首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J M Zhou  Z X Xue  Z Y Du  T Melese  P D Boyer 《Biochemistry》1988,27(14):5129-5135
Whether the tightly bound ADP that can cause a pronounced inhibition of ATP hydrolysis by the chloroplast ATP synthase and F1 ATPase (CF1) is bound at catalytic sites or at noncatalytic regulatory sites or both has been uncertain. We have used photolabeling by 2-azido-ATP and 2-azido-ADP to ascertain the location, with Mg2+ activation, of tightly bound ADP (a) that inhibits the hydrolysis of ATP by chloroplast ATP synthase, (b) that can result in an inhibited form of CF1 that slowly regains activity during ATP hydrolysis, and (c) that arises when low concentrations of ADP markedly inhibit the hydrolysis of GTP by CF1. The data show that in all instances the inhibition is associated with ADP binding without inorganic phosphate (Pi) at catalytic sites. After photophosphorylation of ADP or 2-azido-ADP with [32P]Pi, similar amounts of the corresponding triphosphates are present on washed thylakoid membranes. Trials with appropriately labeled substrates show that a small portion of the tightly bound 2-azido-ATP gives rise to covalent labeling with an ATP moiety at noncatalytic sites but that most of the bound 2-azido-ATP gives rise to covalent labeling by an ADP moiety at a catalytic site. We also report the occurrence of a 1-2-min delay in the onset of the Mg2+-induced inhibition after addition of CF1 to solutions containing Mg2+ and ATP, and that this delay is not associated with the filling of noncatalytic sites. A rapid burst of Pi formation is followed by a much lower, constant steady-state rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Several seemingly unrelated procedures used to elicit the latent ATPase activity of soluble spinach coupling factor 1 can be correlated to the release of tightly-bound ADP from the uncoupled enzyme. This ADP release is further enhanced by the presence of medium nucleotides, especially substrate ATP, and may or may not involve release from the catalytic site itself. Similarly, the light/dithiothreitol activation of membrane-bound CF1 ATPase is reported to be accompanied by energy-dependent ADP dissociation. Further indication that ADP release is involved in the ATPase activation mechanism is the observation that a pyruvate kinase phosphoenolpyruvate trap for ADP released during light/dithiothreitol treatment greatly retards the decay of membrane-bound ATPase activity that occurs in the dark, presumably by preventing reassociation of ADP. The time course of CF1 reactivation by light, after light/dithiothreitol activation followed by dark decay, allows a distinction to be made between the apparently rate-limiting dithiol modification and the more rapid dissociation of tightly bound ADP.  相似文献   

3.
Mg2+ is known to be a potent inhibitor of F1 ATPases from various sources. Such inhibition requires the presence of a tightly bound ADP at a catalytic site. Results with the spinach chloroplast F1 ATPase (CF1) show that the time delays of up to 1 min or more in the induction or the relief of the inhibition are best explained by a slow binding and slow release of Mg2+ rather than by slow enzyme conformational changes. CF1 is known to have multiple Mg2+ binding sites with Kd values in the micromolar range. The inhibitory Mg2+ and ADP can bind independently to CF1. When Mg2+ and ATP are added to the uninhibited enzyme, a relatively fast rate of hydrolysis attained soon after the addition is followed by a much slower steady-state rate. The inhibited steady-state rate results from a slowly attained equilibrium of binding of medium Mg2+. The Kd for the binding of the inhibitory Mg2+ is in the range of 1-8 microM, in the presence or absence of added ATP, as based on the extent of rate inhibition induced by Mg2+. Assessments from 18O exchange experiments show that the binding of Mg2+ is accompanied by a relatively rapid change to an enzyme form that is incapable of hydrolyzing MgATP. When ATP is added to the Mg2+- and ADP-inhibited enzyme, the resulting reactivation can be explained by MgATP binding to an alternate catalytic site which results in a displacement of the tightly bound ADP after a slow release of Mg2+. Both an increase in temperature (to 50 degrees C) and the presence of activating anions such as bicarbonate or sulfite reduce the extent of the Mg2+ inhibition markedly. The activating anions may bind to CF1 in place of Pi near the ADP. Whether the inhibitory Mg2+ binds at catalytic or noncatalytic nucleotide binding sites or at another location is not known. The Mg2(+)- and ADP-induced inhibition appears to be a general property of F1 ATPases, which show considerable differences in affinity for ADP, Mg2+, and Pi. These differences may reflect physiological control functions.  相似文献   

