance of these taxa in 10 hybrid zones and 11 contact zones (i.e., zones where both parental species occur but hybrids do not). In contrast to predictions of the PHZCB hypothesis, contact zones supported significantly more species of birds and reptiles than did hybrid zones. Species abundances exhibited idiosyncratic responses to zone type, but were higher generally in the contact zones.  相似文献   

7.
We investigated relationships between host plant hybridization in the Quercus grisea x Q. gambelii species complex and the distribution and performance of a leaf-mining moth in the genus Phyllonorycter. In 2 years at two sites Phyllonorycter densities were lowest on Q. grisea and increased through the categories of hybrid host plants to Q. gambelii. Direct host plant effects on Phyllonorycter performance were consistent with Phyllonorycter distribution; unexplained mortality of larvae in the mines, which is often associated with direct plant effects, decreased from Q. grisea through the hybrids to Q. gambelii. Plant hybridization influenced parasitism of Phyllonorycter. Parasitism was density dependent, and across all densities was higher on Q. grisea and Q. gambelii than on hybrid host plants.  相似文献   

8.
桥山栎林群落结构特征与物种多样性相关关系分析   总被引:1,自引:0,他引:1  
张维伟  薛文艳  杨斌  赵忠 《生态学报》2019,39(11):3991-4001
为了解森林群落结构特征与物种多样性之间的相关关系,以黄土高原桥山林区典型麻栎纯林、麻栎阔叶混交林和麻栎油松混交林为研究对象,调查分析了群落结构特征,计算物种重要值及物种多样性,并进行了冗余分析,结果表明:(1)麻栎油松混交林主要以乔木层胸径、树高、枝下高等最高;麻栎阔叶混交林以灌木层盖度、地径、冠幅、高度等最高;麻栎纯林以草本地径、草本盖度及草本冠幅最高。(2) 3种类型林分乔木层重要值最高的均为麻栎(Quercus acutissima),灌木层为狼牙刺(Sophora viciifolia)、南蛇藤(Celastrus orbiculatus)、胡枝子(Lespedeza bicolor),草本层为苔草(Carex tristachya)。(3)麻栎油松混交林乔、灌层物种多样性较高,麻栎阔叶混交林以草本层物种多样性最高。(4)不同类型麻栎林群落结构特征与物种多样性关系有差异。松栎混交林中,对物种多样性影响最大的为乔木胸径、新稍长及灌木高度;麻栎阔叶混交林对物种多样性影响最大的为灌木层高度及冠幅;麻栎纯林中,对物种多样性影响最大的为乔木胸径。(5)麻栎油松混交林、麻栎阔叶混交林的胸径、树高、物种多样较麻栎纯林高,具有较高木材生产能力和生态防护功能,是未来森林经营培育的方向。  相似文献   

9.
This study analyses how coexisting evergreen and deciduous oaks adjust their phenology to cope with the stressful Mediterranean summer conditions. We test the hypothesis that the vegetative and reproductive growth of the winter deciduous (Quercus faginea Lam.) is more affected by summer drought than that of the evergreen [Quercus ilex L. subsp. ballota (Desf.) Samp.]. First, we assessed the complete aboveground phenology of both species during two consecutive years. Shoot and litter production and bud, acorn and secondary growth were monitored monthly. Second, we identified several parameters affected by summer conditions: apical bud size, individual leaf area (LA), leaf mass per area (LMA) and acorn yield in both species, and leaf-fall in Q. faginea; and analysed their variation over 10 years. Q. ilex performed up to 25% of shoot growth and most leaf development during summer, whereas Q. faginea completed most of both phenophases during spring. Secondary growth was arrested in summer under drought conditions. Approximately, 30–40% of bud and 40–50% of acorn growth was undertaken during summer in both species. Summer drought related to differences in LA, LMA and leaf senescence, but not to acorn yield. Both species had similar year-to-year patterns of acorn production, though yields were always lower in Q. faginea. Bud size decreased severely in both species during extremely dry years. In Q. ilex, bud size tended to alternate between years of large and small buds, and these patterns were followed by opposite trends in stem length. In Q. faginea, bud size was more stable through time. Q. ilex was more phenologically active during summer than Q. faginea, indicating a higher tolerance to drought. Furthermore, bud and fruit growth (the only two phenophases that both species performed during summer) were more severely affected by summer drought in Q. faginea than in the evergreen. The differential effects of summer drought on key phenophases for the persistence (bud growth) and colonization ability (fruit production) of both species may have consequences for their coexistence.  相似文献   

