首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microcystin-LR (MC-LR) and microcystin-RR (MC-RR) are the two most common microcystins (MCs) present in fresh water posing a direct threat to public health because of their hepatotoxicity. A novel MC-degrading bacterium designated MC-LTH1 capable of degrading MC-LR and -RR was isolated, and the degradation rates and mechanisms of MC-LR and -RR for this bacterium were investigated. The bacterium was identified as Bordetella sp. and shown to possess a homologous mlrA gene responsible for degrading MCs. To the best of our knowledge, this is the first report of mlrA gene detection in Bordetella species. MC-LR and -RR were completely degraded separately at rates of 0.31 mg/(L h) and 0.17 mg/(L h). However, the degradation rates of MC-LR and -RR decreased surprisingly to 0.27 mg/(L h) and 0.12 mg/(L h), respectively, when both of them were simultaneously present. Degradation products were identified by high performance liquid chromatography coupled with time-of-flight mass spectrometry. Adda (m/z 332.2215, C20H29NO3) commonly known as a final product of MC degradation by isolated bacteria was detected as an intermediate in this study. Linearized MC-LR (m/z 1013.5638, C49H76N10O13), linearized MC-RR (m/z 1056.4970, C49H77N13O13), and tetrapeptide (m/z 615.3394, C32H46N4O8) were also detected as intermediates. These results indicate that the bacterial strain MC-LTH1 is quite efficient for the detoxification of MC-LR and MC-RR, and possesses significant bioremediation potential.  相似文献   

2.
This study aimed to evaluate the efficiency of Burkholderia xenovorans LB400 cells and their cell extract to remediate 4-chlorobiphenyl (4-CB). The bacterium previously induced with 4-CB was able to degrade up to 98% of initial 50 mg L?1 of 4-CB from mineral medium within 96 h of incubation. The degradation of 4-CB occurred through the formation of meta-cleavage product 2-hydroxy-6-oxo-6phenylhexa-2,4-dienoic acid (HOPDA), as revealed through enzymatic assay of 2,3-dihydroxybiphenyl 1,2-dioxygenase (2,3-DHBD). A derivative of 1,2-benzenedicarboxylic acid was observed as one of the major intermediate metabolites of 4-CB degradation. Time course production of 2,3-DHBD during growth corresponds with the degradation pattern of 4-CB by the bacterium. In vitro degradation of 4-CB using cell extract of B. xenovorans showed complete degradation of initial 25 mg L?1 of 4-CB within 6 h of incubation. To the best of the authors' knowledge, this is the first report in which in vitro degradation of 4-CB using cell extract of Burkholderia xenovorans is presented.  相似文献   

3.
An analytical method for the simultaneous determination of imipramine (IMI) and its N-desmethyl metabolite, desipramine (DIMI) in human plasma by capillary gas chromatography–mass selective detection (GC–MS), with D4-imipramine (D4-IMI) and D4-desipramine (D4-DIMI) as internal standards, was developed and validated. After addition of the internal standards, the compounds were extracted from plasma at basic pH into n-heptane–isoamyl alcohol (99:1, v/v), back-extracted into acidic aqueous solution and re-extracted at basic pH into toluene. Desipramine and D4-desipramine were converted into their pentafluoropropionyl derivatives. The compounds were determined by gas chromatography using a mass selective detector at m/z 234 for IMI, m/z 238 for D4-IMI, m/z 412 for DIMI and m/z 416 for D4-DIMI. The method was applied to clinical samples.  相似文献   

4.
Sucrose’s ability to promote the hydroxylation of imidacloprid (IMI) by bacterium Stenotrophomonas maltophilia strain CGMCC 1.1788 was examined. Both growing culture and resting cells could transform IMI into 5-hydroxy IMI. Adding 2% sucrose to the growing culture transformation broth and 5% sucrose to the resting cell transformation broth resulted in biotransformation yields, respectively, 2.5 and 9 times greater than without sucrose. In the growing culture transformation, sucrose increased biomass, which led to enhance hydroxylation of IMI. In the resting cell transformation, sucrose was used not as a carbon source but as an energy source for cofactor regeneration for hydroxylation of IMI. The hydroxylation activity of IMI was promoted eightfold by adding reduced nicotinamide adenine dinucleotide (NADH) to the cell-free extract. The hydroxylation of IMI was significantly inhibited by P450 inhibitor piperonyl butoxide. It seems that the hydroxylation of IMI by S. maltophilia CGMCC 1.1788 might proceed through a system by cooperating with P450 enzyme.  相似文献   

