首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:考查DNA疫苗注射免疫后电脉冲和布吡卡因佐剂化DNA疫苗递送方式对A型肉毒毒素DNA核酸疫苗免疫效果的影响。方法:A型肉毒毒素DNA复制子疫苗和传统DNA疫苗肌肉注射免疫小鼠后电脉冲和布吡卡因佐剂化DNA后再肌肉注射免疫小鼠;检测免疫小鼠的抗体和细胞水平,并分析抗体亚类。结果:电脉冲和布吡卡因这二种递送方式均增强DNA复制子疫苗和传统DNA疫苗的体液免疫和细胞免疫效果;电脉冲提高DNA疫苗免疫效果更为明显,并且电脉冲和布吡卡因组合这种递送方式增强DNA疫苗体液免疫和细胞免疫水平最高;与传统DNA疫苗相比,A型肉毒毒素DNA复制子疫苗在这些递送方式下均诱导产生了更好的特异性体液免疫和细胞免疫应答,并且这些递送方式没有改变DNA疫苗的Th1/Th2免疫应答特性,即DNA复制子疫苗诱导产生Th1/Th2混合免疫应答但偏向于Th2途经,而传统DNA疫苗则完全偏向于Th2途经。结论:电脉冲和布吡卡因增强DNA复制子疫苗和传统DNA疫苗的免疫效果,是提高DNA疫苗免疫原性的良好策略。  相似文献   

2.
ABSTRACT: BACKGROUND: The use of optimized delivery devices has been shown to enhance the potency of DNA vaccines. However, further optimization of DNA vaccine delivery is needed for this vaccine modality to ultimately be efficacious in humans. METHODS: Herein we evaluated antigen expression and immunogenicity after intradermal delivery of different doses of DNA vaccines by needle or by the Biojector jet-injection device, with or without the addition of electroporation (EP). RESULTS: Neither needle injection augmented by EP nor Biojector alone could induce higher magnitudes of immune responses after immunizations with a high dose of a DNA vaccine as compared to immunizations with a considerably lower dose. Biojector delivery followed by EP, however, overcame this observed dose restriction and induced significantly higher cellular and humoral immune responses after immunization with a high dose of DNA. Furthermore, a close correlation between in vivo antigen expression and cell-mediated immune responses was observed. CONCLUSIONS: These results show that two optimized DNA vaccine delivery devices can act together to overcome dose restrictions of plasmid DNA vaccines.  相似文献   

3.
DNA疫苗为编码抗原蛋白的真核表达载体,注入体内后在原位表达所编码的抗原并诱导免疫应答,在预防感染、治疗自身免疫性疾病、过敏性疾病和肿瘤等疫病中有着很好的应用前景。但与灭活疫苗相比,其免疫效价还比较低。有多种策略能够增强或调节DNA疫苗诱导的免疫应答,其中,作为外源基因载体的质粒的组成及插入的有关基因均可直接或间接地影响免疫反应的效果,在构建DNA疫苗质粒时,加入细胞因子、融合信号、泛素等基因以及ISS序列,另外还可以通过设计一些对抗原提成细胞有影响的分子共注射,以及加入转移分子,都可以明显增强DNA疫苗的免疫效果,从而有利于研制更有效的DNA疫苗。  相似文献   

4.
Increased DNA vaccine delivery and immunogenicity by electroporation in vivo   总被引:24,自引:0,他引:24  
DNA vaccines have been demonstrated to be potent in small animals but are less effective in primates. One limiting factor may be inefficient uptake of DNA by cells in situ. In this study, we evaluated whether cellular uptake of DNA was a significant barrier to efficient transfection in vivo and subsequent induction of immune responses. For this purpose, we used the technique of electroporation to facilitate DNA delivery in vivo. This technology was shown to substantially increase delivery of DNA to cells, resulting in increased expression and elevated immune responses. The potency of a weakly immunogenic hepatitis B surface Ag DNA vaccine was increased in mice, as seen by a more rapid onset and higher magnitude of anti-hepatitis B Abs. In addition, the immunogenicity of a potent HIV gag DNA vaccine was increased in mice, as seen by higher Ab titers, a substantial reduction in the dose of DNA required to induce an Ab response, and an increase in CD8+ T cell responses. Finally, Ab responses were enhanced by electroporation against both components of a combination HIV gag and env DNA vaccine in guinea pigs and rabbits. Therefore, cellular uptake of DNA is a significant barrier to transfection in vivo, and electroporation appears able to overcome this barrier.  相似文献   

