首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.  相似文献   

2.
In a culture of CHO-K1 cells, etoposide (1 h, 25 μM) has been shown to produce interphase arrest, after which the cells resume mitotic division and, after some time, are submitted to apoptotic death. Accumulation of apoptotic cells in the culture follows a gradual increase in the number of multipolar mitoses. Our findings provide the first evidence for differences in the pattern of immunofluorescent staining of multipolar mitotic spindle microtubules with antibodies to α-tubulin, acetylated α-tubulin, and tyrosinated α-tubulin in mitotic cells dividing in the period preceding apoptosis. Moreover, some parts of the multipolar mitotic spindle can differ by the presence of antigenic determinants accessible to anti-tyrosinated α-tubulin antibodies. These abnormalities of the mitotic apparatus are aggravated immediately before the increase in the number of cells submitted to apoptosis. Our data have also shown that some cells pass through at least two mitotic cycles prior to a sharp increase in the number of apoptotic cells in the cell culture.  相似文献   

3.
This review discusses the role of microtubules in the formation of processes from neuronal and non-neuronal cells. In elongating axons of the neuron, tubulin molecules are transported toward the end of pre-existing microtubules, which may be nucleated at the centrosome, via a mechanism called slow axonal flow. Two different hypotheses are presented to explain this mechanism; the transport of soluble monomers and/or oligomers versus the transport of polymerized microtubules. The majority of tubulin seems to be transported as small oligomers as shown by the data presented so far. Alternatively, an active transport of polymerized microtubules driven by microtubule-based motor proteins is postulated as being responsible for the non-uniform polarity of microtubule bundles in dendrites of the neuron. Microtubule-associated proteins (MAPs) play a crucial role in stabilizing the microtubular arrays, whereas the non-uniform polarity of microtubules may be established with the aid of microtubule-based motor proteins. The signals activating centrosomal proteins and MAPs, resulting in process formation, include phosphorylation and dephosphorylation of these proteins. Not only neuronal cells, but also renal glomerular podocytes develop prominent cell processes equipped with well-organized microtubular cytoskeletons, and intermediate and actin filaments. A novel cell culture system for podocytes, in which process formation can be induced, should provide further evidence that microtubules play a pivotal role in process formation of non-neuronal cells.  相似文献   

4.
《The Journal of cell biology》1990,111(6):3023-3033
We have purified a 100-kD rat brain protein that has microtubule cross- linking activity in vitro, and have determined that it is dynamin, a putative microtubule-associated motility protein. We find that dynamin appears to be specific to neuronal tissue where it is present in both soluble and particulate tissue fractions. In the cytosol it is abundant, representing as much as 1.5% of the total extractable protein. Dynamin appears to be in particulate material due to association with a distinct subcellular membrane fraction. Surprisingly, by immunofluorescence analysis of PC12 cells we find that dynamin is distributed uniformly throughout the cytoplasm with no apparent microtubule association in either interphase, mitotic, or taxol-treated cells. Upon nerve growth factor (NGF) induction of PC12 cell differentiation into neurons, dynamin levels increase approximately twofold. In the cell body, the distribution of dynamin again remains clearly distinct from that of tubulin, and in axons, where microtubules are numerous and ordered into bundles, dynamin staining is sparse and punctate. On the other hand, in the most distal domain of growth cones, where there are relatively few microtubules, dynamin is particularly abundant. The dynamin staining of neurites is abolished by extraction of the cells with detergent under conditions that preserve microtubules, suggesting that dynamin in neurites is associated with membranes. We conclude that dynamin is a neuronal protein that is specifically associated with as yet unidentified vesicles. It is possible, but unproven, that it may link vesicles to microtubules for transport in differentiated axons.  相似文献   