5.
Endosulfan is one of the persistent organochlorinated pesticides used extensively throughout the world, particularly in the developing countries. Its microbial metabolic transformation product endosulfan sulphate is more toxic and persistent than the parent compound itself. In order to completely mineralize endosulfan, augmentation of soil microbial community with efficient endosulfan degradation properties could a potentially viable option. In the present study, endosulfan degrading bacterium was isolated from the agriculture-contaminated soil of Shujaabad, Multan, Pakistan by using enrichment technique. The isolated bacterial strain EN-1 (Endosulfan-1) was identified as S. maltophilia by 16S rRNA sequencing and biochemical analysis. EN-1 has demonstrated the ability to utilize endosulfan as sole sulfur source. Kinetics of endosulfan degradation was studied at various initial concentrations ranges from 5 mg/L to 100 mg/L by growth dependent and growth independent kinetic models. Biodegradation kinetics revealed that the bacterium was highly efficient in endosulfan degradation. The average values of kinetic constants i.e. Ks, and µmax were 13.73 mg/L and 0.210 h?1 respectively, while µmax/Ks ratio was 0.015. Addition of sulfur decreased the rate of degradation as the µmax/Ks was observed to reduce. GC-MS analysis revealed that the bacterium metabolised the endosulfan into non-toxic metabolite i.e. endosulfan diol. The study instigates a complete elucidation of degradation process for commercial applications.  相似文献   

6.
The ability of different local fungal isolates to degrade kerosene in liquid medium was studied. The results showed that the percent of kerosene degradation varied among the different tested fungi and that 60–96% of kerosene was degraded after 7 days in the presence of 0.2% (v/v) of Tween 80. The absence of the surfactant led to about 28.34% decrease of biodegradation. The degradation of 2% (v/v) of kerosene by the most efficient fungus (Aspergillus flavus) was significantly influenced by the incubation period and the composition of culture medium. Statistical experimental designs were used to optimize the process of kerosene degradation by the fungus. Under optimized medium compositions and culture conditions, A. flavus degraded kerosene (100%) after 111.3 h of incubation. Optimal conditions obtained in this work provided a solid foundation for further use of A. flavus in treatment of kerosene-polluted soil. The optimized conditions were applied to bioremediate 2.5% (v/w) kerosene-polluted soil by A. flavus, and the fungus efficiently degraded kerosene after 35 days of incubation.  相似文献   

7.
Aim: To determine optimal environmental conditions for achieving biodegradation of α‐ and β‐endosulfan in soil slurries following inoculation with an endosulfan degrading strain of Pseudomonas aeruginosa. Methods and Results: Parameters that were investigated included soil texture, soil slurry: water ratios, initial inoculum size, pH, incubation temperature, aeration, and the use of exogenous sources of organic and amino acids. The results showed that endosulfan degradation was most effectively achieved at an initial inoculum size of 600 μl (OD = 0·86), incubation temperature of 30°C, in aerated slurries at pH 8, in loam soil. Under these conditions, the bacterium removed more than 85% of spiked α‐ and β‐endosulfan (100 mg l?1) after 16 days. Abiotic degradation in noninoculated control medium within same incubation period was about 16%. Biodegradation of endosulfan varied in different textured soils, being more rapid in course textured soil than in fine textured soil. Increasing the soil contents in the slurry above 15% resulted in less biodegradation of endosulfan. Exogenous application of organic acids (citric acid and acetic acid) and amino acids (l ‐methionine and l ‐cystein) had stimulatory and inhibitory effects, respectively, on biodegradation of endosulfan. Conclusion: The results of this study demonstrated that biodegradation of endosulfan by Ps. aeruginosa in soil sediments enhanced significantly under optimized environmental conditions. Significance and Impact of the Study: Endosulfan is a commonly used pesticide that can contaminate soil, wetlands and groundwater. Our study demonstrates that bioaugmentation of contaminated soils with an endosulfan degrading bacterium under optimized conditions provides an effective bioremediation strategy.  相似文献   