5.
为了研究 H5N1 DNA 疫苗对小鼠和鸡的保护效率,用 H5N1 禽流感病毒 HA DNA 疫苗免疫 BALB/c 小鼠和 SPF 鸡 . 小鼠和鸡分别经电穿孔和肌肉注射免疫两次,间隔为 3 周 . 二次免疫后,用致死量的同源病毒进行攻毒实验 . 空白对照组在攻毒后全部死亡,而经电穿孔免疫的小鼠和鸡均获得了完全的保护,并能有效地抑制病毒在小鼠肺脏和鸡泄殖腔的繁殖 . 同时,电穿孔免疫的小鼠和鸡均产生了高水平的特异性抗体 . 经电穿孔免疫的小鼠攻毒后 CTL 反应明显加强 . 这些结果表明, HA DNA 疫苗能有效地保护小鼠和鸡对禽流感病毒的感染,同时也表明电穿孔免疫是 DNA 疫苗免疫的有效途径之一 .  相似文献   

6.
Vaccination with naked DNA holds great promise but immunogenicity needs to be improved. DNA constructs encoding bivalent proteins that bind antigen-presenting cells (APC) for delivery of antigen have been shown to enhance T and B cell responses and protection in tumour challenge experiments. However, the mechanism for the increased potency remains to be determined. Here we have constructed DNA vaccines that express the fluorescent protein mCherry, a strategy which allowed tracking of vaccine proteins. Transfected muscle fibres in mice were visualized, and their relationship to infiltrating mononuclear cells could be determined. Interestingly, muscle fibers that produced MHC class II-specific dimeric vaccine proteins with mCherry were for weeks surrounded by a localized intense cellular infiltrate composed of CD45+, MHC class II+ and CD11b+ cells. Increasing numbers of eosinophils were observed among the infiltrating cells from day 7 after immunization. The local infiltrate surrounding mCherry+ muscle fibers was dependent on the MHC II-specificity of the vaccine proteins since the control, a non-targeted vaccine protein, failed to induce similar infiltrates. Chemokines measured on day 3 in immunized muscle indicate both a DNA effect and an electroporation effect. No influence of targeting was observed. These results contribute to our understanding for why targeted DNA vaccines have an improved immunogenicity.  相似文献   

7.
Summary Human papillomavirus (HPV) E6 and E7 are consistently expressed and are responsible for the malignant transformation of HPV-associated lesions. Thus, E6 and E7 represent ideal targets for therapeutic HPV vaccine development. We have previously used the gene gun approach to test several intracellular targeting and intercellular spreading strategies targeting HPV-16 E7. These strategies include the use of the sorting signal of lysosome-associated membrane protein (LAMP-1), Mycobacterium tuberculosis heat shock protein 70 (HSP70), calreticulin (CRT) and herpes simplex virus type 1 (HSV-1) VP22 proteins. All of these strategies have been shown to be capable of enhancing E7-DNA vaccine potency. In the current study, we have characterized DNA vaccines employing these intracellular targeting or intercellular spreading strategies targeting HPV-16 E6 for their ability to generate E6-specific CD8+ T cell immune responses and antitumor effects against an E6-expressing tumor cell line, TC-1, in C57BL/6 mice. We found that all the intracellular targeting strategies (CRT, LAMP-1, HSP70) as well as the intercellular spreading strategy (VP22) were able to enhance E6 DNA vaccine potency, although the orientation of HSP70 linked to E6 antigen in the E6 DNA vaccine appears to be important for the HSP70 strategy to work. The enhanced E6-specific CD8+ T cell immune response in vaccinated mice also translated into potent antitumor effects against TC-1 tumor cells. Our data indicate that all of the intracellular targeting and intercellular spreading strategies that have been shown to enhance E7 DNA vaccine potency were also able to enhance E6 DNA vaccine potency.  相似文献   