4.
D Wu  P D Boyer 《Biochemistry》1986,25(11):3390-3396
When the heat-activated chloroplast F1 ATPase hydrolyzes [3H, gamma-32P]ATP, followed by the removal of medium ATP, ADP, and Pi, the enzyme has labeled ATP, ADP, and Pi bound to it in about equal amounts. The total of the bound [3H]ADP and [3H]ATP approaches 1 mol/mol of enzyme. Over a 30-min period, most of the bound [32P]Pi falls off, and the bound [3H]ATP is converted to bound [3H]ADP. Enzyme with such remaining tightly bound ADP will form bound ATP from relatively high concentrations of medium Pi with either Mg2+ or Ca2+ present. The tightly bound ADP is thus at a site that retains a catalytic capacity for slow single-site ATP hydrolysis (or synthesis) and is likely the site that participates in cooperative rapid net ATP hydrolysis. During hydrolysis of 50 microM [3H]ATP in the presence of either Mg2+ or Ca2+, the enzyme has a steady-state level of about one bound [3H]ADP per mole of enzyme. Because bound [3H]ATP is also present, the [3H]ADP is regarded as being present on two cooperating catalytic sites. The formation and levels of bound ATP, ADP, and Pi show that reversal of bound ATP hydrolysis can occur with either Ca2+ or Mg2+ present. They do not reveal why no phosphate oxygen exchange accompanies cleavage of low ATP concentrations with Ca2+ in contrast to Mg2+ with the heat-activated enzyme. Phosphate oxygen exchange does occur with either Mg2+ or Ca2+ present when low ATP concentrations are hydrolyzed with the octyl glucoside activated ATPase. Ligand binding properties of Ca2+ at the catalytic site rather than lack of reversible cleavage of bound ATP may underlie lack of oxygen exchange under some conditions.  相似文献   

5.
Soluble mitochondrial ATPase (F1) from beef heart prepared in this laboratory contained approximately 1.8 mol of ADP and 0 mol of ATP/mol of F1 which were not removed by repeated precipitation of the enzyme with ammonium sulfate solution or by gel filtration in low ionic strength buffer containing EDTA. This enzyme had full coupling activity. Treatment of the enzyme with trypsin (5 mug/mg of F1 for 3 min) reduced the "tightly bound" ADP to zero, abolished coupling activity, but had no effect on the ATPase activity, stability, or membrane-binding capability of the F1. When the trypsin concentration was varied between 0 and 5 mug/mg of F1, tightly bound ADP was removed to varying degrees, and a correlation was seen between amount of residual tightly bound ADP and residual coupling activity. Gel filtration of the native F1 in high ionic strength buffer containing EDTA also caused complete loss of tightly bound ADP and coupling ability, whereas ATPase activity, stability, and membrane-binding capability were retained. The ADP-depleted F1 preparations were unable to rebind normal amounts of ADP or any ATP in simple reloading experiments. The results strongly suggest that tightly bound ADP is required for ATP synthesis and for energy-coupled ATP hydrolysis on F1. The results also suggest that ATP synthesis and energy-linked ATP hydrolysis rather than involving one nucleotide binding site on F1, involve a series or "cluster" of sites. The ATP hydrolysis site may represent one component of this cluster. The results show that nonenergy-coupled ATP hydrolysis on F1 can occur in the absence of tightly bound ADP or ATP.  相似文献   