8.
This work evaluated the effect of bioremediation treatments including natural attenuation, bioaugmentation, biostimulation as well as combined biostimulation and bioaugmentation on degradation of 4-nitrotoluene (4-NT), 2,4-dinitrotoluene (2,4-DNT) and 2,6-dinitrotoluene (2,6-DNT) in soil microcosms. Bioaugmentation with a previously isolated NTs-degrading bacterium, Rhodococcus pyridinivorans NT2, showed an 86–88% decrease in 4-NT, 2,4-DNT or 2,6-DNT after 60 days. Irrespective of the substrate types, least degradation (6–6.5%) was observed in abiotic control. The addition of β-cyclodextrin or rhamnolipid significantly improved NTs degradation efficiency in soil (18.5–74%) than natural attenuation (22–25%). Exogenous addition of preselected bacterial isolate NT2 along with β-cyclodextrin/rhamnolipid resulted in the greatest number (1.8× and 2.5× high) of total heterotrophic aerobic bacteria and NT degraders, respectively, compared to natural attenuation. Irrespective of the treatment types, the population of NT degraders increased steadily in the first 5 weeks of incubation followed by a plateau within the next few weeks. The treatment BABS2 (Soil + rhamnolipid + NT2) yielded highest microbial-C and -N and dehydrogenase activity, consistent with results of NTs degradation and microbial counts in combined bioaugmentation and biostimulation. Thus the results of this study suggest that bioaugmentation by R. pyridinivorans NT2 may be a promising bioremediation strategy for nitroaromatics-contaminated soils.  相似文献   

9.
Atrazine-degrading microorganisms designated EAA-3 and EAA-4, belonging to the genus Nocardioides, were obtained from an agricultural soil in Nigeria. The degradation kinetics of the two strains revealed total disappearance of 25 mg l?1 of atrazine in less than 72 h of incubation at the rate of 0.42 mg l?1 h?1 and 0.35 mg l?1 h?1, respectively. Screening for atrazine catabolic genes in these organisms revealed the presence of trzN, atzB, and atzC. Other genes, specifically atzA, atzD, and trzD, were not detected. Potential intermediates of atrazine catabolic route such as hydroxyatrazine, desethylatrazine, and desisopropylatrazine were utilized as sources of carbon and energy, while desisopropyl desethyl-2-hydroxyatrazine and desisopropyl-2-hydroxyatrazine were attacked but in the presence of glucose. A soil microcosm study showed that degradation was faster in microcosms contaminated with 13 mg of atrazine per g?1 of soil compared with 480 mg g?1 of soil. In the former, degradation was 10% higher in the inoculated soil than the non-inoculated control (natural attenuation) over the 28-day study period. Corresponding value obtained for the latter was nearly 70% higher. This study has demonstrated that the bacterial strains isolated enhanced atrazine degradation and the catabolic activities of these strains were not affected with increasing soil atrazine concentration.  相似文献   

10.
The ability of ruminal microbes to degrade the explosive compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in ovine whole rumen fluid (WRF) and as 24 bacterial isolates was examined under anaerobic conditions. Compound degradation was monitored by high-performance liquid chromatography analysis, followed by liquid chromatography–tandem mass spectrometry identification of metabolites. Organisms in WRF microcosms degraded 180 μM RDX within 4 h. Nitroso-intermediates hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) were present as early as 0.25 h and were detected throughout the 24-h incubation period, representing one reductive pathway of ring cleavage. Following reduction to MNX, peaks consistent with m/z 193 and 174 were also produced, which were unstable and resulted in rapid ring cleavage to a common metabolite consistent with an m/z of 149. These represent two additional reductive pathways for RDX degradation in ovine WRF, which have not been previously reported. The 24 ruminal isolates degraded RDX with varying efficiencies (0–96 %) over 120 h. Of the most efficient degraders identified, Clostridium polysaccharolyticum and Desulfovibrio desulfuricans subsp. desulfuricans degraded RDX when medium was supplemented with both nitrogen and carbon, while Anaerovibrio lipolyticus, Prevotella ruminicola, and Streptococcus bovis IFO utilized RDX as a sole source of nitrogen. This study showed that organisms in whole rumen fluid, as well as several ruminal isolates, have the ability to degrade RDX in vitro and, for the first time, delineated the metabolic pathway for its biodegradation.  相似文献   

