首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(3-Trimethylsilyl-pyridine-2-thiolato-S,N)copper(I), [Cu(3-Me3Sipyt)], was obtained by electrochemical oxidation of copper metal in an acetonitrile solution of the neutral ligand. The compound is tetrameric and the four copper atoms are arranged with distorted tetrahedral geometry, each copper atom being trigonally coordinated to one nitrogen and two sulfur atoms of three different ligands. Crystal data: 141/a, a=14.608(2), C=19.366(4) Å, V=4133(2), Å, Z=4, Dcalc=1.581 g cm−3, R=0.0397 for 848 reflections.  相似文献   

2.
A series of luminescent tetranuclear cuboidal copper(I) diynyl complexes, [Cu4(PAr3)431-CCCCR′)4] (Ar=Ph, R′=Ph, C6H4CH3-p, C6H4OCH3-p; Ar=C6H4CH3-p, C6H4F-p, R′=Ph) has been synthesized and characterized. The X-ray crystal structure of [Cu4(PPh3)431-CCCCPh)4] has been determined. The origin of the low-energy emission in the complexes is assigned as derived from a metal-centered 3d94s1 state, mixed with LMCT [diynyl→Cu4] and IL [π-π*(diynyl)] states.  相似文献   

3.
Four complexes of the type [Cu4I4(CH3CN)2(L)2], L = aniline derivative: Cu4I4(CH3CN)2(2,6-dimethylaniline)2 (I), triclinic, , a = 12.449(3), B = 14.108(6), C = 10.606(4) Å, = 73.46(3), β = 95.00(2), γ = 73.42(3)°, V = 1682.3(10) Å3; Cu4I4(CH3CN)2(o-ethylaniline)2 (II), triclinic, , V = 1734.0(8) Å3; Cu4I4(CH3CN)2(6-ethyl-o-toluidine)2 (III), orthorhombic, Pnam, a = 14.976(6), b = 21.187(6), C = 12.545(2) Å, V = 3980.7(2) Å3; Cu4I4(CH3CN)2(p-anisidine)2 (IV), monoclinic, A2/a, A = 20.032(10), B = 7.863(1), C = 18.715(9) Å, β = 101.56(4)°, V = 2888.0(2) Å3; were examined by single crystal X-ray diffraction. Complexes I and II have no internal symmetry elements, III has an internal mirror and IV has a two-fold axis. Ab initio calculations based on the atomic positional parameters of complexes containing the three types of symmetry elements reveal HOMO orbitals to be dominated by the p orbitals of the iodine atoms whereas the LUMO orbitals contain major contributions from copper based p orbitals.  相似文献   

4.
Copper(II) complexes were synthesized and characterized by means of elemental analysis, IR and visible spectroscopies, EPR and electrochemistry, as well as X-ray structure crystallography. The group consists of discrete mononuclear units with the general formula [Cu(II)(Hbpa)2](A)2·nH2O, where Hbpa=(2-hydroxybenzyl-2-pyridylmethyl)amine and A=ClO4 −, n=2 (1), CH3COO, n=3 (2), NO3 −, n=2 (3) and SO4 2−, n=3 (4). The structures of the ligand Hbpa and complex 1 have been determined by X-ray crystallography. Complexes 1–4 have had their UV–Vis spectra measured in both MeCN and DMF. It was observed that the compounds interact with basic solvents, such that molecules coordinate to the metal in axial positions in which phenol oxygen atoms are coordinated in the protonated forms. The values were all less than 1000 M−1 cm−1. EPR measurements on powdered samples of 1–3 gave g/A values between 105 and 135 cm−1, typical for square planar coordination environments. Complex 4·3H2O exhibits a behaviour typical for tetrahedral coordination. The electrochemical behaviour for complexes 1 and 2 was studied showing irreversible redox waves for both compounds.  相似文献   