8.
DNA vaccines are widely used against infectious agents for their ability to induce both humoral and cellular immune responses. However, safety concerns regarding autoimmune responses to DNA vaccines, particularly to certain plasmids, should not be neglected. In this study, we serendipitously found that mice inoculated with pcDNA3-ANXB1 (pcDNA3-b1) developed autoimmunity, which did not happen in pVAX-ANXB1 (pVAX-b1) inoculated mice. We also employed proteomics approaches to investigate the distinction between the two groups of DNA vaccine immunized mice. Five different proteins with three-fold or greater changes were separated and identified by two-dimensional electrophoresis. Our study verified the safety of the DNA vaccine and unveiled the underlying potential molecular mechanism of DNA vaccine delivery.  相似文献   

9.
Three types of vaccine, all expressing the same antigen from Plasmodium berghei, or a CD8+ T cell epitope from that antigen, were compared for their ability to induce CD8+ T cell responses in mice. Higher levels of lysis and numbers of IFN-gamma secreting T cells were primed with Ty virus-like particles and Modified Vaccinia Virus Ankara (MVA) than with DNA vaccines, but none of the vaccines were able to protect immunised mice from infectious challenge even after repeated doses. However, when the immune response was primed with one type of vaccine (Ty-VLPs or DNA) and boosted with another (MVA) complete protection against infection was achieved. Protection correlated with very high levels of IFN-gamma secreting T cells and lysis. This method of vaccination uses delivery systems and routes that can be used in humans and could provide a generally applicable regime for the induction of high levels of CD8+ T cells.  相似文献   

10.
BACKGROUND: Chitosan has been shown to possess useful properties such as non-toxicity, high biocompatibility and non-antigenicity that offer advantages for vaccine delivery systems. In this study, we prepared novel chitosan derivative nanoparticles as DNA vaccine carriers and the potential and mechanism of the DNA-nanoparticle complexes in inducing augmented immune responses were explored. METHODS: The pVAX(HBc)DNA-nanoparticle complexes as vaccine delivery systems were studied in several aspects: the protection against DNase I degradation was measured by an in vitro inhibition assay; the sustained expression of the plasmid in vivo was determined by RT-PCR; the elevated uptake efficiency by phagocytes was observed with confocal microscopy; the biocompatibility was evaluated by cytotoxicity and histology assay; the complexes were administrated to C57BL/6 mice and the humoral and cellular immune responses were evaluated by ELISA, IFN-gamma production and cytolytic T lymphocyte (CTL)-specific lysis assay. RESULTS: The remaining relative activity of DNase I after inhibition varied from 32.3% to 77.6%. The complexes were observed with higher uptake efficiency by phagocytes than naked DNA. Three types of nanoparticles did not induce significant cytotoxicity at concentrations相似文献   

11.
Direct application of high voltage electric pulses of milliseconds duration to the skin of a mouse enhances in vivo intradermal delivery of injected therapeutic molecules such as DNA. The efficacy of gene transfer and expression is dependent on electrical parameters. DNA electrotransfer in tissues increases the associated DNA expression vaccine potency. This protocol is called "electro-immunization". In the present study, we report a new strategy for optimizing electro-immunization. In vivo fluorescence imaging was used to detect the expression of a fluorescent protein (DsRed) and therefore allowed rapid optimization of the protocol. In vivo electrogenetransfer in the skin was well tolerated and DsRed expression was followed for over 2 weeks. Expression was voltage dependent under our conditions. Parameters were selected giving the highest level of expression. Under these optimized conditions, electrotransfer of a plasmid encoding VEGF was evaluated for its immune response as a gene therapy of interest involved in anti-angiogenic strategies. Anti VEGF 165 antibodies in sera of mice were evaluated by ELISA and compared to those obtained after conventional immunization. Comparable titres of antibodies were obtained in both groups. An IgG2a predominance was found in mice immunized with the plasmid whereas a IgG1 predominance was observed in mice immunized classically. Skin electro-immunization is therefore shown as a good route for DNA immunization for anti-angiogenesis concern.  相似文献   