11.
A preliminary virulence test of four fungal isolates, Beauveria bassiana IMI 382302, Beauveria bassiana IMI 386701, Trichoderma harzianum T24 and Aspergillus flavus Link against larvae of Spodoptera littoralis was performed. The most effective isolates against larvae of S. littoralis were B. bassiana 302 and T. harzianum T24, which also showed the lower percentage of pupation compared with the other two isolates under the same conditions of treatments. Three concentrations (1 × 106, 1 × 107 and 1 × 108 ml?1) of the aqueous conidial suspension of the four tested isolates were carried out against both larval and pupal stages of S. littoralis within five days post-treatment. T. harzianum T24 showed 80% larval mortality only when applied at the highest conidial concentration, while A. flavus showed 100% pupal mortality only, at all of its conidial concentrations. However, B. bassiana IMI 382302 showed relatively high dose-dependant larval and pupal mortalities, while strain IMI 386701 of B. bassiana showed a very weak mortality against pupae at higher concentrations, and no virulence against larvae was recorded. Enzymatic and antibiosis bioassays of the four fungal isolates showed relatively high activities against Fusarium spp. for most of the tested isolates. Clear zone of enzyme activity on agar plates proportionally increased with increasing the concentration of enzyme substrate and prolongation of the incubation period. Mtabolites produced in the agar culture inhibited the growth of Fusarium spp. and the productivity differed greatly among isolates or strains of the same isolate. Volatile and non-volatile compounds produced by A. flavus Link showed a higher inhibition activity against Fusarium spp. compared with the other fungal isolates. The humoral antifungal response of insect host is relatively high compared to the anti-bacterial one. Injection of larvae with the immune sensitive bacteria Micrococcus luteus (5 × 103 bacteria/larva) showed a detectable humoral response by 2 h, peaked around 12 h and became hardly detectable by 24 h post-injection. Injection of larvae with conidial suspension (5 × 103 conidia/larva) from each of the fungal isolates showed humoral antifungal activity against B. bassiana IMI 386701 and A. flavus only. This activity was detectable by 12 h, peaked around 36 h and became hardly detectable by 48 h post-injection. Although the humoral antifungal response was started slowly compared to the antibacterial one, it lasted for longer and enabled larvae to withstand the infection with these immune-sensitive fungal strains. No humoral activity was detected against B. bassiana IMI 382302, although however, weak activity was detected against T. harzianum T24 only at the low conidial concentration but not at the higher one (1 × 108 ml?1). Thus, this study concludes that larvae of S. littoralis showed immune-dependant sensitivity to T. harzianum T24 and B. bassiana IMI 382302. Therefore, this study may recommend these two fungal isolates as mycoinsecticides in the battle against cotton leaf worm in Egypt. Hence, they have been selected for future comprehensive bioassays in the laboratory under conditions similar to that in the field. This, in fact, may help for developing effective mycoinsecticides against this pest. Penetration mechanims of insect cuticle by entomopathogenic fungi will be discussed.  相似文献   