6.
The effects of octylglucoside (OcGlc) micelles, which stimulate a Mg-specific ATPase activity in chloroplast coupling factor 1 [Pick, U. and Bassilian, S. (1982) Biochemistry, 21, 6144-6152], on the interactions of the enzyme with adenine nucleotides have been studied. 1. OcGlc specifically accelerates the binding and the release of ADP but not of ATP or adenosine 5'[beta, gamma-imido]triphosphate (AdoPP[NH]P) from the tight-sites. The binding affinity for ADP and for ATP is only slightly decreased (twofold) by the detergent. ATP competitively inhibits the binding of ADP and vice versa in the presence or absence of OcGlc. 2.OcGlc-induced inactivation of CF1-ATPase is correlated with the release of bound nucleotides. In the absence of medium nucleotides ADP X CF1 is rapidly inactivated while ATP X CF1 and AdoPP[NH]P X CF1 are slowly inactivated by OcGlc in parallel with the release of bound nucleotide. In contrast, low concentrations of either ATP or ADP in the medium effectively protect against OcGlc inactivation while AdoPP[NH]P, whose binding to CF1 is inhibited by OcGlc, is ineffective even at millimolar concentrations. The results suggest that the occupancy of the tight-sites protects the enzyme against OcGlc-induced inactivation. 3. Mg ions specifically inhibit the release of bound ADP and the OcGlc-induced inactivation of CF1. High concentrations of medium ATP and ADP (K50 = 100 microM) also inhibit the OcGlc-induced release of bound nucleotides in an EDTA medium. In contrast, in the absence of OcGlc, medium ADP and ATP accelerate the release of bound adenine nucleotides. 4. Mg-ATP in the presence of OcGlc stimulates the release of bound ADP from CF1. Bound ATP is neither released nor hydrolyzed at the tight-sites under these conditions where medium ATP is rapidly hydrolyzed. Mg-ADP stimulates the release of bound ADP only in the presence of inorganic phosphate or of phosphate analogs, e.g. arsenate, pyrophosphate or selenate. 5. It is suggested that: (a) ATP and ADP bind to the same tight-sites, but OcGlc activation specifically accelerates the exchange of bound ADP at the site. (b) CF1 contains low affinity adenine nucleotide binding sites which may be the catalytical sites and which influence the tight-sites by cooperative interactions. (c) Mg-ATP in the presence of OcGlc induces a conformational change at the catalytical site which accelerates the release of ADP from the tight-site. The implications of these results to the role of adenine nucleotides in the regulation and mechanism of ATP hydrolysis by CF1 are discussed.  相似文献   

7.
The role of tightly bound ADP on chloroplast ATPase   总被引:1,自引:0,他引:1  
Isolated chloroplast coupling factor 1 ATPase is known to retain about 1 mol of tightly bound ADP/mol of enzyme. Some experimental results have given evidence that the bound ADP is at catalytic sites, but this view has not been supported by observations of a slow replacement of the bound ADP when CaATP or MgATP is added. The experiments reported in this paper show why a slow replacement of ADP bound at a catalytic site can occur. When coupling factor 1, labeled with tightly bound [3H]ADP, is exposed to Mg2+ or Ca2+ prior to the addition of MgATP or CaATP, a pronounced lag in the onset of ATP hydrolysis is observed, and only slow replacement of the [3H]ADP occurs. Mg2+ or Ca2+ can induce inhibition very rapidly, as if an inhibited form of the enzyme results whenever the enzyme with tightly bound ADP encounters Mg2+ or Ca2+ prior to ATP. The inhibited form can be slowly reactivated by incubation with EDTA, although some irreversible loss in activity is encountered. In contrast, when MgATP or CaATP is added to enzyme depleted of Mg2+ and Ca2+ by incubation with EDTA, a rapid onset of ATP hydrolysis occurs and most of the tightly bound [3H]ADP is released within a few seconds, as expected for binding at a catalytic site. The Mg2+-induced inhibition of both the ATPase activity and the lack of replacement of tightly bound [3H] ADP can be largely prevented by incubation with Pi under conditions favoring Pi addition to the site containing the tightly bound ADP. Our and other results can be explained if enzyme catalysis is greatly hindered when MgADP or CaADP without accompanying Pi is tightly bound at one of the three catalytic sites on the enzyme in a high affinity conformation.  相似文献   