10.
Yu H  Ge S  Hong DY 《Biochemical genetics》2000,38(5-6):138-146
We investigated the levels and patterns of genetic diversity of Pinus densata Master in Yunnan. Horizontal starch-gel electrophoresis was performed on macrogametophytes collected from nine populations in northwestern Yunnan, China. Compared with other gymnosperm species, P. densata has higher mean values for all measures of genetic diversity. Allozyme polymorphism (0.99 criterion) was 97.0% and 71.4% at the species and population levels, respectively. The average number of alleles per locus was 3.1 and 2.0 at the species and population levels. Mean expected heterozygosity was substantially higher in P. densata than average values investigated for other gymnosperms both at the population (H ep = 0.174±0.031) and at the species (H es = 0.190) levels. Of the total genetic variation, less than 12% was partitioned among populations (G ST = 0.112). Our allozyme survey supports the suggestion that the observed higher diversity in P. densata may be attributed partly to its hybrid origin between two genetically distinct species, P. yunnanensis and P. tabulaeformis. In addition, we suggest that introgression would give rise to the increase in genetic diversity occurring in P. densata.  相似文献   

11.
Recent molecular studies of symbiotic dinoflagellates (genus Symbiodinium) from a wide array of invertebrate hosts have revealed exceptional fine-scale symbiont diversity whose distribution among hosts, regions and environments exhibits significant biogeographic, ecological and evolutionary patterns. Here, similar molecular approaches using the internal transcribed spacer-2 (ITS-2) region were applied to investigate cryptic diversity in Symbiodinium inhabiting soritid foraminifera. Approximately 1,000 soritid specimens were collected and examined during a 12-month period over a 40 m depth gradient from a single reef in Guam, Micronesia. Out of 61 ITS-2 types distinguished, 46 were novel. Most types found are specific for soritid hosts, except for three types (C1, C15 and C19) that are common in metazoan hosts. The distribution of these symbionts was compared with the phylotype of their foraminiferal hosts, based on soritid small subunit ribosomal DNA sequences, and three new phylotypes of soritid hosts were identified based on these sequences. Phylogenetic analyses of 645 host-symbiont pairings revealed that most Symbiodinium types associated specifically with a particular foraminiferal host genus or species, and that the genetic diversity of these symbiont types was positively correlated with the genetic diversity found within each of the three host genera. Compared to previous molecular studies of Symbiodinium from other locations worldwide, the diversity reported here is exceptional and suggests that Micronesian coral reefs are home to a remarkably large Symbiodinium assemblage.  相似文献   

12.
Giemsa C-banding patterns of the grassesFestuca rubra (2n = 6x = 42),Vulpia fasciculata (2n = 4x = 28) and their wild F1 hybrid ×Festulpia hubbardii (2n = 5x = 35) show marked differences between the chromosomes of the two parents that enable unequivocal identification ofFestuca andVulpia chromosomes in the hybrid. Moreover, meiotic banding patterns reveal that both homogenetic (Festuca-Festuca andVulpia-Vulpia) and heterogenetic (Festuca-Vulpia) pairing occurs in the F1. The significance of this in relation to the formation of backcrosses to theFestuca parent and to the evolution of theFestuca polyploid complex in general is discussed.  相似文献   