5.
New manganese(III) complexes of Hphox (2-(2′-hydroxyphenyl)-oxazoline) and HClphox (2-(5′-chloro-2′-hydroxyphenyl)-oxazoline) have been synthesised. The X-ray structures of [Mn(phox)2(MeOH)2][Mn(phox)2(ClO4)2](H2O)2 and [Mn(Clphox)2(MeOH)2](ClO4) show the manganese(III) ions to be octahedrally coordinated with methanol or perchlorate at the axial coordination sites. The cyclic voltammograms of the complexes, with the exception of [Mn(phox)2(acac)] (Hacac=2,4-pentanedione), show an irreversible reduction wave of manganese(III) to manganese(II). After addition of an excess of 1-methylimidazole (1-Meim), the reduction process shifts towards lower potentials and becomes (quasi-) reversible, indicating that the presence of 1-Meim affects the catalytic efficiency of the complexes. The complexes catalyse the epoxidation of styrene by dihydrogen peroxide. The cumulative turnover numbers towards styrene oxide obtained after 15 min. vary from 16 for [Mn(Clphox)2(MeOH)2](ClO4) to 26 for [Mn(phox)2(acac)]. Ligand degradation appears to be the limiting factor for obtaining higher turnover numbers.  相似文献   

6.
Two ruthenium(II) complexes with polypyridyl, Ru(bipy)2(phen)](ClO4)2·H2O (1) and [Ru(bipy)2(Me-phen)](ClO4)2 (2), (phen = 1,10-phenanthroline, bipy = 2,2′-bipyridine, Me-phen = 5-methyl-1,10-phenanthroline), were synthesized and characterized by IR, MS and NMR spectra. Their structures were determined by single crystal X-ray diffraction techniques. The strong steric interaction between the polypyridyl ligands was relieved neither by the elongation of the Ru---N bonds nor increase of the N---Ru---N bite angles. The coordination sphere was distorted to relieve the ligand interaction by forming specific angles (δ) between the polypyridyl ligand planes and coordination planes (N---Ru---N), and forming larger twisted angles between the two pyridine rings for each bipy. The bond distances of Ru---N(bipy) and Ru---N(phen) were virtually identical with experimental error, as expected of π back-bonding interactions which statistically involve each of the ligands present in the coordination sphere.  相似文献   

7.
The labile cations [Cu(F-BF3)(PCy3)2] and [Cu(OTf)(PCy3)2] are versatile precursors for the formation of [Cu(X)(PCy3)2] (X = Br, I, SCN, N3) complexes by metathesis with NaX. The azide [Cu(N3)(PCy3)2] is triclinic, space group , a = 9.755(4), B = 22.78(1), C = 9.284(6) Å, = 96.76(3), β = 115.36(3), γ = 94.20(5)°, Z = 2.  相似文献   

8.
Crystal and molecular structure of silver magnesium mellitate, Ag2Mg2[C6(COO)6] · 8H2O, was synthesized hydrothermally and characterized by X-ray structure analysis. The complex crystallizes in the monoclinic system, space group P2/n, with unit cell dimensions of a=7.4347(2), b=9.9858(2), c=14.4248(3) Å, β=99.2429(5)°, V=1055.01(4) Å3, and Z=2. The structure was solved and refined to R=0.036 (Rw=0.045) for 1707 independent reflections [Io>2σ(Io)]. The Ag cations are coordinated by six carboxylic oxygen atoms of mellitate anions with composition of [C6(COO)6]6− on the (1 0 1) plane; each mellitate anion linking three neighboring Ag distorted trigonal prisms produces a two-dimensional layered structure parallel to (1 0 1). The Mg cations, which are coordinated by four water molecules and two carboxylic oxygen atoms, are intercalated between the two-dimensional layer stacks. The carboxylate group coordinated to Mg and Ag cations serve as a tridentate ligand in that structure. The number of water molecules incorporated into the mellitate compound is controlled mainly by ionic radii of metal cation in the structure. Furthermore, the ionic radii of metal cations in the mellitate compound play an essential role in arrangement of mellitate anions in the structure, whether as a one-dimensional infinite chain, a two-dimensional layered structure, or a three-dimensional framework structure.  相似文献   

9.
Reaction of LaCl3·7H2O containing small amounts of La(NO3)3·7H2O as an impurity with 12-crown-4 or 18-crown-6 in 3:1 CH3CN:CH3OH resulted in the isolation of the mixed anion complexes [LaCl2(NO3)(12-crown-4)]2, [La(NO3)(OH2)4(12-crown-4)]Cl2·CH3CN and [LaCl2(NO3)(18-crown-6)]. The nine-coordinate dimer, [LaCl2(NO3)(12-crown-4)]2, has all of the anions in the inner coordination sphere and La3+ has a capped square antiprismatic geometry. It crystallizes in the orthorhombic space group Pbca with (at −150 °C) a = 12.938(6), B = 15.704(3), C = 13.962(2) Å, and Dcalc = 2.08 g cm−3 for Z = 4. The second complex isolated from the same reaction, [La(NO3)(OH2)4(12-crown-4)]Cl2·CH3CN, has the bidentate nitrate anion in the inner coordination sphere but the two chloride anions are in a hydrogen bonded outer sphere. This complex is ten-coordinate 4A,6B-expanded dodecahedral and crystallizes in the monoclinic space group P21 with (at 20 °C) A = 7.651(2), B = 11.704(7), C = 11.608(4) Å, β = 95.11(2)°, and Dcalc = 1.80 g cm−3 for Z = 2. The 18-crown-6 complex, [LaCl2(NO3)(18-crown-6)], has all inner sphere anions and has ten-coordinate 4A,6B-expanded dodecahedral La3+ centers. It crystallizes in the orthorhombic space group Pbca with (at 20 °C) a = 14.122(7), B = 13.563(5), C = 19.311(9) Å, and Dcalc = 1.89 g cm−3 for Z = 8.  相似文献   

