首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
A comprehensive, quantitative risk assessment is presented of the toxicological risks from buried Exxon Valdez subsurface oil residues (SSOR) to a subpopulation of sea otters (Enhydra lutris) at Northern Knight Island (NKI) in Prince William Sound, Alaska, as it has been asserted that this subpopulation of sea otters may be experiencing adverse effects from the SSOR. The central questions in this study are: could the risk to NKI sea otters from exposure to polycyclic aromatic hydrocarbons (PAHs) in SSOR, as characterized in 2001–2003, result in individual health effects, and, if so, could that exposure cause subpopulation-level effects? We follow the U.S. Environmental Protection Agency (USEPA) risk paradigm by: (a) identifying potential routes of exposure to PAHs from SSOR; (b) developing a quantitative simulation model of exposures using the best available scientific information; (c) developing scenarios based on calculated probabilities of sea otter exposures to SSOR; (d) simulating exposures for 500,000 modeled sea otters and extracting the 99.9% quantile most highly exposed individuals; and (e) comparing projected exposures to chronic toxicity reference values. Results indicate that, even under conservative assumptions in the model, maximum-exposed sea otters would not receive a dose of PAHs sufficient to cause any health effects; consequently, no plausible toxicological risk exists from SSOR to the sea otter subpopulation at NKI.  相似文献   

2.
Harlequin Ducks (Histrionicus histrionicus) were adversely affected by the Exxon Valdez oil spill (EVOS) in Prince William Sound (PWS), Alaska, and some have suggested effects continue two decades later. We present an ecological risk assessment evaluating quantitatively whether PWS seaducks continue to be at-risk from polycyclic aromatic hydrocarbons (PAHs) in residual Exxon Valdez oil. Potential pathways for PAH exposures are identified for initially oiled and never-oiled reference sites. Some potential pathways are implausible (e.g., a seaduck excavating subsurface oil residues), whereas other pathways warrant quantification. We used data on PAH concentrations in PWS prey species, sediments, and seawater collected during 2001–2008 to develop a stochastic individual-based model projecting assimilated doses to seaducks. We simulated exposures to 500,000 individuals in each of eight age/gender classes, capturing the variability within a population of seaducks living in PWS. Doses to the maximum-exposed individuals are ~400–4,000 times lower than chronic toxicity reference values established using USEPA protocols for sea- ducks. These exposures are so low that no individual-level effects are plausible, even within a simulated population that is orders-of-magnitude larger than exists in PWS. We conclude that toxicological risks to PWS seaducks from residual Exxon Valdez oil two decades later are essentially non-existent.  相似文献   

3.
4.
This study applies a mental models survey approach to assess public thinking about oil spills and oil spill response. Based on prior interdisciplinary oil spill response research, the study first applies qualitative interview results and a response risk decision model to the design of a survey instrument. The decision model considers controlled burning, public health, and seafood safety. Surveying U.S. coastal residents (36,978 pairs of responses) through Google Insights identifies beliefs and gaps in understanding as well as related values and preferences about oil spills, and oil spill responses. A majority of respondents are concerned about economic impacts of major oil spills, and tend to see ocean ecosystems as fragile. They tend to see information about chemical dispersants as more important than ecological baseline information, and dispersants as toxic, persistent, and less effective than other response options. Although respondents regard laboratory studies as predictive of the effects of oil and of controlled burning, they are less confident that scientists agree on the toxicity and effectiveness of dispersants. The results illustrate opportunities to reframe discussions of oil spill response in terms of tradeoffs between response options, and new possibilities for assessing public opinions and beliefs during events.  相似文献   

5.
Accidents such as toxic spills can cause massive damage to local ecosystems and hamper the sustainable development of hazardous industries. Models that only consider regularly occurring pollution are unable to truly quantify ecological risks (ecorisks) from these industries. This work presents a methodology capable of quantifying ecorisks related to rare and extreme events such as industrial accidents. We developed a procedure that integrates information from different studies that contributes to characterize ecorisks from industrial accidents: (1) reliability analysis, (2) fate and transport modeling, (3) individual-level toxicological assessment, and (4) population modeling. The methodology is exemplified by an application to oil ship transportation to supply Brazil's Suape industrial complex. A fish population was strategically chosen to represent the ecosystem's health of Suape beach. For the critical accidental scenarios, their frequencies of occurrence were estimated and the space–time evolution of oil simulated. The ecorisks were quantified in terms of time and population probability of fish extinction, categorized and compared against a no-accident scenario. The total ecorisks from all scenarios were presented as a FN curve, where N is the average number of deaths in the population and F the cumulative frequency of accidents with potential to cause N or more deaths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号