8.
Mitochondrial ATPase from rat liver mitochondria contains multiple nucleotide binding sites. At low concentrations ADP binds with high affinity (1 mole/mole ATPase, KD = 1–2 μM). At high concentrations, ADP inhibits ATP hydrolysis presumably by competing with ATP for the active site (KI = 240–300 μM). As isolated, mitochondrial ATPase contains between 0.6 and 2.5 moles ATP/mole ATPase. This “tightly bound” ATP can be removed by repeated precipitations with ammonium sulfate without altering hydrolytic activity of the enzyme. However, the ATP-depleted enzyme must be redissolved in high concentrations of phosphate to retain activity. AMP-PNP (adenylyl imidodiphosphate) replaces tightly bound ATP removed from the enzyme and inhibits ATP hydrolysis. AMP-PNP has little effect on high affinity binding of ADP. Kinetic studies of ATP hydrolysis reveal hyperbolic velocity vs. ATP plots, provided assays are done in bicarbonate buffer or buffers containing high concentrations of phosphate. Taken together, these studies indicate that sites on the enzyme not directly associated with ATP hydrolysis bind ATP or ADP, and that in the absence of bound nucleotide, Pi can maintain the active form of the enzyme.  相似文献   

9.
Isolated spinach CF1 (chloroplast coupling factor 1) forms enzyme-bound ATP without any supply of energy in the presence of high concentrations of Pi [Feldman and Sigman (1982) J Biol Chem 257: 1676-1683]. The final amount of CF1-bound ATP synthesized was increased greatly by 1,2-propanediol, and moderately by methanol, ethanol, and dimethyl sulfoxide, but decreased by glycerol and octyl glucoside. Methanol and ethanol greatly increased the initial rate of ATP synthesis, while 1,2-propanediol increased it only moderately. Low concentrations (10-8 -10-6 M) of tentoxin, which inhibit ATPase activity of isolated CF1, did not affect enzyme-bound ATP synthesis. However, high concentrations (>10-5 M) of tentoxin, which stimulate ATPase activity of isolated CF1, enhanced the initial rate of CF1-bound ATP synthesis without significant effect on the final amount of ATP synthesized in the presence of medium ADP. The substrate of enzyme-bound ATP synthesized came largely from tightly bound ADP, not medium ADP, and tentoxin did not affect this substrate profile. Tentoxin did not affect the binding of medium ADP to high affinity sites on CF1.  相似文献   

10.
Nucleotide-binding sites of the ATPase from the halophilic archaebacterium Halobacterium saccharovorum were labeled by ultraviolet irradiation in the presence of [alpha-32P]ATP. A high-affinity site, located on subunit I (98 kDa), was identified as catalytic by the following criteria: ATP bound to subunit I was hydrolyzed and the cross-linked nucleotide was ADP; the specificity for ATP or ADP compared to that of other nucleotides was high; the tightly bound radionucleotide was exchangeable in the presence of excess unlabeled ATP and Mg2+; photolabeling of this site and enzyme inhibition due to tightly bound ADP were both dependent on the presence of Mg2+ and showed identical Kd values; treatment that restored the activity of the ADP-inhibited enzyme also led to the release of the tightly bound nucleotide from subunit I. In addition, a non-catalytic nucleotide-binding site was found, located on subunit II (71 kDa). This site did not hydrolyze ATP, its occupation was Mg2+ independent and the affinity for ATP and the nucleotide specificity were much lower than that of subunit I. We suspect that this site is nonspecific. These results indicate that H. saccharovorum ATPase is different from F1-ATPases which contain the catalytic site on the second largest subunit, but may be similar to other archaebacterial and vacuolar ATPases.  相似文献   