5.
The plant volatile monoterpene citral is a highly active compound with suggested allelopathic traits. Seed germination and seedling development are inhibited in the presence of citral, and it disrupts microtubules in both plant and animal cells in interphase. We addressed the following additional questions: can citral interfere with cell division; what is the relative effect of citral on mitotic microtubules compared to interphase cortical microtubules; what is its effect on newly formed cell plates; and how does it affect the association of microtubules with γ‐tubulin? In wheat seedlings, citral led to inhibition of root elongation, curvature of newly formed cell walls and deformation of microtubule arrays. Citral’s effect on microtubules was both dose‐ and time‐dependent, with mitotic microtubules appearing to be more sensitive to citral than cortical microtubules. Association of γ‐tubulin with microtubules was more sensitive to citral than were the microtubules themselves. To reveal the role of disrupted mitotic microtubules in dictating aberrations in cell plates in the presence of citral, we used tobacco BY2 cells expressing GFP‐Tua6. Citral disrupted mitotic microtubules, inhibited the cell cycle and increased the frequency of asymmetric cell plates in these cells. The time scale of citral’s effect in BY2 cells suggested a direct influence on cell plates during their formation. Taken together, we suggest that at lower concentrations, citral interferes with cell division by disrupting mitotic microtubules and cell plates, and at higher concentrations it inhibits cell elongation by disrupting cortical microtubules.  相似文献   

6.
《The Journal of cell biology》1995,131(4):1015-1024
Expression levels of E-MAP-115, a microtubule-associated protein that stabilizes microtubules, increase with epithelial cell polarization and differentiation (Masson and Kreis, 1993). Although polarizing cells contain significant amounts of this protein, they can still divide and thus all stabilized microtubules must disassemble at the onset of mitosis to allow formation of the dynamic mitotic spindle. We show here that binding of E-MAP-115 to microtubules is regulated by phosphorylation during the cell cycle. Immunolabeling of HeLa cells for E-MAP-115 indicates that the protein is absent from microtubules during early prophase and progressively reassociates with microtubules after late prophase. A fraction of E-MAP-115 from HeLa cells released from a block at the G1/S boundary runs with higher apparent molecular weight on SDS-PAGE, with a peak correlating with the maximal number of cells in early stages of mitosis. E-MAP-115 from nocodazole-arrested mitotic cells, which can be obtained in larger amounts, displays identical modifications and was used for further biochemical characterization. The level of incorporation of 32P into mitotic E-MAP-115 is about 15- fold higher than into the interphase protein. Specific threonine phosphorylation occurs in mitosis, and the amount of phosphate associated with serine also increases. Hyperphosphorylated E-MAP-115 from mitotic cells cannot bind stably to microtubules in vitro. These results suggest that phosphorylation of E-MAP-115 is a prerequisite for increasing the dynamic properties of the interphase microtubules which leads to the assembly of the mitotic spindle at the onset of mitosis. Microtubule-associated proteins are thus most likely key targets for kinases which control changes in microtubule dynamic properties at the G2- to M-phase transition.  相似文献   

7.
The present studies were designed to assess the roles of progesterone (P4) and Progesterone Receptor Membrane Component 1 (PGRMC1) in regulating mitosis of spontaneously immortalized granulosa cells (SIGCs) and ovarian cancer cells, SKOV-3 cells. Because PGRMC1 has been detected among the proteins of the human mitotic spindle, we theorized that P4 and PGRMC1 could affect mitosis through a microtubule-dependent process. The present study confirms that SIGC growth is slowed by either P4 treatment or transfection of a PGRMC1 antibody. In both cases, slower cell proliferation was accompanied by an increased percentage of mitotic cells, which is consistent with a P4-induced prolongation of the M phase of the cell cycle. In addition, P4 increased the stability of the spindle microtubules, as assessed by the rate of beta-tubulin disassembly in response to cooling. Also, P4 increased spindle microtubule stability of SKOV-3 cells. This effect was mimicked by the depletion of PGRMC1 in these cells. Importantly, P4 did not increase the stability of the microtubules over that observed in PGRMC1-depleted SKOV-3 cells. Immunofluorescent analysis revealed that PGRMC1 is distributed to the spindle apparatus as well as to the centrosomes at metaphase. Further in situ proximity ligation assay revealed that PGRMC1 interacted with beta-tubulin. Taken together, these results suggest that P4 inhibits mitosis of ovarian cells by increasing the stability of the mitotic spindle. Moreover, P4's actions appear to be dependent on PGRMC1's function within the mitotic spindle.  相似文献   