10.
New mixed metal complexes SrCu2(O2CR)3(bdmap)3 (R = CF3 (1a), CH3 (1b)) and a new dinuclear bismuth complex Bi2(O2CCH3)4(bdmap)2(H2O) (2) have been synthesized. Their crystal structures have been determined by single-crystal X-ray diffraction analyses. Thermal decomposition behaviors of these complexes have been examined by TGA and X-ray powder diffraction analyses. While compound 1a decomposes to SrF2 and CuO at about 380°C, compound 1b decomposes to the corresponding oxides above 800°C. Compound 2 decomposes cleanly to Bi2O3 at 330°C. The magnetism of 1a was examined by the measurement of susceptibility from 5–300 K. Theoretical fitting for the susceptibility data revealed that 1a is an antiferromagnetically coupled system with g = 2.012(7), −2J = 34.0(8) cm−1. Crystal data for 1a: C27H51N6O9F9Cu2Sr/THF, monoclinic space group P21/m, A = 10.708(6), B = 15.20(1), C = 15.404(7) Å, β = 107.94(4)°, V = 2386(2) Å3, Z = 2; for 1b: C27H60N6O9Cu2Sr/THF, orthorhombic space group Pbcn, A = 19.164(9), B = 26.829(8), C = 17.240(9) Å, V = 8864(5) Å3, Z = 8; for 2: C22H48O11N4Bi2, monoclinic space group P21/c, A = 17.614(9), B = 10.741(3), C = 18.910(7) Å, β = 109.99(3)°, V = 3362(2) Å3, Z = 4.  相似文献   

11.
The water-soluble bisphosphine, 1,2-bis(bis(hydroxymethyl)phosphino)ethane (1), was synthesized in near quantitative yield by the reaction of bisphosphine, H2PCH2CH2PH2, with an aqueous formaldehyde in the presence of K2PtCl4. The reaction of this water-soluble bisphosphine 1 with cis-Pt(COD)Cl2 affords the mononuclear bischelate complex, [Pt{(HOH2C)2PCH2CH2P(CH2OH)2}2](Cl)2 (2), in near quantitative yield. The new ligand and complex have been characterized spectroscopically and the structure of the metal complex, 2, was determined by X-ray crystallography. The Pt(II) complex 2 crystallizes in the orthorhombic space group Pbca(a=14.623(1), B=16.216(2), C=9.319(4) Å) with Z=4. The final R value is 0.024.  相似文献   

12.
Compounds of formula [Al(CH3CN)6][MCl6]3(CH3CN)3 (M=Ta (1); Nb (2); Sb (3)) have been synthesized from the reactions of MCl5 and AlCl3 in acetonitrile and characterized by X-ray crystallography. Complex 1 crystallizes in the tetragonal space group P4/mbm with a = B = 10.408(2), C = 7.670(3) Å, V = 830.9(4) Å3 and Z = 2/3. Complex 2 crystallizes in the tetragonal space group P4/mnc with a = B = 330(a), C = 15.320(3) Å3 V = 1634.8(4) Å3 and Z = 4/3. Complex 3 also crystallizes in the tetragonal space group P4/mnc with a = B = 10.313(1), C = 15.238(2) Å, V = 1621.0(1) Å3 and Z = 4/3. The non-integer Z values for complexes 1–3 result unusual problems of disorder and/or twinning in these crystal structures due to their high symmetry. The M---Cl distances range from 2.329(3) Å in the Ta complex to 2.355(1) Å in the Sb complex, while the Al---N distances are similar in all three complexes, ranging from 1.92(1) to 1.97(1) Å, respectively. Complexes 1–3 are the first structurally characterized complexes that contain a (hexaacetonitrile)aluminum(III) cation.  相似文献   