11.
The F1-ATPase from chloroplasts (CF1) lacks catalytic capacity for ATP hydrolysis if ATP is not bound at noncatalytic sites. CF1 heat activated in the presence of ADP, with less than one ADP and no ATP at non-catalytic sites, shows a pronounced lag in the onset of ATP hydrolysis after exposure to 5-20 microM ATP. The onset of activity correlates well with the binding of ATP at the last two of the three noncatalytic sites. The dependence of activity on the presence of ATP at non-catalytic sites is shown at relatively low or high free Mg2+ concentrations, with or without bicarbonate as an activating anion, and when the binding of ATP at noncatalytic sites is slowed 3-4-fold by sulfate. The latent CF1 activated by dithiothreitol also requires ATP at noncatalytic sites for ATPase activity. A similar requirement by other F1-ATPases and by ATP synthases seems plausible.  相似文献   

12.
M F Bruist  G G Hammes 《Biochemistry》1981,20(22):6298-6305
The solubilized coupling factor from spinach chloroplasts (CF1) contains one nondissociable ADP/CF1 which exchanges slowly with medium ADP in the presence of Ca2+, Mg2+, or EDTA; medium ATP also exchanges in the presence of Ca2+ or EDTA, but it is hydrolyzed, and only ADP is found bound to CF1. The rate of ATP exchange with heat-activated CF1 is approximately 1000 times slower than the rate of ATP hydrolysis. In the presence of Mg2+, both latent CF1 and heat-activated CF1 bind one ATP/CF1, in addition to the ADP. This MgATP is not removed by dialysis, by gel filtration, or by the substrate CaATP during catalytic turnover; however, it is released when the enzyme is stored several days as an ammonium sulfate precipitate. The photoaffinity label 3'-O-[3-[N-(4-azido-2-nitrophenyl)amino]-propionyl]-ATP binds to the MgATP site, and photolysis results in labeling of the beta subunit of CF1. Equilibrium binding measurements indicate that CF1 has two identical binding sites for ADP with a dissociation constant of 3.9 microM (in addition to the nondissociable ADP site). When MgATP is bound to CF1, one ADP binding site with a dissociation constant of 2.9 microM is found. One ATP binding site is found in addition to the MgATP site with a dissociation constant of 2.9 microM. Reaction of CF1 with the photoaffinity label 3'-O-[3-[N-(4-azido-2-nitrophenyl)amino]propionyl]-ADP indicates that the ADP binding site which is not blocked by MgATP is located near the interface of alpha and beta subunits. No additional binding sites with dissociation constants less than 200 micro M are observed for MgATP with latent CF1 and for CaADP with heat-activated CF1. Thus, three distinct nucleotide binding sites can be identified on CF1, and the tightly bound ADP and MgATP are not at the catalytic site. The active site is either the third ADP and ATP binding site or a site not yet detected.  相似文献   

13.
A conventional five-step chemo-mechanical cycle of the myosin–actin ATPase reaction, which implies myosin detachment from actin upon release of hydrolysis products (ADP and phosphate, Pi) and binding of a new ATP molecule, is able to fit the [Pi] dependence of the force and number of myosin motors during isometric contraction of skeletal muscle. However, this scheme is not able to explain why the isometric ATPase rate of fast skeletal muscle is decreased by an increase in [Pi] much less than the number of motors. The question can be solved assuming the presence of a branch in the cycle: in isometric contraction, when the force generation process by the myosin motor is biased at the start of the working stroke, the motor can detach at an early stage of the ATPase cycle, with Pi still bound to its catalytic site, and then rapidly release the hydrolysis products and bind another ATP. In this way, the model predicts that in fast skeletal muscle the energetic cost of isometric contraction increases with [Pi]. The large dissociation constant of the product release in the branched pathway allows the isometric myosin–actin reaction to fit the equilibrium constant of the ATPase.  相似文献   