8.
In the first of two companion papers which attempt to correlate microtubules and their nucleating sites with developmental and cell division patterns in the unicellular flagellate, Ochromonas, the distribution of cytoplasmic and mitotic microtubules and various kinetosome-related fibers are detailed. Of the five kinetosome-related fibers, which have been found in Ochromonas, two, the kineto-beak fibers and the rhizoplast fibers are utilized as attachment sites for distinct groups of microtubules. The set of microtubules attached to the kineto-beak fibers apparently shape the anterior beak region of the cell whereas the rhizoplast microtubules appear to extend into and shape the tail in vegetative cells. In mitotic cells a rhizoplast is found at each spindle pole apparently serving as foci for the spindle microtubules. These findings are discussed in relation to the less well defined attachment sites for vegetative and mitotic microtubules in other kinds of cells. It is noted that the effects of depolymerizing microtubules in vivo might be easily quantitated in whole populations since no external wall or pellicle contributes to the maintenance or the biogenesis of the characteristic cell form of Ochromonas.  相似文献   

9.
Epothilones, macrocyclic lactones from culture filtrates of the myxobacterium Sorangium cellulosum, are known as taxol-like microtubular drugs in human medicine. To date, nothing is known about the effect of epothilones on microtubules (MTs) in plant cells and/or on the plant cell cycle. As shown in this report, the treatment of tomato cell suspension cultures with epothilone D produced a continuous increase in the mitotic index. Dose-response curves revealed that epothilone D alters the mitotic index at concentrations as low as 1.5 microM. Mitotic arrest was already visible after only 2 h of treatment, and 55% of the cells were arrested after 24 h. As shown by immunocytological methods, abnormal spindles are formed during metaphase, which leads to a random distribution of chromosomes in the whole cell and prevents the formation of a metaphase plate. The process of chromosome decondensation does not seem to be affected, because micronuclei form at the same place with the distributed chromosomes. This suggests that epothilone D influences the stability of plant MTs mainly during metaphase of the mitotic cycle. In metaphase, the effects of epothilone D seem to be irreversible, because cells with an abnormal spindle could not be recovered after removal of the drug.  相似文献   

10.
We have identified a putative 35-kilodalton protein that colocalizes with microtubules and displays a unique spatial and temporal distribution during the cell cycle of HeLa cells. This protein has been given the designation MSA-35. MSA-35 first appears in association with microtubules and centrosomes of interphase cells exhibiting centrosome separation as a prelude to cell division. This protein is found in conjunction with kinetochore microtubules throughout their appearance. MSA-35 transiently associates with interpolar microtubules following anaphase and the pattern of MSA-35 reactivity in telophase cells suggests that there are at least seven domains within the intercellular bridge. The distribution of MSA-35 during and following recovery from mitotic arrest with nocodazole suggest that it is also present at low levels in interphase cells, can associate with interphase centrosomes, and colocalizes with nascent microtubules. The complex spatial and temporal distribution of MSA-35 indicates that it may be necessary for a series of events in the mitotic process such as the bundling of microtubules.  相似文献   

11.
Kif15 is a kinesin-related protein whose mitotic homologues are believed to crosslink and immobilize spindle microtubules. We have obtained rodent sequences of Kif15, and have studied their expression and distribution in the developing nervous system. Kif15 is indeed expressed in actively dividing fibroblasts, but is also expressed in terminally postmitotic neurons. In mitotic cells, Kif15 localizes to spindle poles and microtubules during prometaphase to early anaphase, but then to the actin-based cleavage furrow during cytokinesis. In interphase fibroblasts, Kif15 localizes to actin bundles but not to microtubules. In cultured neurons, Kif15 localizes to microtubules but shows no apparent co-localization with actin. Localization of Kif15 to microtubules is particularly good when the microtubules are bundled, and there is a notable enrichment of Kif15 in the microtubule bundles that occupy stalled growth cones and dendrites. Studies on developing rodent brain show a pronounced enrichment of Kif15 in migratory neurons compared to other neurons. Notably, migratory neurons have a cage-like configuration of microtubules around their nucleus that is linked to the microtubule array within the leading process, such that the entire array moves in unison as the cell migrates. Since the capacity of microtubules to move independently of one another is restricted in all of these cases, we propose that Kif15 opposes the capacity of other motors to generate independent microtubule movements within key regions of developing neurons.  相似文献   