12.
BACKGROUND: DNA vaccines have been shown to be an effective approach to induce antigen-specific cellular and humoral immunity. However, the lower immune intensity in clinical trials limits the application of DNA vaccine. Here we intend to develop a new DNA vaccine based on prostate stem-cell antigen (PSCA), which has been suggested as a potential target for prostate cancer therapy, and enhance the DNA vaccine potency with heat shock proteins (HSPs) as adjuvant. METHODS: A series of DNA plasmids encoding human PSCA, human HSP70 and their conjugates was constructed and injected into male mice intramuscularly (i.m.). To evaluate the immune responses and therapeutic efficacy of these plasmids, major histocompatibility complex (MHC)-restricted PSCA and HSP70-specific epitopes were predicted and a mouse model with a human PSCA-expressing tumor was constructed. RESULTS: The result showed that mice vaccinated with PSCA-HSP plasmids generated the strongest PSCA-specific CD8+ T-cell immune response, but the CD4+ TH1 and TH2 cell immune responses were similar with those vaccinated with other HSP-adjuvant PSCA plasmids or only PSCA DNA. The immunity of HSP70 was also observed and the mice i.m. injected with PSCA+ HSP mixed plasmids generated the lowest anti-HSP antibodies. Furthermore, these vaccinations inhibited the growth of PSCA-expressing tumors and prolonged mouse survival. CONCLUSIONS: These observations emphasize and extend the potential of the human HSP70 gene as adjuvant for DNA vaccines, and the vaccine based on PSCA and HSP70 is of potential value for treating prostate cancer.  相似文献   

13.
An intercellular spreading strategy using herpes simplex virus type 1 (HSV-1) VP22 protein is employed to enhance DNA vaccine potency of Leishmania major amastin antigen in BALB/c mice model. We evaluated the immunogenicity and protective efficacy of plasmid DNA vaccines encoding amastin-enhanced green fluorescent protein (EGFP) and VP22-amastin-EGFP. Optimal cell-mediated immune responses were observed in BALB/c mice immunized with VP22-amastin-EGFP as assessed by cytokine gene expression analysis using real time RT-PCR. Vaccination with the VP22-amastin-EGFP fusion construct elicited significantly higher IFN-gamma response upon antigen stimulation of splenocytes from immunized mice compared to amastin as a sole antigen. Mice immunized by VP22-amastin-EGFP showed partial protection following infectious challenge with L. major, as measured by parasite load in spleens. These results suggest that the development of DNA vaccines encoding VP22 fused to a target Leishmania antigen would be a promising strategy to improve immunogenicity and DNA vaccine potency.  相似文献   

14.
DNA vaccines are a promising technology for the induction of Ag-specific immune responses, and much recent attention has gone into improving their immune potency. In this study we test the feasibility of delivering a plasmid encoding IL-15 as a DNA vaccine adjuvant for the induction of improved Ag-specific CD8(+) T cellular immune responses. Because native IL-15 is poorly expressed, we used PCR-based strategies to develop an optimized construct that expresses 80-fold higher than the native IL-15 construct. Using a DNA vaccination model, we determined that immunization with optimized IL-15 in combination with HIV-1gag DNA constructs resulted in a significant enhancement of Ag-specific CD8(+) T cell proliferation and IFN-gamma secretion, and strong induction of long-lived CD8(+) T cell responses. In an influenza DNA vaccine model, coimmunization with plasmid expressing influenza A PR8/34 hemagglutinin with the optimized IL-15 plasmid generated improved long term CD8(+) T cellular immunity and protected the mice against a lethal mucosal challenge with influenza virus. Because we observed that IL-15 appeared to mostly adjuvant CD8(+) T cell function, we show that in the partial, but not total, absence of CD4(+) T cell help, plasmid-delivered IL-15 could restore CD8 secondary immune responses to an antigenic DNA plasmid, supporting the idea that the effects of IL-15 on CD8(+) T cell expansion require the presence of low levels of CD4 T cells. These data suggest a role for enhanced plasmid IL-15 as a candidate adjuvant for vaccine or immunotherapeutic studies.  相似文献   