13.
Hybrid Zones Between Two European Oaks: a Plant Community Approach   总被引:1,自引:1,他引:0  
Phenomena of hybridization can affect the ecology and evolution of the species involved in the process, as well as their communities. Although numerous papers focus upon the problem of taxonomy, few of these have attempted to study hybrid zones in relation to the analysis of their communities. On the Iberian Peninsula, hybridization phenomena among different oak species are frequent. It is, however, between Quercus faginea Lam. and Quercus pubescens Willd. where the most noteworthy hybridization phenomenon occurs. In this respect, we are familiar with the existence of different introgression levels but we are unaware of whether these hybrids are the transitory result of the interspecific genetic flow or whether these are maintained by means of extrinsic selection processes. Study of plant communities’ flora and environment might shed light upon this issue. Comparison between plant communities dominated by one of the parental species and those dominated by individuals of hybrid origin might enable us to establish the presence or absence of an environment that is potentially selective in favour of the hybrids. Thus the possible existence of extrinsic selection. Furthermore, this information will help us to understand plant community distribution in an area␣that is difficult to interpret. To this purpose, we used multivariate ordination techniques (DCA and CCA) based upon a total of 395 floristic releves covering the whole range of the parental species on the Iberian Peninsula and upon climatic and edaphic variables for each of these releves. We also compared the groups obtained in relation to floristic similarity (Jaccard index), richness and diversity (Shannon–Weaver index). Forests associated with Quercus pubescens are related to heavy summer precipitation, whereas Quercus faginea forests correspond to lower values of this variable and higher ones for continentality. Between both formations, there is a broad hybrid zone, with diffused borders that are related to an environmental gradient of Mediterranean influence. In this region, two types of forest communities were distinguished, which enabled us to divide the hybrid zones into two territories. Our results allowed us to locate the hybrid zone in an ecotone. The differentiation between habitats appears to indicate models of ecological selection. These models require, by definition, the presence of an environmental gradient between the parental zones. We are, however, aware of the need for future experiments in order to establish whether the hybrids are better adapted than the parental species. Only with availability of all this information can intrinsic selection be rejected.  相似文献   

14.
Climate warming has lead to increased genetic introgression across a narrow hybrid zone separating the eastern and Canadian tiger swallowtails (Papilio glaucus and Papilio canadensis). This situation has led to the formation of an allochronically separated hybrid population with a delayed emerging phenotype or “late flight”. Here, we assess how the recombination of the parental genomes that lead to this phenotype may have facilitated another major ecological shift, host-use divergence. We first contrast the ovipositional profiles of the late flight population to that of the parental species P. glaucus and P. canadensis. Subsequently we contrast the larval survival and growth of the late flight, a P. canadensis and a P. glaucus population, and a population from the northern edge of the hybrid zone on five hosts. Our results indicate that the ovipositional preference of this hybrid swarm is identical to that of the introgressing parental species, P. glaucus. Due to the absence of the preferred hosts of P. glaucus (Liriodendron tulipifera L. and Ptelea trifoliata L.) where the late flight occurs, this ovipositional pattern implies a functional specialization onto a secondary host of both parental species, Fraxinus americana L. In contrast, the larval host-use abilities represent a mixture of P. glaucus and P. canadensis, indicating divergence in larval host-use abilities has not taken place. However, high genetic variability (genetic coefficient of variation) is present for growth on F. americana in the late flight hybrid swarm and tradeoffs for larval performance on the preferred hosts of the parental species are evident; indicating a strong potential for future specialization in larval host-use abilities. This current scenario represents an instance where a shift in a major ecological trait, host use, is likely occurring as a byproduct of a shift in an unrelated trait (delayed emergence) leading to partial reproductive isolation.  相似文献   