12.
Polycyclic aromatic hydrocarbons (PAHs) are common ubiquitous pollutants existing in nature with high recalcitrance and toxicity. In this study a bacterium capable of aerobic degradation of high molecular weight PAHs (with special reference to pyrene) was isolated by selective enrichment culture technique from oil refinery effluent sludge. The isolate was characterized as Achromobacter xylooxidans by 16S rRNA gene sequence analysis technique. For the first time it is hereby reported a bacterium capable of effectively degrading pyrene (up to 80%), as evident by reverse phase high performance liquid chromatographic analysis (RP-HPLC). After incubation of Achromobacter xylooxidans in minimal salt medium (MSM) containing pyrene, at concentration of 200 mg/L, as sole source of carbon and energy, there was decrease in pyrene concentration concomitant with increase in bacterial cell protein concentration. RP-HPLC analysis revealed that pyrene was degraded into three metabolites viz. I, II and III. The RP-HPLC eluent fraction were collected from 2.5 to 32.0 min by repeated injection of degraded sample, concentrated and analyzed on gas chromatography mass spectroscopy (GC-MS) for metabolite identification. The fraction shows 1-hydroxypyrene, 1-hydroxy-6-methoxypyrene and 1,6dimethoxypyrene as metabolic product of pyrene degradation, on the basis of their m/z values. On contrary to the reported PAH degradation with reference to pyrene by different isolates till date; the efficient degradation, as evident by RP-HPLC, by this isolate holds a promising potential for planning of bioremediation strategies of contaminated sites.  相似文献   

13.
The wetlands on the Qinghai-Tibet Plateau are experiencing serious degradation, with more than 90,000 hectares of marshland converted to wet meadow or meadow after 40 years of drainage. However, little is known about the effects of wetland conversion on soil C stocks and the quality of soil organic carbon (SOC) (defined by the proportion of labile versus more resistant organic carbon compounds). SOC, microbial biomass carbon, light fraction organic carbon (LFOC), dissolved organic carbon, and the chemical composition of SOC in the soil surface layer (0–10 cm), were investigated along a wetland degradation gradient (marsh, wet meadow, and meadow). Wetland degradation caused a 16 % reduction in the carbon stocks from marsh (178.7 ± 15.2 kg C m?2) to wet meadow (150.6 ± 21.5 kg C m?2), and a 32 % reduction in C stocks of the 0–10 cm soil layer from marsh to meadow (122.2 ± 2.6 kg C m?2). Wetland degradation also led to a significant reduction in SOC quality, represented by the lability of the carbon pool as determined by a density fractionation method (L LFOC), and a significant increase in the stability of the carbon pool as reflected by the alkyl-C:O-alkyl-C ratio. 13C NMR spectroscopy showed that the labile form of C (O-alkyl-C) declined significantly after wetland degradation. These results assist in explaining the transformation of organic C in these plateau wetland soils and suggest that wetland degradation not only caused SOC loss, but also decreased the quality of the SOC of the surface soil.  相似文献   

14.
An acenaphthene-degrading bacterium putatively identified as Pseudomonas sp. strain KR3 and isolated from diesel-contaminated soil in Lagos, Nigeria was investigated for its degradative and biosurfactant production potentials on crude oil. Physicochemical analysis of the sampling site indicates gross pollution of the soil with high hydrocarbon content (2100 mg/kg) and detection of various heavy metals. The isolate grew luxuriantly on crude oil, engine oil and acenaphthene. It was resistant to septrin, amoxicillin and augmentin but was susceptible to pefloxacin, streptomycin and gentamycin. It was also resistant to elevated concentration of heavy metals such as 1–15 mM lead, nickel and molybdenum. On acenaphthene, the isolate exhibited specific growth rate and doubling time of 0.098 day?1 and 3.06 days, respectively. It degraded 62.44% (31.2 mg/l) and 91.78% (45.89 mg/l) of 50 mg/l acenaphthene within 12 and 21 days. On crude oil, the specific growth rate and doubling time were 0.375 day?1 and 1.85 days with corresponding percentage degradation of 33.01% (903.99 mg/l) and 87.79% (2403.71 mg/l) of crude oil (2738.16 mg/l) within 9 and 18 days. Gas chromatographic analysis of residual crude oil at the end of 18 days incubation showed significant reductions in the aliphatic, alicyclic and aromatic fractions with complete disappearance of benzene, propylbenzene, pristane, phytane, and nC18-octadecane fractions of the crude oil. The isolate produced growth-associated biosurfactant on crude oil with the highest emulsification index (E24) value of 72% ± 0.23 on Day 10 of incubation. The partially purified biosurfactant showed zero tolerance for salinity and had its optimal activity at 27°C and pH 2.0.  相似文献   