15.
The effectiveness of cationic microparticles with adsorbed DNA at inducing immune responses was investigated in mice, guinea pigs, and rhesus macaques. Plasmid DNA vaccines encoding human immunodeficiency virus (HIV) Gag and Env adsorbed onto the surface of cationic poly(lactide-coglycolide) (PLG) microparticles were shown to be substantially more potent than corresponding naked DNA vaccines. In mice immunized with HIV gag DNA, adsorption onto PLG increased CD8(+) T-cell and antibody responses by approximately 100- and approximately 1,000-fold, respectively. In guinea pigs immunized with HIV env DNA adsorbed onto PLG, antibody responses showed a more rapid onset and achieved markedly higher enzyme-linked immunosorbent assay and neutralizing titers than in animals immunized with naked DNA. Further enhancement of antibody responses was observed in animals vaccinated with PLG/DNA microparticles formulated with aluminum phosphate. The magnitude of anti-Env antibody responses induced by PLG/DNA particles was equivalent to that induced by recombinant gp120 protein formulated with a strong adjuvant, MF-59. In guinea pigs immunized with a combination vaccine containing HIV env and HIV gag DNA plasmids on PLG microparticles, substantially superior antibody responses were induced against both components, as measured by onset, duration, and titer. Furthermore, PLG formulation overcame an apparent hyporesponsiveness of the env DNA component in the combination vaccine. Finally, preliminary data in rhesus macaques demonstrated a substantial enhancement of immune responses afforded by PLG/DNA. Therefore, formulation of DNA vaccines by adsorption onto PLG microparticles is a powerful means of increasing vaccine potency.  相似文献   

16.
Direct application of high voltage electric pulses of milliseconds duration to the skin of a mouse enhances in vivo intradermal delivery of injected therapeutic molecules such as DNA. The efficacy of gene transfer and expression is dependent on electrical parameters. DNA electrotransfer in tissues increases the associated DNA expression vaccine potency. This protocol is called “electro-immunization”. In the present study, we report a new strategy for optimizing electro-immunization. In vivo fluorescence imaging was used to detect the expression of a fluorescent protein (DsRed) and therefore allowed rapid optimization of the protocol. In vivo electrogenetransfer in the skin was well tolerated and DsRed expression was followed for over 2 weeks. Expression was voltage dependent under our conditions. Parameters were selected giving the highest level of expression. Under these optimized conditions, electrotransfer of a plasmid encoding VEGF was evaluated for its immune response as a gene therapy of interest involved in anti-angiogenic strategies. Anti VEGF 165 antibodies in sera of mice were evaluated by ELISA and compared to those obtained after conventional immunization. Comparable titres of antibodies were obtained in both groups. An IgG2a predominance was found in mice immunized with the plasmid whereas a IgG1 predominance was observed in mice immunized classically. Skin electro-immunization is therefore shown as a good route for DNA immunization for anti-angiogenesis concern.  相似文献   

17.
We have developed novel DNA fusion vaccines encoding tumor Ags fused to pathogen-derived sequences. This strategy activates linked T cell help and, using fragment C of tetanus toxin, amplification of anti-tumor Ab, CD4(+), and CD8(+) T cell responses is achievable in mice. However, there is concern that simple DNA vaccine injection may produce inadequate responses in larger humans. To overcome this, we tested electroporation as a method to increase the transfection efficiency and immune responses by these tumor vaccines in vivo in mice. Using a DNA vaccine expressing the CTL epitope AH1 from colon carcinoma CT26, we confirmed that effective priming and tumor protection in mice are highly dependent on vaccine dose and volume. However, suboptimal vaccination was rendered effective by electroporation, priming higher levels of AH1-specific CD8(+) T cells able to protect mice from tumor growth. Electroporation during priming with our optimal vaccination protocol did not improve CD8(+) T cell responses. In contrast, electroporation during boosting strikingly improved vaccine performance. The prime/boost strategy was also effective if electroporation was used at both priming and boosting. For Ab induction, DNA vaccination is generally less effective than protein. However, prime/boost with naked DNA followed by electroporation dramatically increased Ab levels. Thus, the priming qualities of DNA fusion vaccines, integrated with the improved Ag expression offered by electroporation, can be combined in a novel homologous prime/boost approach, to generate superior antitumor immune responses. Therefore, boosting may not require viral vectors, but simply a physical change in delivery, facilitating application to the cancer clinic.  相似文献   