15.
Seasonal changes in the infestation and dispersion patterns of egg predatory nemerteans on their crab hosts were analyzed. Marked differences in the seasonal patterns of infestation were noted between worm species, yet, common patterns in the aggregation of the worms were found. Worm aggregation increased at the onset of the reproductive seasons of the hosts, and at the nadirs of the reproductive seasons for those hosts with year round breeding. The aggregation patterns of two worm species fluctuated with the physical environment of their estuarine hosts. Salinity changes as a result of seasonal rains may have caused changes in the underlying dispersion patterns of Carcinonemertes epialti on Hemiarapsus oregonensis, and C. mitsukurii on Portunus pelagicus. Lastly, the embryogenic cycle of the host species was significant in shaping the infestation and aggregation patterns of C. epialti on Cancer anthonyi and C. regicides on Paralithodes camtschaticus. Worm immigration and emigration were linked to crab embryogenesis and directly influenced the dispersion patterns of the worms.  相似文献   

16.
The whitefly Bemisia tabaci is a species complex including at least 24 morphologically indistinguishable species among which the Mediterranean (Med) and Middle East-Asia Minor I (MEAMI) species containing the biotypes commonly known as Q and B, respectively. These B and Q biotypes (hereafter referred to as MEAMI and Med species) are the most invasive agricultural pests of the B. tabaci complex worldwide. The spread of MEAMI and more recently of Med species into regions already invaded by other B. tabaci populations has been frequently seen to lead to their displacement by Med species. In Tunisia, in contrast to usual observations in the Mediterranean basin, Med and MEAMI species have been seen to co-occur in the main crop producing regions. Based on fine population genetics and field spatial distribution analyses, we found that the co-existence of these two interacting species was based on habitat partitioning including spatial and host-plant partitioning. Although they co-occurred at larger spatial scales, they excluded one another at sample scale. We observed neither spatial overlapping nor hybridization between MEAMI and Med B. tabaci. Vegetable crops were the main hosts for MEAMI specimens while 99.1% of the B. tabaci collected on the ornamental, Lantana camara, were Med specimens. Different patterns of genetic diversity were observed between the two species, as well as among Med specimens sampled on the ornamental versus vegetables, with the highest genetic diversity found in Med B. tabaci sampled on L. camara. These findings lead us to focus our discussion on the role played by lantana, human pressure, and competition, in the spatial and genetic patterns observed in the whitefly B. tabaci.  相似文献   

17.
Based on the presence of intermediate morphological characters, such as serrated leaf margins and flower structures,Ilex x wandoensis was initially described as a putative natural hybrid betweenI. cornuta andI. Integra, and was formally described as a new hybrid species,I. x wandoensis C. F. Mill., and M. Kim. However, using molecular markers generated via random amplified polymorphic DNA (RAPD), we have now discovered hybridization in populations of theI. x wandoensis complex collected from Wando and Jeju Islands, Korea. Marker bands of the putative parent taxa also were found in some populations ofI. x wandoensis, confirming its hybrid origin. Morphological variability within and among those populations was confirmed by model-based clustering methods, using multilocus genotype data. Phenograms generated from RAPD bands indicated that some accessions ofI. x wandoensis clustered with one of the parental species. This implied the occurrence of hybridization and recurring backcrosses of the hybrid to both parents, resulting in various hybrid derivatives because of the segregation and recombination of traits.Ilex x wandoensis was more closely related toI. cornuta than toI. integra suggesting that it backcrossed more with the former than with the latter.  相似文献   

18.
We studied differentiation and geneflow patterns between enantiomorphic door‐snail species in two hybrid zones in the Bucegi Mountains (Romania) to investigate the effects of intrinsic barriers (complications in copulation) and extrinsic selection by environmental factors. A mitochondrial gene tree confirmed the historical separation of the examined populations into the dextral Alopia livida and the sinistral Alopia straminicollis in accordance with the morphological classification, but also indicated gene flow between the species. By contrast, a network based on amplified fragment length polymorphisms (AFLP) markers revealed local groups of populations as units independent of their species affiliation. Admixture analyses based on AFLP data showed that the genomes of most individuals in the hybrid zones are composed of parts of the genomes of both parental taxa. The introgression patterns of a notable fraction of the examined markers deviated from neutral introgression. However, the patterns of most non‐neutral markers were not concordant between the two hybrid zones. There was also no concordance between non‐neutral markers in the two genomic clines and markers that were correlated with environmental variables or markers that were correlated with the proportion of dextral individuals in the populations. Neither extrinsic selection by environmental factors nor intrinsic barriers resulting from positive frequency‐dependent selection of the prevailing coiling direction were sufficient to maintain the distinctness of A. straminicollis and A. livida. Despite being historically separated units, we conclude that these taxa now merge where they come into contact.  相似文献   