13.
The double-helicate dinuclear silver(I) complex [Ag2L2](SO3CF3)2 (1) was obtained by reaction of AgSO3CF3 with 4′-phenyl-terpyridine (L). Each Ag+ ion is coordinated by two N-atoms from one of the ligands and by one N-atom of the other ligand, forming an irregular Ag2N6 bi-triangle geometry, with a metallic bond between the two silver ions. Complex 1 reacts with potentially bidentate ligands (L1), such as 9,10-bis(diphenylphosphino)anthracene (PAnP), 4,4′-dipyridyl or bis(diphenyl phosphino)methane (DPPM), to give the corresponding dinuclear complexes with bridging L1, [Ag2L2(μ-L1)](SO3CF3)2 (L1 = PAnP 2, 4,4′-dipyridyl 3 or DPPM 4), whereas on reaction with PPh3 forms the mononuclear complex [AgL(PPh3)](SO3CF3) 5. Reaction of 1 with the potentially tridentate ligand tris(2-diphenylphosphinoethyl)amine (NP3) results in complete decomposition of the coordination spheres to form [Ag(NP3)](SO3CF3) 6. Compound 1 shows a strong fluorescence in the solid state with its excitation band at 383.5 nm, the emission band at 535.5 nm and the lifetime of 4.20 ns, but the derived complexes do not show fluorescent properties. The photoluminescence of 1 in various solvents was also studied. The complexes were characterized by 1H NMR, elemental analysis, IR, MS, UV and single crystal X-ray diffraction.  相似文献   

14.
The synthesis, optical and magnetic properties and X-ray crystal structure of [Cu(2-aminopyrimidine)2(OH)(CF3SO3)]2(2-aminopyrimidine)2, a new dinuclear hydroxo-bridged copper(II) compound with a CuOCu angle of 97.96° and a very small antiferromagnetic interaction for which the singlet-triplet exchange parameter J, is described. The magnetic exchange coupling is almost negligible and, depending on the actual sample, varies from −1.8 to −7.2 cm−1.  相似文献   

15.
The crystal structure of the title compound [Fe(bpz)3](ClO4)2 · H2O (bpz=2,2-bipyrazine) has been determined by a single crystal X-ray diffraction study at 293(2) K. The complex is monoclinic, P21/c, a=17.263(3), b=9.983(2), c=17.921(4) Å, β=107.94(3)°, V=2938.3(10) Å3, Z=4, R=0.073 and Rw=0.118. The structure is made up of tris-chelated [Fe(bpz)3]2+ cations, uncoordinated perchlorate anions and crystallization water molecules. The iron atom exhibits a FeN6 distorted octahedral geometry with average Fe-N bond length and N-Fe-N bidentate angle of 1.962(5) Å and 81.6(2)°. The value of the Fe-N bond distance and that of the room temperature magnetic moment are in agreement with a singlet 1A1 ground state. The structure of 1 is compared to those of other tris-chelated iron(II) complexes with bidentate nitrogen heterocycles.  相似文献   

16.
The reaction of the neutral Tc(V) phenylimido complex [TcCl3(NPh)(PPh3)2] with excess PMe2Ph in refluxing MeOH gives the cationic, tris-dimethylphenylphosphine complex [TcCl2(NPh)(PMe2Ph)3]+, which is isolated as the tetraphenylborate salt. The IR spectrum of the crystalline product shows a medium intensity band at 1102 cm−1 which is assigned to ν(TcN) from the phenylimido core. The 1H NMR spectrum of the diamagnetic complex shows a series of multiplets in the aryl region and three distinct signals near 2 ppm from the phosphine methyl groups. The X-ray crystal structure, which is the first for a cationic technetium organoimido complex, shows a meridional arrangement of phosphine ligands with a chloride ligand coordinated trans to the phenylimido unit. The TcN bond length of 1.711(2) Å is consistent with the dianionic nature of the organonitrogen core. The Tc---N---C bond angle of 178.8(2)° reflects the sp hybridization of the phenylimido nitrogen atom. The coordination geometry is best described as a distorted octahedron. Crystal data for C54H58BCl2NP3Tc: triclinic space group . Structure solution based on 9986 observed reflections converged at R = 3.65%, Rw = 5.43%, GOF = 1.82.  相似文献   