15.
The marine diesel oil-degrading bacterium Acinetobacter sp. strain Y2 was isolated from oil-polluted seawater sampled from Dinghai port, Zhoushan City, Zhejiang Province, China. The isolated bacterium was identified as Acinetobacter sp. based on its 16S rDNA gene sequence as well as various morphological and physiological characteristics. The degradation characteristics of strain Y2 were studied and its parameters for oil degradation optimized. These optimal conditions were determined to be an initial pH of 7.5, an incubation temperature of 30 °C, an initial diesel oil concentration of 2 % (v/v), and an initial inoculating bacteria concentration of 3?×?107 cells/mL. The results from the gas chromatography–mass spectrometry analysis showed that strain Y2 could almost completely degrade all components of diesel oil, with a degradation ratio of up to 80 % after 10 days of incubation at the optimal conditions.  相似文献   

16.
Enterobacter cloacae was originally isolated from soil irrigated with wastewater on the basis of its ability to grow with linear alkylbenzene sulfonate (LAS) as the sole source for carbon and energy. The isolated bacterium was grown in batch cultures using a 2-chlorobenzoic acid (2-CBA)-containing minimal salt medium (MSM). 2-CBA was found to be the sole source for carbon and energy. 2-CBA inhibited the growth rate with a maximum concentration of 10 mM, after which no growth occurred. The Haldane model was used to predict the specific growth rate concentration data. 2-CBA degradation by starved E. cloaca cells was faster than that of nonstarved cells. The maximum growth rates on 2-CBA (2 mM) for starved and nonstarved cells reached only 0.34 and 0.28 h?1, respectively. Glucose, lactose, sucrose, maltose, succinic acid, and mannitol as additional carbon sources at a fixed concentration (0.2%) caused the degradation rate of 2-CBA to proceed faster at ranges between 1.08- and 1.5-fold higher than that of the control. In contrast, using only fructose and sorbitol as the carbon sources showed catabolic repression of the degradation activity of 2-CBA by E. cloaca cells, although their cell mass was improved. All nitrogen sources supplied caused an increase in cell mass, whereas only lysine, alanine, glutamine, casein, and yeast extract caused a decrease in the degradation rate of 2-CBA, with a range between 12% and 28%. The activity of C120 could be detected in a crude extract of E. cloacae cells, indicating that the chloroaromatic ring fission occurs through the ortho pathways, not through the meta pathways. The data showed that different initial cell (inocula) densities did not affect the induction time for 2-CBA degradation. However, doubling the initial cell densities reduced the time required for reaching the complete degradation. 2-CBA degradation was optimally achieved at a 37°C incubation temperature and a pH of 7.5.  相似文献   

17.
Evaluation of rice husk (RH) as bulking agent in bioremediation of automobile gas oil (AGO) hydrocarbon polluted agricultural soil using renewal by enhanced natural attenuation (RENA) as control was the subject of the present investigation. The effect of different parameters such as total petroleum hydrocarbon (TPH), dehydrogenase activity (DHA), optical density and pH on bioremediation performance were evaluated. The studied parameters such as microbial dynamics, percentage degradation and DHA were found to be higher in RH-amended system and differed significantly with control at P < 0.05. RH resulted in high removal efficiency of 97.85 ± 0.93% under a two-month incubation period, while RENA had lesser removal efficiency of 53.15 ± 3.81%. Overall hydrocarbon biodegradation proceeded very slowly in the RENA particularly from week 0 to 4. Experimental data perfectly fitted into the first-order kinetic and generated high r2 values (0.945), first-order degradation constant (0.47 day?1), and shorter degradation half-life (1.50 d)—t1/2 = Ln2/K and Ln2 numerically equals to 0.693 and hence written as 0.693/K. Micrococcus luteus and Rhizopus arrhizus were isolated in the present study, which displayed extreme AGO hydrocarbon biodegradative abilities. The use of RH in hydrocarbon-polluted soil significantly increased biodegradation rate and resulted in effective AGO cleanup within 2 months period. Therefore, RH provides an alternative source of bioremediation material in field application for abundant petroleum hydrocarbon soil pollution.  相似文献   