12.
Neurons removed from the embryonic hippocampus and placed into culture develop structurally and functionally distinct axonal and dendritic processes. The central issue addressed in this study concerns the extent to which the sequence of events which results in the differentiation of neurites by hippocampal neurons in culture is influenced by the cell's state of development in situ. [3H]thymidine was administered to pregnant rats either on Embryonic Day 15 (E15) or on E18.5 to label hippocampal neurons at known stages of their development. All fetuses were sacrificed on E19. Some of the fetal brains were sectioned and examined by autoradiography to determine the location of labeled cells in the hippocampus. The remaining brains were used to prepare hippocampal cell cultures. Neurons labeled at E18.5 remained confined to the ventricular zone at E19. Those labeled at E15 had completed their migration to the cortical plate. Other data suggest that the former cells had not yet initiated process outgrowth, while the latter cells had begun to elaborate both axons and dendrites. When introduced into culture, both populations of cells developed axons and dendrites and both compartmentalized MAP2 to the dendritic domain. Moreover, despite marked differences in their developmental state at the time of introduction into culture, both underwent the same sequence of developmental events leading to axonal and dendritic development. In a few cases cells that incorporated [3H]thymidine in situ at E18.5 apparently underwent mitosis in culture. These neurons also developed axons and dendrites appropriately. These results indicate that hippocampal neurons become polarized in culture, even if they have never developed axons or dendrites in situ, and do so as efficiently as cells that have become polarized before being placed into culture. Moreover, they indicate that the same sequence of events leading to the establishment of polarity occurs for hippocampal neurons with different developmental histories prior to culturing.  相似文献   

13.
14.
The diverse populations of microtubule polymers in cells are functionally distinguished by different posttranslational modifications, including polyglutamylation. Polyglutamylation is enriched on subsets of microtubules including those found in the centrioles, mitotic spindle, and cilia. However, whether this modification alters intrinsic microtubule dynamics or affects extrinsic associations with specific interacting partners remains to be determined. Here we identify the microtubule-binding protein centriole and spindle-associated protein (CSAP), which colocalizes with polyglutamylated tubulin to centrioles, spindle microtubules, and cilia in human tissue culture cells. Reducing tubulin polyglutamylation prevents CSAP localization to both spindle and cilia microtubules. In zebrafish, CSAP is required for normal brain development and proper left-right asymmetry, defects that are qualitatively similar to those reported previously for depletion of polyglutamylation-conjugating enzymes. We also find that CSAP is required for proper cilia beating. Our work supports a model in which polyglutamylation can target selected microtubule-associated proteins, such as CSAP, to microtubule subpopulations, providing specific functional capabilities to these populations.  相似文献   

15.
STOP proteins     
Microtubules assembled from pure tubulin in vitro are labile, rapidly depolymerized upon exposure to the cold. In contrast, in a number of cell types, cytoplasmic microtubules are stable, resistant to prolonged cold exposure. During the past years, the molecular basis of this microtubule stabilization in cells has been elucidated. Cold stability is due to polymer association with different variants of a calmodulin-regulated protein, STOP protein. The dynamic and hence the physiological consequences of STOP association with microtubules vary in different tissues. In neurons, STOP seems almost permanently associated with microtubules. STOP is apparently a major determinant of microtubule turnover in such cells and is required for normal neuronal differentiation. In cycling cells, only minor amounts of STOP are associated with interphase microtubules and STOP does not measurably affects microtubule dynamics. However, STOP is associated with mitotic microtubules in the spindle. Recent results indicate that such an association could be vital for meiosis and for the long-term fidelity of the mitotic process.  相似文献   

16.
The successful transmission of complete genomes from mother to daughter cells during cell divisions requires the structural re-organization of chromosomes into individualized and compact structures that can be segregated by mitotic spindle microtubules. Multi-subunit protein complexes named condensins play a central part in this chromosome condensation process, but the mechanisms behind their actions are still poorly understood. An increasing body of evidence suggests that, in addition to their role in shaping mitotic chromosomes, condensin complexes have also important functions in directing the three-dimensional arrangement of chromatin fibers within the interphase nucleus. To fulfill their different functions in genome organization, the activity of condensin complexes and their localization on chromosomes need to be strictly controlled. In this review article, we outline the regulation of condensin function by phosphorylation and other posttranslational modifications at different stages of the cell cycle. We furthermore discuss how these regulatory mechanisms are used to control condensin binding to specific chromosome domains and present a comprehensive overview of condensin’s interaction partners in these processes.  相似文献   