14.
Z Y Du  P D Boyer 《Biochemistry》1990,29(2):402-407
Washed chloroplast thylakoid membranes upon exposure to [3H]ADP retain a tightly bound [3H]ADP on a catalytic site of the ATP synthase. The presence of sufficient endogenous or added Mg2+ results in an enzyme with essentially no ATPase activity. Sulfite activates the ATPase, and many molecules of ATP per synthase can be hydrolyzed before most of the bound [3H]ADP is released, a result interpreted as indicating that the ADP is not bound at a site participating in catalysis by the sulfite-activated enzyme [Larson, E. M., Umbach, A., & Jagendorf, A. T. (1989) Biochim. Biophys. Acta 973, 75-85]. We present evidence that this is not the case. The Mg2(+)- and ADP-inhibited enzyme when exposed to MgATP and 20-100 mM sulfite shows a lag of about 1 min at 22 degrees C and of about 15 s at 37 degrees C before reaching the same steady-state rate as attained with light-activated ATPase that has not been inhibited by Mg2+ and ADP. The lag is not eliminated if the enzyme is exposed to sulfite prior to MgATP addition, indicating that ATPase turnover is necessary for the activation. The release of most of the bound [3H]ADP parallels the onset of ATPase activity, although some [3H]ADP is not released even with prolonged catalytic turnover and may be on poorly active or inactive enzyme or at noncatalytic sites. The results are consistent with most of the tightly bound [3H]ADP being at a catalytic site and being replaced as this Mg2(+)- and ADP-inhibited site regains equivalent participation with other catalytic sites on the activated enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
D Leckband  G G Hammes 《Biochemistry》1988,27(10):3629-3633
The kinetic behavior of tightly bound nucleotides on chloroplast coupling factor from spinach was determined under phosphorylating and nonphosphorylating conditions. Chloroplast coupling factor 1 (CF1) was labeled with tightly bound radioactive ADP and/or ATP at two specific sites and reconstituted with thylakoid membranes depleted of CF1 by treatment with NaBr. The initial incorporation and dissociation of ADP from one of the sites requires light but occurs at the same rate under phosphorylating and non-phosphorylating conditions. The initial rate is considerably slower than the rate of ATP synthesis, but nucleotide exchange is very rapid during steady-state ATP synthesis. A direct correspondence between this nucleotide binding site and a site on soluble CF1 that hydrolyzes ATP was demonstrated. A second site binds MgATP very tightly; the MgATP does not dissociate during ATP synthesis nor does its presence alter the rate of ATP synthesis. This is analogous to the behavior found for soluble CF1 during ATP hydrolysis. These results demonstrate that the tight-binding nucleotide sites on soluble CF1 and membrane-bound coupling factor are essentially identical in terms of binding properties and kinetic behavior during ATP hydrolysis and synthesis.  相似文献   

16.
The interaction of protein substrates with protease La from Escherichia coli enhances its ability to hydrolyze ATP and peptide bonds. These studies were undertaken to clarify how unfolded proteins allosterically stimulate this ATPase activity. The tetrameric protease can bind four molecules of ATP, which activates proteolysis, or four molecules of ADP, which inhibits enzymatic activity. Protein substrates stimulate binding of the nonhydrolyzable ATP analog [3H] adenyl-5'yl imidodiphosphate, although they do not increase the net binding of [3H]ATP or [3H]ADP. Once bound, ATP is quickly hydrolyzed to ADP, which remains noncovalently associated with protease La even through repeated gel filtrations. Exposure to protein substrates (e.g. denatured bovine serum albumin at 37 degrees C) induces the release of all the bound ADP from the enzyme. Nonhydrolyzable ATP analogs bound to the enzyme were not released by these substrates. Proteins that are not degraded (e.g. native bovine serum albumin) and oligopeptides that only bind to the catalytic site do not induce ADP release. Thus, polypeptide substrates have to interact with an allosteric site to induce this effect. The protein-induced ADP release is inhibited by high concentrations of Mg2+ and is highly temperature-dependent. Protein substrates promoted [3H]ATP binding in the presence of ADP and Mg2+ (i.e. ATP-ADP exchange) and reduced the ability of ADP to inhibit the enzyme's peptidase and ATPase activities. These results indicate that: 1) ADP release is a rate-limiting step in protease La function; 2) bound ADP molecules inhibit protein and ATP hydrolysis in vivo; 3) denatured proteins interact with the enzyme's regulatory site and promote ADP release, ATP binding, and their own hydrolysis.  相似文献   