18.
Efficiency of imidacloprid and thiametoxam on population growth parameters of Aphis gossypii Glover (Hemiptera: Aphididae) was assessed using three bioassay methods including; residual, starvation and FAO dip methods. Aphids were assayed under laboratory conditions at 23 ± 2°C, photoperiod of 16:8 (L:D) and 70% relative humidity. Aphids were transferred to sprayed leaves and Petri dishes in residual and starvation methods, respectively. There was no feeding for the aphids in starvation method. In FAO dip method, insects were dipped for 5 s in pesticide solutions and then transferred to fresh leaves. Results revealed that LC50 values calculated with the starvation and residual methods were respectively 15 and 11% more than FAO dip method (for imidacloprid) and 22 and 18% (for thiametoxam). The LC50 value in starvation method was 3% more than the residual method. Calculated LC50 in starvation and residual methods with imidacloprid respectively caused 160 and 34% increase in intrinsic rates of increase (r m) and net reproductive rate (R 0) in comparison with FAO dip method. Generation time (T) and doubling time (DT) were respectively 59 and 62% less than those in FAO dip method. In contrast, thiametoxam (LC50 concentration) in starvation and residual method lead to 9 and 67% increase in r m and R 0 parameters compared to FAO dip method. However T and DT were respectively 65 and 92% less than mentioned parameters in FAO dip method. There was not any significant difference between life table parameters calculated by residual and starvation bioassay methods.  相似文献   

19.
Microorganisms that bring about the aerobic transformation of imidacloprid (IMI) were isolated and screened, and the microbial regio- and stereoselective hydroxylation of IMI was studied. Some bacteria and fungi transformed IMI to 5-hydroxyl IMI. Bacterium Stenotrophomonas maltophilia CGMCC 1.1788 resting cells transformed IMI into R-5-hydroxyl IMI at the highest conversion rate. The enzyme catalyzed the stereoselective hydroxylation at position C12 of IMI in the imidazolidine ring. Under acidic conditions, 5-hydroxyl IMI was converted into olefin IMI in high molar conversion yield. The olefin IMI exhibited about 19 and 2.2 times more insecticidal efficacy than IMI against horsebean aphid imago and nymph, respectively, and about 1.4 times more active than IMI against brown planthopper imago. The transformation rate of IMI by resting cells of S. maltophilia CGMCC 1.1788 was promoted significantly by some carbohydrates and organic acids. The reaction medium with 5% sucrose resulted in 8.3 times greater biotransformation yield as compared with that without sucrose.  相似文献   

20.
The reclamation of saline sodic soils requires sodium removal and the phytoremediation is one of the proven low-cost, low-risk technologies for reclaiming such soils. However, the role of Phragmites australis in reclaiming saline sodic soils has not been evaluated extensively. The comparative reclaiming role of P. australis and gypsum was evaluated in a column experiment on a sandy clay saline sodic soil with ECe 74.7 dS m?1, sodium adsorption ratio (SAR) 63.2, Na+ 361 g kg?1, and pH 8.46. The gypsum at 100% soil requirement, planting common reed (P. australis) alone, P. australis + gypsum at 50% soil gypsum requirements, and leaching (control without plant and gypsum) were four treatments applied. After 11 weeks of incubation, the results showed that all treatments including the control significantly reduced pH, EC, exchangeable Na+, and SAR from the initial values, the control being with least results. The gypsum and P. australis + gypsum were highly effective in salinity (ECe) reduction, while sodicity (SAR) and Na+ reductions were significantly higher in P. australis + gypsum treatment. The reclamation efficiency in terms of Na+ (83.4%) and SAR (86.8%) reduction was the highest in P. australis + gypsum. It is concluded that phytoremediation is an effective tool to reclaim saline sodic soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号