17.
Posttranslational modifications of core histones contribute to driving changes in chromatin conformation and compaction. Herein, we investigated the role of histone deacetylation on the mitotic process by inhibiting histone deacetylases shortly before mitosis in human primary fibroblasts. Cells entering mitosis with hyperacetylated histones displayed altered chromatin conformation associated with decreased reactivity to the anti-Ser 10 phospho H3 antibody, increased recruitment of protein phosphatase 1-delta on mitotic chromosomes, and depletion of heterochromatin protein 1 from the centromeric heterochromatin. Inhibition of histone deacetylation before mitosis produced defective chromosome condensation and impaired mitotic progression in living cells, suggesting that improper chromosome condensation may induce mitotic checkpoint activation. In situ hybridization analysis on anaphase cells demonstrated the presence of chromatin bridges, which were caused by persisting cohesion along sister chromatid arms after centromere separation. Thus, the presence of hyperacetylated chromatin during mitosis impairs proper chromosome condensation during the pre-anaphase stages, resulting in poor sister chromatid resolution. Lagging chromosomes consisting of single or paired sisters were also induced by the presence of hyperacetylated histones, indicating that the less constrained centromeric organization associated with heterochromatin protein 1 depletion may promote the attachment of kinetochores to microtubules coming from both poles.  相似文献   

18.
The display of microtubules in transformed cells.   总被引:48,自引:0,他引:48  
M Osborn  K Weber 《Cell》1977,12(3):561-571
Monospecific tubulin antibodies have been used in indirect immunofluorescence microscopy on a variety of well characterized, transformed cell lines grown in tissue culture. Networks of colcemid-sensitive fibers are seen in SV40-transformed 3T3 cells, SV40-transformed rat embryo cells, HeLa cells and other transformed cell lines. In each case, greater than 90% of the cells contain visible microtubular networks, and where individual microtubules can be distinguished, they run for long distances. Documentation of these metworks is more difficult in transformed than in normal cells, because transformed cells are in general more rounded and have less well spread cytoplasm. In addition, the microtubular networks can be readily visualized in "cytoskeletons" of both normal and transformed cells, obtained by treatment of cells with nonionic detergents in a buffer which stabilizes microtubules in vitro. Addition of calcium to this buffer results in in situ fragmentation and destruction of the microtubular network. In view of these results, we conclude that transformed cells contain significant numbers of microtubules, and that in transformed cells, as in normal cells, microtubules are arranged in networks.  相似文献   

19.
V K Chetverukhin 《Tsitologiia》1986,28(12):1361-1364
By means of multiple 3H-thymidine administration to adult frogs, a direct electron microscopic radioautographic evidence is first by presented regarding the possibility of an in vivo mitotic division of differentiated hypothalamic peptidergic neurosecretory cells. The absence of any signs of cytoplasmic dedifferentiation, as well as a poor development of spindle microtubules in this cell may be suggestive of a polyploidizing, possibly acytokinetic mitotic process occurring in such kind of cells.  相似文献   

20.
Observations on living mitotic cells have suggested that material in the spindle moves poleward during mitosis. In order to investigate this movement, sea urchin eggs have been microinjected with 0.25-micron diameter carboxylated fluorescent beads. When fluorescent beads were injected into unfertilized Lytechinus variegatus eggs, no motility was detected. When injected into mitotic cells, beads moved to the spindle poles. Individual beads moved rapidly, in a saltatory fashion, and followed generally linear paths. Beads appeared to move along astral fibers, were generally excluded from the spindle proper, and accumulated at the spindle poles. Some dispersion of the beads away from the pole was observed as cells completed mitosis, but the majority of beads retained a polar location. After depolymerization of spindle microtubules with nocodazole, some dispersion of beads into the cytoplasm was also observed. Beads moved along taxol-induced astral microtubules and accumulated at astral centers. These observations reveal that negatively charged beads accumulate rapidly at mitotic centers, moving toward the minus end of the microtubules. Neither the bidirectional motility of similar beads in interphase cells nor the plus-end-directed bead motility seen in axons was observed in these mitotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号