17.
Chloroplast thylakoid membranes contain tightly bound ADP which is intimately involved in the mechanism of photophosphorylation. The photoaffinity analog 2-azido-ADP binds tightly to spinach thylakoid membrane-bound coupling factor one (CF1) and, in a manner similar to ADP, inhibits the light-triggered ATPase activity (Czarnecki, J.J., Abbott, M.S. and Selman, B.R. (1983) Eur. J. Biochem. 136, 19-24). Ultraviolet irradiation of thylakoid membranes containing noncovalently, tightly bound 2-azido[beta-32P]ADP results in the inactivation of both the methanol-stimulated MgATPase activity of the membrane-bound CF1 and the octylglucoside-dependent MgATPase activity of the solubilized enzyme. There is a linear correlation between the loss of enzyme activity and the covalent incorporation of the photoaffinity analog. Full inactivation of catalytic activity is estimated to occur upon incorporation of 1.07 mol analog and 0.65 mol analog per mol enzyme for the methanol- and octylglucoside-stimulated activities, respectively. Since 2-azido-ADP modifies only the beta subunit of the CF1 and since there are probably three beta subunits per CF1, these results indicate strong cooperativity among beta subunits and between the site of tightly bound nucleotides and the catalytic sites.  相似文献   

18.
The presence of ATP at non-catalytic sites of the chloroplast F1-ATPase (CF1) eliminates a considerable lag in onset of enzyme activity that otherwise occurs in the presence of bicarbonate [Milgrom, Y. M., Ehler, L. & Boyer, P. D. (1991) J. Biol. Chem. 266, 11551-11558]. Sulfite is known to be much more effective than bicarbonate in stimulating ATPase activity CF1. Results reported here show that when assayed in the presence of sulfite, CF1, with some non-catalytic sites empty or filled with GT(D)P, is able to hydrolyze both ATP and GTP. Thus, the presence of adenine nucleotides at non-catalytic sites is not necessary for catalytic turnover of CF1. However, even though CF1 with empty non-catalytic sites shows a significant initial activity, the prior binding of adenine nucleotides at non-catalytic site(s) results in further activation of MgATPase and MgGTPase activities, even at relatively high sulfite and substrate concentrations. Although extensive activation of CF1 results from the presence of sulfite, with or without nucleotide binding at non-catalytic sites, the Km remains constant, at about 50 microM for MgATP and 400 microM for MgGTP. The results obtained show that the ATPase activity of CF1 is determined by the fraction of the active enzyme. The inactive CF1.ADP.Mg2+ formed during MgATP hydrolysis can be rapidly trapped by azide to provide a measure of the fraction of inactive enzyme. Increasing the concentration of sulfite increases the fraction of active CF1 in the assay medium. Measurements with radioactively labeled nucleotides show that the presence of ATP at non-catalytic sites promotes the ATP-dependent release of inhibitory ADP from a catalytic site. The activating effect of ATP binding at non-catalytic sites results from increasing the portion of CF1 in an active state during steady-state ATP hydrolysis.  相似文献   

19.
Under steady state photophosphorylating conditions, each ATP synthase complex from spinach thylakoids contains, at a catalytic site, about one tightly bound ATP molecule that is rapidly labeled from medium 32Pi. The level of this bound [32P]ATP is markedly reduced upon de-energization of the spinach thylakoids. The reduction is biphasic, a rapid phase in which the [32P] ATP/synthase complex drops about 2-fold within 10 s, followed by a slow phase, kobs = 0.01/min. A decrease in the concentration of medium 32Pi to well below its apparent Km for photophosphorylation is required to decrease the amount of tightly bound ATP/synthase found just after de-energization and before the rapid phase of bound ATP disappearance. The [32P]ATP that remains bound after the rapid phase appears to be mostly at a catalytic site as demonstrated by a continued exchange of the oxygens of the bound ATP with water oxygens. This bound [32P]ATP does not exchange with medium Pi and is not removed by the presence of unlabeled ATP. The levels of tightly bound ADP and ATP arising from medium ADP were measured by a novel method based on use of [beta-32P]ADP. After photophosphorylation and within minutes after the rapid phase of bound ATP loss, the measured ratio of bound ADP to ATP was about 1.4 and the sum of bound ADP plus ATP was about 1/synthase. This ratio is smaller than that found about 1 h after de-energization. Hence, while ATP bound at catalytic sites disappears, bound ADP appears. The results suggest that during and after de-energization the bound ATP disappears from the catalytic site by hydrolysis to bound ADP and Pi with subsequent preferential release of Pi. These and related observations can be accommodated by the binding change mechanism for ATP synthase with participation of alternating catalytic sites and are consistent with a deactivated state arising from occupancy of one catalytic site on the synthase complex by an inhibitory ADP without presence of Pi.  相似文献   