17.
Reactions between 1,1′-dibenzyl-4,4′-bipyridinium(2+) (benzylviologen, BzV) chloride and cyanocuprates(I) gave two charge-transfer complexes having different colors: dark brown (BzV)3Cu9(CN)15·H2O and light brown (BzV)Cu(CN)3·2H2O. An X-ray crystal analysis of the former compound showed that nine crystallographically nonequivalent Cu atoms form three kinds of triad ---Cu---(CN)---Cu--- screws, which are linked by CN groups resulting in a unique three-dimensional network structure. Three of the nine Cu atoms have distorted tetrahedral (td) coordination geometries while the others have triangular plane (tp) geometries. Each screw consists of a (-tp-td-tp-)n array. There are three crystallographically nonequivalent viologen molecules. Certain CuCN moieties are located above a viologen ring or by the side of a viologen ring, with close interatomic contacts. These close contacts are characteristic of the charge-transfer complex and are responsible for the deep color of the complex.  相似文献   

18.
The bis(2-methoxyethyl)dithiocarbamate complexes [M{S2CN(CH2CH2OMe)2}2] (M = Ni, Cu, Zn, Pd) are readily prepared and the three lighter complexes have been crystallographically characterised. Disproportionation of [Cu{S2CN(CH2CH2OMe)2}2] upon addition of Cu(ClO4)2 · 6H2O affords the copper(III) complex [Cu{S2CN(CH2CH2OMe)2}2][ClO4] which has also been crystallographically characterised. Unlike other copper(III) dithiocarbamate salts, there are no intermolecular cation-cation or cation-anion interactions.  相似文献   

19.
The novel ferromagnetic coupling one-dimensional complex {Cu(NIT3Py)2[N(CN)2]2(H2O)2} (NIT3Py=2-(3-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) was synthesized and characterized structurally and magnetically. It crystallizes in the monoclinic space group C2/c. The Cu(II) ion is in a distorted octahedral environment. The units of {Cu(NIT3Py)2[N(CN)2]2(H2O)2} were connected as one-dimensional structure by the intermolecular hydrogen bonds. Magnetic measurements show that there are intramolecular ferromagnetic interactions and intermolecular antiferromagnetic interactions within the chain.  相似文献   

20.
The preparation, crystal structures and magnetic properties of three copper(II) compounds of formulae [Cu2(dmphen)2(dca)4] (1), [Cu(dmphen)(dca)(NO3)]n (2) and [Cu(4,4-dmbpy)(H2O)(dca)2] (3) (dmphen=2,9-dimethyl-1,10-phenanthroline, dca=dicyanamide and 4,4-dmbpy=4,4-dimethyl-2,2-bipyridine) are reported. The structure of 1 consists of discrete copper(II) dinuclear units with double end-to-end dca bridges whereas that of 2 is made up of neutral uniform copper(II) chains with a single symmetrical end-to-end dca bridge. Each copper atom in 1 and 2 is in a distorted square pyramidal environment: two (1) or one (2) nitrile-nitrogen atoms from bridging dca groups, one of the nitrogen atoms of the dmphen molecule (1 and 2) and either one nitrile-nitrogen from a terminal dca ligand (1) or a nitrate-oxygen atom (2) build the equatorial plane whereas the second nitrogen atom of the heterocyclic dmphen fills the axial position (1 and 2). The copper-copper separations through double (1) and single (2) end-to-end dca bridges are 7.1337(7) (1) and 7.6617(7) (2). Compound 3 is a mononuclear copper(II) complex whose structure contains two neutral and crystallographically independent [Cu(4,4-dmbpy)(H2O)(dca)2] molecules which are packed in two different layer arrangements running parallel to the bc-plane and alternating along the a-axis. The copper atoms in both molecules have slightly distorted square pyramidal surroundings with the two nitrogen atoms of the 4,4-dmbpy ligand and two dca nitrile-nitrogen atoms in the basal plane and a water oxygen in the apical position. A semi co-ordinated dca nitrile-nitrogen from a neighbour unit [2.952(6) Å for Cu(2)-N] is in trans position to the apical water molecule in one of the two molecules, this feature representing part of the difference in supramolecular connections in the alternating layers referred to above. Magnetic susceptibility measurements for 1-3 in the temperature range 1.9-290 K reveal the occurrence of weak antiferromagnetic interactions through double [J=−3.3 cm−1 (1), ] and single [J=−0.57 cm−1 (2), ] dca bridges and across intermolecular contacts [θ=−0.07 K (3)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号