19.
《Biotropica》2017,49(2):229-238
Estimates of biodiversity and its global patterns are affected by parasite richness and specificity. Despite this, parasite communities are largely neglected in biodiversity estimates, especially in the tropics. We studied the parasites of annual killifish of the genus Nothobranchius that inhabit annually desiccating pools across the African savannah and survive the dry period as developmentally arrested embryos. Their discontinuous, non‐overlapping generations make them a unique organism in which to study natural parasite fauna. We investigated the relationship between global (climate and altitude) and local (pool size, vegetation, host density and diversity, and diversity of potential intermediate hosts) environmental factors and the community structure of killifish parasites. We examined metazoan parasites from 21 populations of four host species (Nothobranchius orthonotus, N. furzeri, N. kadleci, and N. pienaari) across a gradient of aridity in Mozambique. Seventeen parasite taxa were recorded, with trematode larval stages (metacercariae) being the most abundant taxa. The parasites recorded were both allogenic (life cycle includes non‐aquatic host; predominantly trematodes) and autogenic (cycling only in aquatic hosts; nematodes). The parasite abundance was highest in climatic regions with intermediate aridity, while parasite diversity was associated with local environmental characteristics and positively correlated with fish species diversity and the amount of aquatic vegetation. Our results suggest that parasite communities of sympatric Nothobranchius species are similar and dominated by the larval stages of generalist parasites. Therefore, Nothobranchius serve as important intermediate or paratenic hosts of parasites, with piscivorous birds and predatory fish being their most likely definitive hosts.  相似文献   

20.
Both ecological and genetic mechanisms have been proposed to explain patterns of herbivore attack on interspecific plant hybrids, but distinguishing among them can be difficult in natural hybrid zones. We performed a common-garden experiment to evaluate four genetic hypotheses: dominance, additivity, elevated hybrid susceptibility, and elevated hybrid resistance. Censuses and cage experiments were used to compare insect responses to basin big sagebrush (Artemisia tridentata spp. tridentata), mountain big sagebrush (A. t. vaseyana), and their F2 progeny. After two growing seasons, hybrid shrubs resembled mountain big sagenbrush in size, but were more similar to basin big sagebrush in flower production. Censuses of naturally colonizing insects (the gall midge Rhopalomyia obovata, the bagworm moth Apterona helix, and the aphid Obtusicauda coweni) tended to support the dominance hypothesis: if the insect clearly discriminated between the two parents, its frequency on hybrids closely resembled that on one of the parents. Moreover, colonization of hybrids in all three cases suggested a dominance deviation toward the susceptible parent rather than toward the resistant parent. In contrast to the censuses, cage experiments involving two insects supported the hybrid-susceptibility hypothesis; both survival and growth of the grasshopper Melanoplus sanguinipes and growth of the leaf beetle Trirhabda pilosa were higher on hybrid shrubs than on either parent. Because many secondary compounds have been determined to occur at intermediate concentrations in F2 shrubs, dominance for susceptibility may indicate that insects respond to plant traits (e.g., oviposition stimulants and deterrents) in a threshold manner. Mechanisms underlying increased hybrid susceptibility are less clear, but our experimental design makes environmental explanations (e.g., the plant-stress hypothesis) unlikely. Although we eliminated several confounding factors, our results agree with the conclusion from natural hybrid zones that insect responses to hybrid plants are likely to be idiosyncratic; even congeneric species did not respond similarly to hybrid and parental plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号