20.

1. 1. Tightly bound ATP and ADP, found on the isolated mitochondrial ATPase, exchange only slowly at pH 8, but the exchange is increased as the pH is reduced. At pH 5.5, more than 60% of the bound nucleotide exchanges within 2.5 min.

2. 2. Preincubation of the isolated ATPase with ADP leads to about 50% inhibition of ATP hydrolysis when the enzyme is subsequently assayed in the absence of free ADP. This effect, which is reversed by preincubation with ATP, is absent on the membrane-bound ATPase. This inhibition seems to involve the replacement of tightly bound ATP by ADP.

3. 3. Using these two findings, the binding specificity of the tight nucleotide binding sites was determined. iso-Guanosine, 2′-deoxyadenosine and formycin nucleotides displaced ATP from the tight binding sites, while all other nucleotides tested did not. The specificities of the tight sites of the isolated and membrane-bound ATPase were similar, and higher than that of the hydrolytic site.

4. 4. The nucleotide specificities of ‘coupled processes’ nucleoside triphosphate-driven reversal of electron transfer, nucleoside triphosphate-32Pi exchange and phosphorylation were higher than that of the hydrolytic site of the ATPase and similar to that of the tight nucleotide binding sites.

5. 5. The different nucleotide specificities of uncoupled ATP hydrolysis and coupled processes can be explained even if both processes involve a single common site on the ATPase molecule. This model requires that energy can be ‘coupled’ only when it is released/utilised in the nucleotide binding steps of the mechanism.

6. 6. Adenosine β,γ-imidotriphosphate (AMP-PNP) is not a simple reversible inhibitor of the ATPase, since incubation requires preincubation and is not reversed when the compound is diluted out, or by addition of ATP. This compound inhibits the isolated and membrane-bound ATPase equally well. Its guanosine analogue does not act in this way.

7. 7. In submitochondrial particles, ADP inhibited uncoupled hydrolysis of ATP much more effectively than coupled hydrolysis, the latter being measured both directly (from ATP hydrolysis in the absence of uncoupler) or indirectly, by monitoring ATP-driven reduction of NAD+ by succinate.

8. 8. The effects of ADP and AMP-PNP were interpreted as providing evidence for two of the intermediates in the proposed scheme for coupled triphosphate hydrolysis.

Abbreviations: ε-ATP, N1,N6-ethenoadenosine triphosphate; 8-BrATP, 8-bromoadenosine triphosphate; AMP-PNP, adenosine β,γ-imidotriphosphate; GMP-PNP, guanosine β,γ-imidotriphosphate; N1,O-ATP, adenosine-N1-oxide triphosphate; rro-ATP 2,2′[1-(9-adenyl)-1′-(triphosphoryl-oxymethyl)-dihydroxydiethyl ether; and similarly for the respective diphosphates; NTP, NDP, nucleoside tri-, diphosphate; ANS, 1-anilino-8-naphthalene sulphonate; FCCP, carbonylcyanide p-trifluoromethoxyphenylhydrazone; HEPES, N-2-hydroxyethylpiperazine-N′-2-ethane sulphonic acid; MES, 2-(N-morpholino)-ethane sulphonic acid; TES, tris(hydroxymethyl)methylamino ethane sulphonic acid  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号