18.
Abstract

Cochleates represent a powerful subunit vaccine delivery system, uniquely suited to meeting the challenges of modern vaccine development. The intrinsic properties of cochleates lead to advantages in the important areas of safety, stability, efficacy, immune response targeting, combining vaccines to multiple infectious agents, alternate routes of administration (including oral and intranasal), and the generation of mucosal immunity. Cochleates are alternating layers of cations and negatively charged lipids, in stacked sheets or rolled scrolls, with little or no internal aqueous space. Bacterial membrane proteins or the surface glycoproteins of enveloped viruses can be efficiently integrated into the lipid bilayers of the cochleates. The current study investigated the relative amounts of the different classes and subtypes of antibodies generated in mice in response to the oral administration of influenza glycoprotein cochleates. Analysis of circulating antibody revealed significant levels of flu glycoprotein-specific IgG, IgM, and IgA class, and IgGI and IgG2a subtype, antibodies. Oral administration of influenza glycoprotein cochleates also induced antigen-specific salivary IgA levels. The immune responses induced were protective against infection in the respiratory tract following intranasal challenge with live influenza virus. DNA plasmids and oligonucleotides can also be formulated into cochleates. Cochleates containing a plasmid that expresses the human immunodeficiency virus, (HIV-1), proteins env (gp160), rev, and tat, in mammalian cells, was given to mice orally or by intramuscular injection. Two oral administrations yielded strong splenocyte cytolytic and proliferative responses. These cellular responses were essentially the same as those obtained by analogous intramuscular injection of DNA cochleates. Very small quantities of encochleated DNA were required to induce these responses, whereas a higher dose of naked DNA given orally induced no cytotoxic or proliferative responses. Cochleates containing pathogen proteins or DNA, formulated, adjuvanted, and delivered in a variety of ways, represent powerful tools for dissecting and directing the immune response to complex pathogens. The ability of cochleates to induce antibody and cell mediated responses, systemically and on mucosal surfaces, makes them desirable candidates for development of preventive and therapeutic vaccines.  相似文献   

19.
DNA vaccines offer considerable promise for improvement over conventional vaccines. For the crucial step of delivering DNA vaccines intracellularly, electroporation (EP) has proven to be highly effective. This method has yielded powerful humoral and cellular responses in various species, including nonhuman primates. In an attempt to further improve DNA vaccination we used micron-size gold particles (which do not bind or adsorb DNA) as a particulate adjuvant which was coinjected with DNA intramuscularly into mice, followed by EP of the target site. The presence of gold particles accelerated the antibody response significantly. Maximum titers against hepatitis B surface antigen (HBsAg) were reached after one boost in 6 weeks, whereas 8 weeks were required without particles. These immunizations were effective in protecting mice against tumor challenge with cancer cells expressing HBsAg as a surrogate cancer antigen. Computer modeling of electric fields and gene expression studies indicate that gold particles do not stimulate EP and subsequent antigen expression. The particles may act as an attractant for immune cells, especially antigen presenting cells. We conclude that particulate adjuvants combined with DNA vaccine delivery by EP reduces the immune response time and may increase vaccine efficacy. This method may become valuable for developing prophylactic as well as therapeutic vaccines. The rapid response may be of particular interest in countering bio-terrorism.  相似文献   

20.
Two candidate DNA vaccines based on the proteins CFP10 and CFP21 encoded by regions of difference (RDs) of Mycobacterium tuberculosis were evaluated individually and in multivalent combination with the immunodominant protein Ag85B for induction of protective immune responses against experimental tuberculosis. Experimental DNA vaccines induced substantial levels of cell-mediated immune responses as indicated by marked lymphocyte proliferation, significant release of the Th1 cytokines IFN-gamma and IL-12 (p40), and predominant cytotoxic T cell activity. High levels of antigen-specific IgG1 and IgG2a antibodies observed in the sera of immunized mice depicted strong humoral responses generated by DNA vaccine constructs. The multivalent combination of three DNA vaccine constructs induced maximal T cell and humoral immune responses. All the experimental vaccines imparted significant protection against challenge with M. tuberculosis H(37)Rv (in terms of colony-forming unit reduction in lungs and spleen) as compared to vector controls. The level of protection exhibited by multivalent DNA vaccine formulation was found to be equivalent to that of Mycobacterium bovis BCG observed both at 4 and 8 weeks post-challenge. These results show the protective potential of the multivalent DNA vaccine formulation used in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号